Structure and dynamics of nanoparticles in intense short wavelength light pulses

Thomas Möller, Technische Universität Berlin Nobel Symposium on Free Electron Laser Research Sigtuna, June 14-18, 2015

Interaction of intense short wavelenght pulses with clusters

Size dependent colour

Novel pigments in tv-screens

Nanoparticles and clusters: Issues and Questions

Clusters and nanocrystals are new materials

Size dependent properties

- catalytic activity
- magnetic properties
- photochemical processes
- light induced dynamics
- geometry and shape

Atoms / clusters in intense x-ray pulses

What are the differences?

Atom Cluster

absorption into continuum states

ionization

inner ionization: electron removal from a cluster atom

 outer ionization: electron removal from the cluster
Last, Jortner, Phys. Rev. A, 62, 013201(2000)

Plasma formation

Properties of clusters / Driving questions

- Shape and structure of individual particles
 - Regular shape, non-equilibrium structures ?

W.Zhu et al, JACS **2013** *135* (45), 16833

- Light induced dynamics
 - ion motion, electron motion
 - collective motion, plasma dynamics?
 - Phase transitions, melting, surface melting

Cluster: Nanolab for laser-matter-interaction

Rare gas cluster : simple structure, detailed studies with IR light

Experiments Wabnitz Nature 420, 482 (2002), Laarmann, PRL 92, 143401, PRL 95, 063402 (2005), Bostedt PRL 100, 133401 Theory R. Santra, PRL 91, 233401 (2003), Siedschlag, Rost, PRL 93, 43402 (2004), Ziaja, Phys. Rev. Lett. 102, 205002 (2009).

Nanoplasma formation

What is a nanoplasma?

- internal structure
- particle surface / expansion
- electron-ion recombination
- electron and ion dynamics, consequences for imaging?

Outline

- How we got started: initial experiments at TTF-FEL
- Nanoplasma formation
 - Ar clusters, autoionization of He clusters
- Imaging with soft X-rays
 - Single clusters, spatial evolution of plasma, shape of metal clusters, in flight holography
- Time resolved studies
 - IR –X-ray Pump-probe Xe clusters
- New opportunities

Method: Simultaneous imaging and spectroscopy

Soft x-ray scattering

- size and shape of the clusters
- electronic configuration during interaction
 - ightarrow change of refractive index

• time scale: femtoseconds, during pulse

Pump-probe techniques

Complementary methods looking into different timescales!

- excite cluster with a pump pulse (NIR/XUV)
- probe explosion with a delayed XUV pulse
- time scale: resolve full range from sub-ps to ns

Setup: Simultaneous imaging and ion spectroscopy: Single cluster intensity distribution: no averaging

First results from the TTF-FEL at DESY (98 nm): Ion spectra of Xenon atoms and clusters

 $\begin{array}{l} E_{phot} = 12.8 \ eV \\ 1*10^{13} \ W/cm^2 \\ H. \ Wabnitz \ et \ al, \\ Nature \ 420, \ 482(2002) \end{array}$

- multiply charged ions from clusters, keV energy
- singly charged atoms
- detailed theoretical work to explain the enhanced absorption

plasmabsorption (IB) ionisation contiuum lowering

- R. Santra, Ch. H. Green PRL 91, 233401 (2003),
- C. Siedschlag, J. M. Rost , PRL 93, 43402 (2004)
- B. Ziaja et. al PRL 102, 205002 (2009).

Cluster ionisation and nanoplasma formation: Electron spectra of Ar clusters:

- experiment

....theory

C. Bostedt et al. Phys. Rev. Letters 100, 133401 (2008)

sequential emission of electrons

only a small percentage of generated photoelectrons can leave the cluster

 \rightarrow nanoplasma

Ionisation below and above Ip: Electron spectra of He clusters

ICD type Autoionisation

Proposed for Ne clusters

A. Kuleff et. al. Phys. Rev. Lett. 105, 043004 (2010)

- With intense light sources, multiple atoms in the cluster can be excited, 2p> 3s
- ICD between neighboring atoms leads to ionization of one of the atoms
- Ionization rate through ICD sequential one photon absorption (linear process) >> 2 photon ionization (nonlinear)

Different autoionisation processes

Inelastic collision between electrons and excited atoms

- A new type of nanoplasma is formed
- Many excited atoms are involved at the same time

Collective autoionization extremely efficient

 much more efficient than direct photoemission at least two photon process

- electron yield linear at 'low' power density
- saturation at high power density

