

Femtosecond dynamics of long-range order: coupling of the lattice, spins, charge and orbitals

Steve Johnson

ETH Zurich

- Overview: dynamics as pathway to control
- X-rays as a selective probe of structure in condensed matter
- Indirect control: coupled lattice, orbital and charge in PCMO
 - Aside: a first look at x-ray "control" in a solid
- Direct control: coherent electromagnon in TbMnO3
- Outlook

Structure and function

Graphite

Diamond

Conventional: adiabatic/stochastic

Temperature, pressure, static fields... ...works, but slow.

Can we do this faster, more efficiently?

Swiss Federal Institute of Technology Zurich

Dynamics of symmetry changes

[Hwang et al. PRB 52, 15046 (1995)]

Equilibrium thermodynamics powerful: Critical phenomena, RG theory

Time scales ≤ interaction times (~ 1-1000 fs): breakdown of conventional thermodynamics

Experimental concept

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Intense light pulses to perturb structure

Femtosecond-resolved x-ray probes of structure changes

╋

Understand & control of atomic-scale structural dynamics

Nobel Symposium

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Light as a control knob

- Mature technology for creating / shaping pulses at nearoptical frequencies
- Recent advances at lower frequencies make direct resonant excitation of IR active modes possible

ΞTł

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

X-ray pulses as a fast probe

- X-ray diffraction: access to longrange atomic-scale order
- Sources for short pulses
 - Electron-beam slicing at Swiss Light Source (PSI)
 - X-ray free electron lasers

X-ray pulses as a fast probe

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Non-resonant: first-order elastic scattering dominated by |A|² term in H_{int}
- Intensity related to FT of electron density

$$H_{\text{int}} = -\frac{q}{mc} (\mathbf{A} \cdot \mathbf{P} + \mathbf{P} \cdot \mathbf{A}) + \frac{q^2 |\mathbf{A}|^2}{2mc^2}$$

(non-relativistic, spin ignored)

$$I(Q) \propto |F(Q)|^2 = \left| \sum_j f_j e^{i\mathbf{r}_j \cdot \mathbf{Q}} \right|^2$$

X-ray pulses as a fast probe

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Near core-level resonance: large second-order scattering
- Enhanced contributions from valence states

$$H_{\text{int}} = \frac{q}{mc} (\mathbf{A} \cdot \mathbf{P} + \mathbf{P} \cdot \mathbf{A}) + \frac{q^2 |\mathbf{A}|^2}{2mc^2}$$
$$\Delta f = \sum \frac{\langle \psi_i | H_{\text{int}} | \psi_j \rangle \langle \psi_j | H_{\text{int}} | \psi_i}{\langle \psi_j | H_{\text{int}} | \psi_i \rangle}$$

$$f = \sum_{j} \frac{1}{h\omega - (E_j - E_i) + i\Gamma/2}$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Bismuth

[Zijlstra, Tatarinova & Garcia, PRB 74, 220301 (2006)]

[Kida et al., JOSAB 26 A35 (2009)]

- Indirect" control of order parameters
 - Excitation of other DOF, couples to order
- "Direct" control
 - Drive order directly with EM pulse

"Indirect" control:

Electronically induced structure changes

Pr_{0.5}**Ca**_{0.5}**MnO**₃: mixed-valence manganite

Distorted perovskite

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Charge and orbital ordering below 240 K
- Strong lattice distortion due to Jahn-Teller interaction

- CE-type charge & orbital order
- 3d Jahn-Teller distortion at Mn³⁺ sites doubles unit cell

 $T > T_{CO/OO}$ orthorhombic Pbnm

 $T < T_{\rm CO/OO}$ monoclinic P2₁/m

Photoexcitation drives transition

 Photoexcitation: perturbation of charge and orbitals

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Forces system to higher symmetry state
- How does this couple to structure?

