
Quantum Technologies for Axion Dark Matter Detection Incubator
Prof. Michael Tobar

�1

Frequency and Quantum Metrology 
Research Group at UWA



Precision measurement  => 
Phase, Frequency, Energy, Time 

Technology: High-Q -> Narrow Line Width Systems: 
Low Noise Techniques Classical and Quantum (SQL)

New Tests of 
Fundamental Physics

Applications: Sensors, 
Clocks, Radar etc.



A Short History of My Attempt to Measure Nothing 
with Precision Measurement

CSO



CARRIER SUPPRESSION INTERFEROMETER





Sapphire Loaded Cavity (SLC) Resonators 

       Temperature Q-factor (10 GHz)

300 K 2 10 5
77 K 3 10 7
4. 2 K 4 10 9

Key features

Very high Q-factors at WG- modes

Frequency-temperature turning points

Electric field density plot 
( H16,1,1 – mode)

FrequencyFrequency vs vs Temperature Temperature
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Microwave Oscillators
Room temperature oscillator with interferometric 

signal processing

Cryogenic Sapphire Oscillators

developed @ UWA

developed @ UWA

approaching 10-16 



Microwave Oscillators
Lowest phase and amplitude noise 
Exceptional spectral purity 
Low spurious content 
Low vibrational sensitivity 
Unequalled short-term stability.

SAPPHIRE LOADED CAVITYOSCILLATORS

Compact low noise oscillator: Defence Radar Applications                  

National Metrology Laboratories



Oscillator/Clock Zoo
Photons Phonons Magnons Atoms

LC-circuits

Metallic Cavities

Dielectric Cavities

SAW

BAW

Structures

Bulk

Spin-Torque

Electron transitions

Nuclear transitions



Collaboration with SYRTE at Paris Observatory

Test Relativity

Varying
Fundamental
Constants

Long term operation of CSO -> 5.5 yrs
76% Duty cycle since August 2003

Before 2003 with less duty cycle









Planck energy suppressed by the energy scale of 
electroweak unification (100 GeV) dimensionless ratio of 

~ 8x1018

Current goal





Rotating Quartz 
Oscillators



Rotating Bulk Acoustic Wave Oscillators



Trying to Enter the Game to Search for the 
Axion



Frequency Metrology in Paraphoton Detection

New alternative to Light Shining through a Wall

Paraphoton coupling to the 2nd cavity modulate resonance frequency

coupled mode system



Trying to Enter the Game to Search for the 
Axion

2011-2017 renewed 2018-2024
My lab $350,000 / year 14 years!





7 T Magnet (10 cm bore)





Funding History For Axion Dark Matter at UWA

PARTICLE PHYSICS DID NOT GET THIER CENTRE RENEWED: New Plan for Centre 
of Excellence on Dark matter Particle Physics

Funded Biggest BlueFors DilFridge  14 T Magnet: Arrive June 2019

FUNDED: $530,000      Gray Rybka ADMX, Frank Wilczek



Applying $43 M AUD 7 Years

$2.8 M for Axion Wisp
$1.2 M Quantum Tech WIMPs



The ORGAN Experiment: 

McGillivary Organ at UWA



What is ORGAN?
● High frequency/high mass axion haloscope 
● Oscillating Resonant Group AxioN Experiment 
● Designed to probe promising high mass  

window 

Multiple cylindrical 
resonators to scan over 
multiple frequencies



What is ORGAN?

● ORGAN compared to ADMX: 

● 15 – 50 GHz rather than ~1 GHz 

● 14 T smaller bore magnet rather than  

● ~8 T custom magnet 

● Been in construction/design phase 

● Hosted at UWA 

● Part of EQUS CoE program! 



Who is ORGAN?

● Key UWA Personnel: 
− Michael Tobar 
− Ben McAllister 
− Maxim Goryachev 
− Jeremy Bourhill 
− Eugene Ivanov 
− Graeme Flower 

− Catriona Thomson 

−



EQuS Collaborators 



Buying Expensive item Can be a 
Problem 625,000 Euro

-$63,000

-$15,000



When is ORGAN?
● Now! 
● Has been in development 
● Path-finding run complete 
● Time-line of long term operation: 

− Narrow search (26 – 27 GHz) 
− Wider search in 5 GHz chunks 

First Experiment



First run complete

TM020 mode

sampling frequency of the digitizer is 
1GHz, the 26.54GHz



Where is ORGAN?