A. LaForge et al. Scientific Reports 4, 3621 (2014)

Y. Ovcharenko et al. PRL 112, 073401 (2014)

Transition from ICD type to collective autoionization

He cluster N= 50000

He 1s > 2p, collective autoionisation, Y. Ovcharenko, M. Mudrich, A. LaForge, et al. in preparation

Morphology of large xenon clusters

hailstones

Experimental pattern 2D-Fourier transformation

coagulation

out ("hailstones")

Direct imaging of growth by

Non-spherical shapes freeze

2D-projection

Single cluster intensity distribution: no averaging

⁵x 10¹² W/cm²

Single cluster ion spectra: Signatures of strong recombination

Single cluster scattering patterns

Exposure power density (Intensity at position of the cluster)

Nanoplama-shell with different refractive index

From bottom to top: Weakly absorbing outer shell Increasing thickness 25-50nm Decreasing real part of the refra index

D. Rupp PhD thesis

Time resolved imaging of exploding clusters

Scattering sensitive to both, changes in electronic and geometric structure

IR pump + FEL probe pulse (LCLS),

CAMP L. Strüder et al. Nucl. Instr. Meth. A 610, 483 (2010)

Experimental setup in CAMP

X-ray only: T. Gorkhover et al., Phys. Rev. Lett. 108, 245005 (2012) S. Schorb, T. Gorkhover, et al., Appl. Phys. Lett. 100, 121107 (2012)

Comparison with simulation

New imaging approaches

Holography: overcoming the phase problem

"In-flight" holography

Tais Gorkhover, C. Bostedt et al

High resolution imaging of single gas phase nanoparticles

Eisebitt,S., et al., Nature **432**, 885 (2004) Geilhufe,J. et al., Nature Communications 5, 3008 (2014)

M. M. Seibert et al., Nature 470, 78 (2011)

X-ray Fourier holography ???? VolkswagenStiftung Single nanoparticle imaging ????

X-ray Fourier holography

"In-flight" X-ray Fourier holography

Gas phase single particle holography: instead of a fixed mask, use randomly injected Xe clusters Experimental setup in LAMP

Holograms of twin particles

Imaging of metal clusters

- Nanoplasma effects ?
- Regular shape, non-equilibrium structures ?

W.Zhu et al, JACS **2013** *135* (45), 16833

Morphology of large gas-phase silver clusters

Key to 3D sensitivity: large angle scattering

Outlook

Novel approach for time resolved imaging

Two images from a single clusters at different times

Collective oscillations/dynamics in nanoparticles, surface melting

Summary and outlook: Clusters in intense X-ray pulses

 Scattering pattern: ultrafast electronic changes due to plasma generation

 electron and ion spectra: nanoplasma formation explosion of a thin surface, strong recombination in the quasi-neutral plasma

• Time-resolved: image surface melting after tens of ps, debris after ps-ns

Imaging structure and dynamics of clusters : A lot of exciting physics ahead of us!

r = 100 nm

Experiments at FERMI / LDM collaboration: He cluster

Carlo Callegari, Aron Laforge, Y. Ovcharenko, Paolo Piseri, Victor Layamayev, Ravael Katzky, Paola Finetti, Oksana Plekan, Marcello Coreno, Robert Richter, Marcel Drabbels, Kevin Prince, Thomas Möller, Frank Stienkemeier, from ERMI Flavio Capotondi, Gerardo D'Auria, Giuseppe Penco, Emiliano Principi, Marco Zangrando.

Acknowledgement

<section-header></section-header>		Funding by BMBF and DFG Forschungsschwerpunkt FLASH/FEL		
		<u>TU Berlin:</u> D. Rupp, L. Flückiger T. Gorkhover B. Langbehn M. Müller E. Ovcharenko M. Sauppe A. Ulmer M Adolph	CAMP Team B. Erk, S. Epp L. Foucar, A. Rudenko,	
I. Barke, K.H. Meiwes-Broer,		M.Krikunova		
J. Tiggesbäumker, T. L J, Hajdu M. Handke, F. FLASH, LCLS, F CFEL, H. Chapman	Thank yo atter	u for your ntion!	har Ro hti	nn, olles, ng, L. Strüder, J. Ullrich
Cooperation with the T. Fennel (Rostock) U. Saalman, J. Rost (D B. Ziaja, R. Santra (CFE	- resden) EL/DESY)	<u>SLAC</u> C. Bostedt, T. Gorkhover S. Schorb	LDM Team C. Calagari, P. Finetti, F.	, K. Prince, O. Plekan, . Stienkemeier