PAUL SCHERRER INSTITUT

S. Gruebel

S. Mariager

L. Patthey

SLAC:

J. Glownia

H. Lemke

M. Chollet

A. Robert

D. Fritz

D. Zhu

Experiment team: Pr0.5Ca0.5MnO3

A. T. Huber

P. Beaud

U.Staub

S.-W. Huang

J. Johnson

C. Vicario

G. Ingold

- A. Ferrer
- T. Kubacka
- L. Huber
- C. Dornes
- V. Scagnoli
- **RIKEN/U.** Tokyo:
- M. Nakamura H. Wadati M. Kawasaki Y.Tokura

Swiss National Science Foundation

Experiment

- 40 nm film sample of Pr_{0.5}Ca_{0.5}MnO₃
- (011)_c orientation
- Pumped at 1.55 eV, 50 fs pulses
- Probed with ~ 6.55 keV, ~50 fs
- Cornell-SLAC Pixel Array Detector

Resonant diffraction at Mn K-edge

• From hybridization of Mn 3d and O 2p states [Zimmermann et al. PRL 83, 4871 (1999)]

Resonant diffraction at Mn K-edge

• From hybridization of Mn 3d and O 2p states [Zimmermann et al. PRL 83, 4871 (1999)]

Time resolution

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Per-shot arrival time monitor essential [spectral encoding method, Harmand et al. Nat. Photon. 7, 215 (2013)]
- Dramatic improvement over previous measurements

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

Overview: coupled motions

- Different reflections in & out of resonance gives access to different types of long-range order
- Above a certain excitation density, all go to zero at t > 1 ps
- Charge order melting fastest
- Other peaks see strong coherent vibration contribution

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

"Time-dependent" order parameter

• Use (0 -3 0) intensity as a measure of charge order

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Intensity gives square of Mn charge modulation amplitude
- Identify charge modulation amplitude as a transient order parameter η_t
- Order parameter varies with time (and depth)

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

Early time excitation fluence dependence well described by

$$\eta_t = \begin{cases} \sqrt{1 - \frac{n_0}{n_c}} & n_0 < n_c \\ 0 & n_0 \ge n_c \end{cases}$$

$$n_0 = \text{ initial electronic} \\ \text{energy density,} \\ \text{proportional to fluence} \\ n_c = 350 \text{ meV/Mn site} \end{cases}$$

 Very similar to Landau mean-field result for 2nd order phase transitions

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

Swiss Federal Institute of Technology Zurich

Nobel Symposium

Time evolution of order parameter

• Later times, after e-ph interaction:

$$\eta_t(t_{\text{late}}) = \left(1 - \frac{n_0}{n_c}\right)^{\gamma} \qquad \gamma = 0.20 \pm 0.02$$

Change of exponent: onset of long-range correlations?

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Time evolution of order parameter

• Represent as an evolving *n*(*t*):

$$\eta_t = \begin{cases} \sqrt{1 - \frac{n}{n_c}} & n < n_c \\ 0 & n \ge n_c \end{cases} \qquad n(t) = (n_0 - an_c)e^{-t/\tau} + an_c \\ n \ge n_c & a = 1 - \left(1 - \frac{n_0}{n_c}\right)^{2\gamma} \end{cases}$$

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Coupling to structure via a time-dependent interatomic potential
- For quasi 1-D systems with one transition coordinate, Landau form has worked

[Yusupov et al. Nat. Phys. 6, 681 (2010)]

[Huber et al. Phys. Rev. Lett. 113, 026401 (2014)]

$$V(x,t) = V_0 + a [n(t) - n_c] x^2 + bx^4$$

Swiss Federal Institute of Technology Zurich

Coupled dynamics of structure

- In PCMO, multiple independent vibrational modes contribute
- Simplify as only four groups of modes

$$V(y_1, y_2, y_3, y_4, t) = V_0 + a \left[n(t) - n_c \right] y_1^2 + b y_1^4 + c_{21} (y_2 - y_1)^2 + c_{32} (y_3 - y_2)^2 + c_{43} (y_4 - y_3)^2$$

driven motion

chain of coupled motions

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Coupled dynamics of structure

 Use time-dependent potential to construct equations of motion (linear damping added)

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

- Strong coupling: lowest frequency dominates at late times
- High fluence: overshoot of high symmetry point leads to doubling in measured diffraction signal

[P. Beaud et al., Nature Mater. 13, 923 (2014)]

Aside: X-rays as driver?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- X-ray pump to drive electronic and possible structural motion (tuned to diffraction peak)
- Detection channel: change in polarization of transmitted optical light

[A. Ferrer et al., Appl. Phys. Lett. 106, 154101 (2015)]

Experiment team: ZnO

ETHZ:

A. Ferrer

SLAC:

T. Huber	D. Zhu
V. Scagnoli	M. Chollet
M. Trant	H. T. Lemke

J. A. Johnson U.Staub S. O. Mariager G. Ingold

C. Milne S. Gruebel P. Beaud L. Patthey

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Persistent induced anisotropy

- Nonlinear increase in optical anisotropy from electronic excitation
- Delayed onset, signal persists to ~ 6 ps!!