10-5 10-4

10- 15

10- 14

10- 13

10- 12

10- 11

10- 10

Axion Mass(eV)

Ax
io

n-
ph

ot
on

co
up

lin
g,

g a
γγ

(G
eV

-1
)

UF

RBF

DFSZ
KSVZ

CAST

ADMX

HAYSTAC

    ALPs DM CANDIDATES

QCD Axions DM Candidates

ORGAN 14 T

ORGAN 28 T

ORGAN 14 T + Low Q Noise

ORGAN 28 T + Low Q Noise



High Mass Haloscopes: Problems

● Signal power in axion haloscope 

Pa ∝ g2
ayyB2CVQ

℘a

ma

● Shows half of the problem 

● High frequency: 
− Low volume for cavities 
− Lossier materials → Lower quality factor 
− Inverse dependence on axion mass 

● SQL increases with frequency for amplifiers 

● This is a big issue in the community 



Form Factor

● Signal power in axion haloscope 

Pa ∝ g2
ayyB2CVQ

℘a

ma

● Geometric integral 

● Means we can only use specific modes 



ORGAN Phase I and II: Resonator 
Design
● Think about ways to boost C, for example

● Dielectric materials suppress electric field 
● Reduce the electric field where there are out of 

phase field lobes 
● We can Apply this to TM modes → Dielectric Rings 
● Tuning mechanisms naturally included



ORGAN Phase I and II: Resonator 
Design
● TM030 mode Ez field looks like this:



ORGAN Phase I and II: Resonator 
Design
● TM030 mode Ez field looks like this:



ORGAN Phase I and II: Resonator 
Design
● We can calculate where these things need to go 
● E-field looks like:

● So, required thickness and location:



ORGAN Phase I and II: Resonator 
Design
● If we do it right, we get this

● Finite element simulations → Form factor ~0.45, improved 
from 0.053 

● Can use higher order modes and maintain C while boosting V



ORGAN Phase I and II: Resonator 
Design
● Even better, we can tune this structure

● TM030 and TM031 modes 

● Axial “super-modes”



ORGAN Phase I and II: Resonator 
Design
● Most sensitive “symmetric super-mode” retains 

sensitivity as the gap increases 
● Frequency tuning grater than 20% of central 

frequency



ORGAN Phase I and II: Resonator 
Design
● We can compare this with an “ADMX-style” tuning 

rod structure at the same frequency



HYBRID QUANTUM SYSTEMS RESEARH WITH  
SPINS AND PHOTONS



Types of Cavities:
WG Modes

TE + TM Cylindrical modes

Reentrant Lattice

Reentrant 



Goryachev and Tobar, 2014, Patent, PNo. AU2014,903,143

arXiv:1408.2905 [quant-ph]



Magnons





Cavity-Magnon polaritons

Photons Magnons Interaction



First results

White Dwarf Cooling

Our work

DFSZ model

36MHz in 6 MHz blocks from 
8hrs of averages

3MHz static range 7x6hrs 
of averages

Centred at 
14GHz

Centred at 
8.2GHz



Maxim Goryachev 
Ben McAllister 
Mike Tobar 

Axion Detection with Precision 
Frequency Metrology



System for Axion Detection
photonic cavity with two mutually 

orthogonal modes
optical or 
microwave

Axion Electrodynamics

normal ED

arXiv:1806.07141

axion
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Hamiltonian Density



System for Axion Detection
photonic cavity with two mutually 

orthogonal modes
optical or 
microwave

Axion Electrodynamics

normal ED

arXiv:1806.07141

axion
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Hamiltonian Density



Axion Mediated Mode-Mode Interaction
based on axion Electrodynamics we derive axion induced coupling between two cavity modes

(B)

(A)
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Axion DownConversion
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Rotating Wave Approximation

beam splitter

parametric amplificationarXiv:1806.07141

Dimensionless Orthogonality Form Factors Effective Coupling
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allows optical search at 
microwaves and mm-wave

allows microwave search at 
mm-wave



Axion Mediated Mode-Mode Interaction

Experimental Approaches

<latexit sha1_base64="2gJGTK9c6tidWUuQIhB9TpIEMXc="></latexit> <latexit sha1_base64="lOyH+w6Q11Sk82i/axTjBtaIdck="></latexit>

arXiv:1806.07141

beam splitter parametric amplification



Axion Mediated Mode-Mode Interaction

Experimental Approaches
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Power Detection

arXiv:1806.07141

Pump

Out

P. Sikivie: arXiv:1009.0762

beam splitter parametric amplification



Axion Mediated Mode-Mode Interaction

Experimental Approaches
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Power Detection

arXiv:1806.07141

Cross Correlation
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P. Sikivie: arXiv:1009.0762
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Axion Mediated Mode-Mode Interaction

Experimental Approaches
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Power Detection

arXiv:1806.07141

Cross Correlation Eigenfrequency Shift
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P. Sikivie: arXiv:1009.0762
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Phase Shift

Phase Shift

beam splitter parametric amplification

Axion





Design of Cavity

FREQUENCY DOMAIN AND 
TUNABILITY

• Tunable cavity height (lid 
attached to micrometer)

• TM020 mode frequency fixed by 
cavity radius

• TE011 mode frequency tuned by 
cavity height



Design of Cavity

TM020 TE011



Frequency Space



Frequency Space



Frequency Space

DC – 1.77 
GHz

16.3 – 19.5 
GHz



Frequency Space

DC – 7.32 
µeV

67.5 – 80.47 
µeV



Coupling to the Fields



Coupling to the Fields

TM Probe TE Probe



Coupling to the Fields

TE Probe
Weakly 
Coupled

TE Probe
Strongly 
Coupled

TM Probe
Strongly 
Coupled

TM Probe
Weakly 
Coupled



Quality Factor
• Q ~15,000 for two probe copper cavity
• Most significant loss is from cavity wall surface resistance
• Q ~ 10,000 for two probe cavity after silver coating
• Silver coating provides a theoretically superior quality factor (smaller 

surface resistance)
• However, silver coating deteriorated the quality factor due to 

introducing impurities/asymmetry (poor silver coating application)

• Q ~ 10,000 for four probe copper cavity



Theoretical Sensitivity Limits
Sensitivity of the degenerate/broadband mode 

experiment

Maxim Goryachev, Ben McAllister, Michael 
Tobar, 2018



Theoretical Sensitivity Limits
Sensitivity of the loop oscillator 

experiment

Maxim Goryachev, Ben McAllister, Michael 
Tobar, 2018



Free Running Loop Oscillator

β : Probe 
couplings

Low Noise 
Amplifier

Phase
Shifter



Free Running Loop Oscillator

β : Probe 
couplings

Low Noise 
Amplifier

LO
OP

 1
LOOP 2

TM 
MODE

TE 
MODE

LNA

LNA

PHASE 
SHIFTER

PHASE 
SHIFTER

TE IN

TE OUT

TM 
OUT

TM IN



TM = 9GHz

Searching for Axion in Fourier Spectrum of Phase Noise

f = 400 MHz

TE = 8GHz
TE = 9GHz

fa = 9±8+0.4 GHZ
= 17.4 GHz or 1.4GHz 



Phase Noise Detection 
FREQUENCY DISCRIMINATOR

LOOP 2
TM 

MODE

FREQUENCY 
DISCRIMINATO

R

LNA

PHASE 
SHIFTER

TM 
OUT

TM IN

EXTERNAL 
RESONATOR

DIRECTIONAL 
COUPLER

PHASE 
SHIFTER

MIXER FFT
JFET 
AMP



Voltage Noise Detection  
FREQUENCY DISCRIMINATOR

FREQUENCY 
DISCRIMINATO

R

EXTERNAL 
RESONATOR

DIRECTIONAL 
COUPLER

PHASE 
SHIFTER

MIXER FFT
JFET 
AMP

External
Resonat
orFrom 

Loop To FFT

• External resonator phase fluctuations 
into frequency fluctuations 

• Frequency discriminator turns frequency 
fluctuations into voltage fluctuations 
when phase across the mixer is set to 
quadrature