[A. Ferrer et al., Appl. Phys. Lett. 106, 154101 (2015)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Bismuth

- Indirect works, but some significant disadvantages:
 - Competing channels (especially for electronic excitation)
 - Upscaling limited in potential
 - Often irreversible

"Direct" control:

Resonant THz excitations

(b)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

THz excitation: path to fast control of multiferroics?

[Y. Takahashi et al., PRL 101, 187201 (2008)]

[Mochizuki & Nagaosa, PRL 105, 147202 (2010)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Experiment concept

Pump electromagnon with THz, watch spins with resonant x-ray diffraction

X-ray pulses: probe spin order

$$\left\langle \mathbf{T}_{q}^{k} \right\rangle \propto \sum_{n} \frac{\left\langle g \right| O \left| n \right\rangle \left\langle n \right| O^{*} \left| g \right\rangle}{E_{n} - E_{g} - \hbar \omega + i\Gamma}$$

- Experiment at LCLS
- Pulses of < 80 fs duration
- Time-stamping for < 250 fs resolution

 (0q0) reflection at Mn L-edges: only magnetic order

[Beye et al. Appl. Phys. Lett. 100, 121108 (2012)]

Experiment team: TbMnO₃

ETHZ: LBNL: T. Kubacka Y.-D. Chuang L. Huber V. Scagnoli Stanford: SLAC: W.-S. Lee R. G. Moore M. Hoffmann S. de Jong J. Turner **Johns Hopkins:** W. Schlotter G. Dakovski S. M. Koohpayeh PAUL SCHERRER INSTITUT

U.Staub

S.-W. Huang J. Johnson C. Vicario G. Ingold

Ch. Hauri S. Gruebel P. Beaud L. Patthey

must

Results: coherent electromagnon

- E-field of THz → coherent spin response
- Measured spin response delayed by half cycle
- Response suppressed in nonmultiferroic phase

[T. Kubacka et al., Science 343, 1333 (2014)]

- What about time response?
- Approximate electromagnons as damped harmonic oscillators

- Susceptibility vs. frequency: phase lag of 90 degrees at resonance
- ...but data shows lag of 180 degrees!?!

$$H = \sum_{\langle i,j \rangle} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + D \sum_i S_{\zeta i}^2 + E \sum_i (-1)^{i_x + i_y} (S_{\zeta i}^2 - s_{\eta i}^2)$$
$$+ \sum_{\langle i,j \rangle} \mathbf{d}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j) - B_{\text{biq}} \sum_{\langle i,j \rangle}^{ab} (\mathbf{S}_i \cdot \mathbf{S}_j)^2$$

- Dynamics dominated by spin interaction
- One component of spin motion (in-plane) coupled to polarization
- No "kinetic energy": role of momentum played by another spin component (similar to precession)

[Michizuki & Nagaosa, Phys. Rev Lett. 105, 147202 (2010)]

- X-ray response corresponds to the "momentum" of a harmonic oscillator driven by E-field
- Rotation of spin planes fills this role

[T. Kubacka et al., Science 343, 1333 (2014)]

 Similar analysis assuming lowerfrequency resonance is poorer match to data

[T. Kubacka et al., Science 343, 1333 (2014)]

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Indirect control via e-ph coupling

- Entropy in electron system couples to other DOFs
- Direct control with THz
 - Drive spin structure changes with E-field, switching expected at ~ 10 MV/cm

Outlook

[Calculations from M. Savoini]

- Way forward: micro-antennas
 - Enhancement factors of > 10 with large volumes

ETH UDG Group (January 2015)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