• Contains noise of loop, external resonator 
and tunable cavity

• FFT can produce a voltage noise spectral 
density



Initial Phase Noise Data 
TE

 = 
9.5

 GH
z



Initial Phase Noise Data 
TE

 = 
8.5

 GH
z



Initial Phase Noise Data 
TE

 = 
8 G

Hz



Modified Axion Electrodynamics
⃗∇ ⋅ ⃗D = ρf + gaγγ

ϵ0

μ0

⃗B ⋅ ⃗∇ a

⃗∇ × ⃗H = ⃗Jf +
∂ ⃗D
∂t

− gaγγ
ϵ0

μ0 ( ⃗B
∂a
∂t

+ ⃗∇ a × ⃗E )
⃗∇ ⋅ ⃗B = 0

⃗∇ × ⃗E = −
∂ ⃗B
∂t

⃗D = ϵ0
⃗E + ⃗P

⃗H =
⃗B

μ0
− ⃗M



⃗B ⋅ ⃗∇ a = ⃗∇ ⋅ (a ⃗B ) + a( ⃗∇ ⋅ ⃗B )

⃗∇ a × ⃗E = ( ⃗∇ × (a ⃗E )) − a( ⃗∇ × ⃗E )

Vector Identities

Modified Gauss’ Law and Ampere’s Law

⃗∇ ⋅ ⃗D = ρf + gaγγ
ϵ0

μ0

⃗∇ ⋅ (a ⃗B )

⃗∇ × ⃗H = ⃗Jf +
∂ ⃗D
∂t

− gaγγ
ϵ0

μ0 ( ∂(a ⃗B )
∂t

+ ⃗∇ × (a ⃗E ))

⃗∇ ⋅ ⃗B = 0

⃗∇ × ⃗E = −
∂ ⃗B
∂t



Reformulate Modified Electrodynamics
⃗∇ ⋅ ⃗Da = ρf

⃗∇ × ⃗Ha = ⃗Jf +
∂ ⃗Da

∂t⃗∇ ⋅ ⃗B = 0
⃗∇ × ⃗E = −

∂ ⃗B
∂t

Modification in the Constitutive Relations
⃗Da = ϵ0

⃗E + ⃗P + ⃗Pa
⃗P a = − gaγγaϵ0(c ⃗B )

⃗Ha =
1
μ0

⃗B − ⃗M − ⃗Ma
⃗Ma = gaγγa

1
μ0

⃗E
c

Similar to Standard 
Model Extension 
Modifications for 
Lorentz Invariance 

Violations
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The equations of axion electrodynamics are studied. Variations in the axion field can give rise to
peculiar distributions of charge and current. These eAects provide a simple understanding of the frac-
tional electric charge on dyons and of some recently discovered oddities in the electrodynamics of anti-
phase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in
other solids are presented.
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Whether or not axions' have any physical reality, their
study can be a useful intellectual exercise. For by having
a field which modulates the eA'ects of anomalies and in-
stantons and calculating the consequences of its variation
in space and time, we can get some intuitive feeling for
these important, but often subtle and obscure, things.
Also, it is (I shall argue) not beyond the realm of possi-
bility that fields whose properties partially mimic those
of axion fields can be realized in condensed-matter sys-
tems. In this spirit, I will consider in this paper two situ-
ations where the equations of axion electrodynamics
seem to illuminate otherwise surprising phenomena, and
then speculate briefly on potential generalizations.
To begin, let us recall the equations of axion electro-

dynamics. They are generated by adding to the ordinary
Maxwell Lagrangean an additional term

hL=xaE 8,
where K. is a coupling constant. The resulting equations
are

al VaxE+aB. The form of these terms reflects the
discrete symmetries of a: a is P and T odd. Also, these
terms depend only on space-time gradients of the axion
field. This is because with a =const, hX in Eq. (1) be-
comes a perfect derivative, and does not aAect the equa-
tions of motion.
Dyon charge. —Consider a magnetic monopole sur-

rounded by a spherical ball in which a=O, modulating
within a thin shell into a =0 at large distances (Fig. l).
Now because of the axion term in (2) one finds that the
domain wall carries electric charge density —KVa. B, or
charge/unit length —tcVaC& when integrated over direc-
tion, where @ is the magnetic flux. The total charge seen
by observers far from the monopole is

q = —rc&k (6)

The Witten eflect, that in a 0 vacuum magnetic mono-
poles become dyons with fractional charge to their mag-
netic charge and to 0, is essentially contained in (6). By
our introducing axions, and allowing 0 to become a

V E=p —xVa B,
V x E = —BB/Bt,
V. B=0
V x 8 =BE/Bt +j+ rc(a B+Va x E),

(3)
(4)

(s)
where P,j are the ordinary (nonaxion) charge and
current. We see that there is an extra charge density
proportional to —Va B, and current density proportion-

FIG. l. Monopole surrounded by a shell of axion domain
wall
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FIG. 3. Expectation of the current in a background field is
derived from the vacuum polarization.

FIG. 2. Phase changes through ~ n depending on the sign
of the imaginary part.

will depend on small perturbations —including both
terms, such as Zeeman splitting, not retained in the mod-
el Lagrangean (9), and effects of impurities and doping—when the Fermi level is near midgap.
For truly complex-valued masses the mechanism

whereby charges and currents are generated need not be
connected with the existence of 0 modes, or midgap
states. For instance, if

I m (x) I
is constant, and its

phase varies slowly in the sense that I Bm/9x I/Im I(
I m I, then the local magnitude of the gap will remain—2 I
m

I everywhere. Nevertheless, the charges and
currents discussed above will be produced; they are asso-
ciated with the behavior of the Fermi sea as a whole.
Their magnitude in this case is robust.
The current associated with an electric field in the

plane of the wall is so remarkable that it deserves further
discussion. First, let us note its properties:
(i) Since j~E, the current is voltage controlled
(ii) Since jJ E, the current is nondissipative Of.

course I have ignored impurities, etc. , so that this state-
ment is only approximate. At the level of analysis in this
paper many-body eAects have been ignored, and the
current is not a supercurrent.
(iii) The direction of the current is determined by the

unit vector B/I BI. This form follows from time-reversal
symmetry. It indicates that the direction of current can
reverse, ideally, in response to changes in magnetic fields
of tiny magnitude. This peculiar dependence is associat-
ed, in the axion picture [Eq. (12)], with the fact that a
change in the sign of the mass is ambiguous; it can mean
3, =+z or —z across the wall.
And now let me discuss in more detail how these prop-

erties arise. I will first discuss the case where m is an
odd, real function of z and m(~) is positive. 1 use the
conventions of Bjorken and Drell. The zero-mode solu-
tions of the Dirac equation are then of the form

p2
y=exp J~ m(z)dz [Z~f(x,y)+Ezg(x, y)l, (13a)

Other modes have energy —
I m(~) I and can be

neglected. The eff'ective two-dimensional dynamics of
the low-energy modes are described by the efrective
Hamil ton ian

AH P(73, P ~xk,

as we see by sandwiching the eAective coupling

(i4)

03
0 Q 33,

in (is).
So in this case the interaction of the low-energy modes

with a planar electric field reduces to a problem in the
electrodynamics of (2+ 1)-dimensional massive fer-
mions. Now there is a peculiarity in the vacuum polar-
ization of (2+1)-dimensional electrodynamics that is
relevant here. ' That is, the current induced by an
external field, calculated from the Feynman diagram in
Fig. 3, is of the form

H =io3cr 8

acting on the two-component spinor ri =(gI). A magnetic
field normal to the wall leads to a series of Landau levels
at energies n(eB/2~) 'i with degeneracy eB/2x per unit
area. If the Fermi level is slightly above 0, then one has
charge accumulated on the wall, as discussed above, be-
cause the n =0 mode is composed half of positive-energy
and half of negative-energy states relative to the free
(i.e., no domain wall) Hamiltonian. The independence
of the magnitude of j on the magnitude of B is now easi-
ly understood heuristically as follows. The basic phe-
nomena is a drift of the zero-mode plasma in crossed
electric and magnetic fields. In this situation, the drift
velocity of a charged particle is proportional to E and in-
versely proportional to 8. But since the number of states
in the zero-mode plasma, as discussed above, is itself
proportional to 8 this dependence cancels out.
An infinitesimal complex (3+ 1)-dimensional mass,

i.e., an effective axion field, generates a (2+1)-dimen-
sional mass p, leading to similar results. Indeed, the
efIect of the axion field in the z direction is simply to in-
duce an effective mass term

where j, (p/ I u I ) ~...F., (is)
1

0

0

0

(i3b)
This gives us the current discussed above, with the prop-
erties (i)- (iii).
Note that the (2+1)-dimensional mass p is P and T

odd; it is this which explains how it can be proportional
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intuition that the effective charge strength would decrease with distance, as for

an ordinary dielectric. And indeed this sort of behavior was shown to occur in a

variety of examples by Landau and his school. As I already mentioned, Landau

attached tremendous significance to these results, arguing that any finite value

for the charge attached to a pointlike particle would be completely neutralized

at finite distances. Since it is difficult to implement relativistic invariance except

for pointlike objects
⋆
, Landau concluded that the only truly consistent relativistic

quantum field theories are trivial, non-interacting ones. Later systematic work us-

ing the mature techniques of quantum field theory in a very wide class of examples

confirmed that screening is the generic behavior [9, 10] if one excludes nonabelian

gauge interactions.

1.2. Antiscreening as Paramagnetism: The Importance of Spin

It is ironic that the physical behavior to which we will ultimately trace asymp-

totic freedom was well known to Landau, and central to one of his major interests,

the quantum theory of magnetism. In a relativistic theory we must have the re-

lationship ϵµ = 1 between the dielectric constant and the magnetic susceptibility.

(Indeed one can think of ϵ as the coefficient of the electric term E · D ∝ ϵFoiF oi

and µ−1 as the coefficient of the magnetic term B · H ∝ µ−1FijF ij in the action,

and these will form an invariant combination only if ϵ = µ−1.) Thus normal elec-

tric screening behavior ϵ ≥ 1 is associated with diamagnetism, µ ≤ 1. However

one knows that diamagnetism is not the universal response of matter to an ap-

plied magnetic field. Indeed it is a familiar and important result in the theory of

metals [11], that for an ideal Fermi gas of non-interacting electrons the Landau

diamagnetism associated with moments generated by orbital motion is dominated

by the Pauli paramagnetism arising from alignment of elementary spin moments.

Of course this analogy is far from conclusive, since in metals one is dealing with a

non-relativistic system of real particles rather than a relativistic system of virtual

⋆ Modern string theory does this, but also illustrates how difficult it is to do!

8

Vacuum acts as Dielectric and Paramagnet!
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An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable
sector of the general Lorentz- and CPT-violating standard-model extension. Among the unconventional prop-
erties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of
light produced by galactic and extragalactic objects provide bounds of 3!10"16 on certain coefficients for
Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically
distant sources yields stringent constraints of 2!10"32. All remaining coefficients in the photon sector are
measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in
Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be
implemented using existing technology.
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I. INTRODUCTION

Lorentz symmetry underlies the theory of relativity and
all accepted theoretical descriptions of nature at the funda-
mental level. A crucial role in establishing both the rotation
and boost components of Lorentz symmetry has been played
by experimental studies of the properties of light. In the clas-
sic tests, rotation invariance is investigated in Michelson-
Morley experiments searching for anisotropy in the speed of
light, while boost invariance is studied via Kennedy-
Thorndike experiments seeking a variation of the speed of
light with the laboratory velocity #1–3$.
In this work, a theoretical study is performed of various

experiments testing Lorentz symmetry with light and other
electromagnetic radiation. The analysis is within the context
of the Lorentz- and CPT-violating standard-model extension
#4$, developed to allow for small general violations in Lor-
entz and CPT invariance #5$. The Lagrangian of this theory
includes all observer Lorentz scalars formed by combining
standard-model fields with coupling coefficients having Lor-
entz indices. At the level of quantum field theory, the viola-
tions can be regarded as remnants of Planck-scale physics
appearing at attainable energy scales. The coefficients for
Lorentz violation may be related to expectation values of
Lorentz tensors or vectors in an underlying theory #6$. To
date, experimental tests of the standard-model extension
have been performed with hadrons #7–10$, protons and neu-
trons #11$, electrons #12,13$, photons #14,15$, and muons
#16$.
In the present context of studies of electrodynamics, the

standard-model extension is of interest because it provides a
general field-theoretic framework for investigating the Lor-
entz properties of light. The theory contains as a subset a
general Lorentz-violating quantum electrodynamics !QED",
which includes a general Lorentz-violating extension of the
Maxwell equations. We study experiments that can measure
the coefficients for Lorentz violation in this generalized elec-
trodynamics. Our attention is restricted here to exceptionally
sensitive experiments that could be in a position to detect the
minuscule effects motivating the standard-model extension.
A basic feature of Lorentz-violating electrodynamics is

the birefringence of light propagating in vacuo. This results
in several potentially observable effects, including pulse dis-
persion and polarization changes. One goal of this work is to
consider the implications of these effects for the propagation
of radiation on astrophysical scales. We use available obser-
vations to constrain certain coefficients for Lorentz violation.
Another goal of this work is to analyze modern versions

of some classic tests of special relativity based on resonant-
cavity oscillators #17–19$, which have extreme sensitivity to
the properties of electromagnetic fields. These experiments
depend on the Earth’s sidereal and orbital motion. However,
the advent of the International Space Station !ISS" makes it
feasible to perform laboratory experiments in space, where
the orbital motion can yield different sensitivity to Lorentz-
violating effects #20$. We consider here both space- and
Earth-based laboratory experiments with resonant cavities.
The structural outline of this paper is as follows. Section

II presents some basic results and definitions for the general
Lorentz-violating electrodynamics and outlines the connec-
tion to some test models. We then consider birefringence
experiments, beginning in Sec. III A with some general is-
sues. Constraints stemming from the resulting effects on
pulse dispersion from astrophysical sources are addressed in
Sec. III B, while those from polarization changes over cos-
mological scales are treated in Sec. III C. A general analysis
for laboratory-based experiments on the Earth and in space is
presented in Sec. IV A. Sections IV B and IV C apply this
analysis to experiments with optical and microwave resonant
cavities. We summarize in Sec. V. Throughout this work, we
adopt the conventions of Ref. #4$.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

This section provides some background and contextual
information about the general Lorentz-violating electrody-
namics. The basic formalism is presented, and some defini-
tions used in later sections are introduced. We also discuss
the connection between this theory and some test models for
Lorentz violation.
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where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1
2 $ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the
tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)T. This leaves #DE and
#HB with eleven independent elements and the matrix #DB
"#(#HE)T with eight, which together represent the 19 in-
dependent components of kF . Note also that #DE and #HB
are parity even, while #DB"#(#HE)T is parity odd.
With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-
dynamics in anisotropic media also hold for this Lorentz-
violating theory. For example, the energy-momentum tensor
takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in
conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.
For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(kF)#%&' coefficients:

! #̃e$" jk"
1
2 !#DE$#HB" jk,

! #̃e#" jk"
1
2 !#DE##HB" jk#

1
3 * jk!#DE" ll,

! #̃o$" jk"
1
2 !#DB$#HE" jk,

! #̃o#" jk"
1
2 !#DB##HE" jk,

#̃ tr"
1
3 !#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even
coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
ample, typical laboratory experiments with electromagnetic
cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
be dominantly to the ten rotation-violating parity-even coef-
ficients #̃e$ and #̃e# . For those observables depending at
leading order on the velocity, the eight coefficients #̃o$ and
#̃o# can be expected to play a role. Finally, at second order
in the velocity one can expect the sole rotation-invariant
quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-
tions below.
As another example of the use of the decomposition !7",

recall that birefringence is known to depend on ten linearly
independent combinations of the components of kF , which
can be chosen as +15,

ka"+!kF"0213, !kF"0123, !kF"0202#!kF"1313,

!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-
trolled by the matrices #̃e$ and #̃o# .
In terms of the # matrices defined in Eq. !5", and assum-

ing as before that (kAF)-"0, the Lagrangian !1" becomes

L"
1
2 !E! 2#B! 2"$

1
2E

! •!#DE"•E! #
1
2B

! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1
2 +!1$#̃ tr"E! 2#!1##̃ tr"B! 2,$

1
2E

! •! #̃e$$#̃e#"•E!

#
1
2B

! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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A. Basic theory

The standard model of particle physics is believed to be
the low-energy limit of a fundamental theory that includes all
the forces in nature. The natural scale of this fundamental
theory is likely to be determined by the Planck mass. The
possibility that Lorentz- and CPT-violating signals from this
theory may be observable at energies attainable today led to
the development of the standard-model extension !4", which
is a general theory based on the standard model but allowing
for violations of Lorentz and CPT symmetry !5". The addi-
tional terms must be small because the usual standard model
agrees well with experiment. They may originate from spon-
taneous symmetry breaking in the fundamental theory !6".
The standard-model extension can be defined as the usual

standard-model Lagrangian plus all possible additional
Lorentz- and CPT-violating terms involving standard-model
fields that maintain invariance under Lorentz transformations
of the observer’s inertial frame. This invariance ensures that
the physics is independent of the choice of coordinates. The
Lorentz violation is associated with rotations and boosts of
particles or localized field configurations in a fixed observer
inertial frame.
Many of the detailed investigations of the standard-model

extension have been performed under the simplifying as-
sumption that the additional Lorentz- and CPT-violating
terms preserve the SU(3)!SU(2)!U(1) local gauge sym-
metry of the usual standard model. Another widely adopted
simplifying assumption is that the coefficients for Lorentz
violation are independent of position. This implies the viola-
tion is restricted to the Lorentz symmetry instead of the full
Poincaré symmetry and has several useful consequences for
experiment, including the conservation of energy and mo-
mentum. It is also often convenient to restrict attention to the
renormalizable sector of the theory, since this is expected to
dominate the physics at low energies. However, nonrenor-
malizable terms are known to play an important role at
higher energies !21".
Extracting terms involving the photon fields from the

standard-model extension yields a Lorentz- and
CPT-violating extension of QED !4". The fermion sector of
this theory has been widely studied. Here, we focus attention
on the pure-photon sector and limit attention to the renormal-
izable terms, which involve operators of mass dimension
four or less. The relevant Lagrangian is !4"

L"#
1
4 F#$F#$$

1
2 %kAF&'(')#$A)F#$

#
1
4 %kF&')#$F')F#$, %1&

where F#$*+#A$#+$A# . This theory maintains the usual
U%1& gauge invariance under the transformations qA#
→qA#$+#, . The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The
first of these extra terms is CPT odd, and its coefficient
(kAF)' has dimensions of mass. The other is CPT even. Its
coefficient (kF)')#$ is dimensionless and has the symmetries

of the Riemann tensor and a vanishing double trace, which
implies a total of 19 independent components.
The CPT-odd term has received much attention in the

literature !22". This term provides negative contributions to
the canonical energy and therefore is a potential source of
instability. One solution is to set the coefficient to zero,
(kAF)'"0. This is theoretically consistent with radiative
corrections in the standard-model extension and is well sup-
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH!" formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell

equations, which take their familiar form

r:D ! 0; (1a)

r:B ! 0; (1b)

r"E# @tB ! 0; (1c)

r"H$ @tD ! 0; (1d)

but with modified definitions of D and H

D
H

! "
!

!0%e!r # #DE&
#####
!0
"0

q
#DB#####

!0
"0

q
#HE "$1

0 % e"r
$1 # #HB&

0
B@

1
CA E

B

! "
:

(2)

Here #DE, #DB, #HE and #HB are all 3" 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e!r and
e"r are also 3" 3 matrices. In vacuum e!r and e"r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the # coefficients

%e#e#&jk! 1
2%#DE # #HB&jk;

%e#e$&jk! 1
2%#DE $ #HB&jk$ 1

3$
jk%#DE&ll;

%e#o#&jk! 1
2%#DB # #HE&jk;

%e#o$&jk! 1
2%#DB $ #HE&jk; %e#tr& ! 1

3%#DE&ll:

(3)

The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].

The # tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au

PHYSICAL REVIEW D 71, 025004 (2005)

1550-7998=2005=71(2)=025004(15)$23.00 025004-1 © 2005 The American Physical Society

New methods of testing Lorentz violation in electrodynamics

Michael Edmund Tobar,1,* Peter Wolf,2,3 Alison Fowler,1 and John Gideon Hartnett1
1University of Western Australia, School of Physics, M013, 35 Stirling Highway, Crawley 6009 WA, Australia

2Bureau International des Poids et Mesures, Pavillon de Breteuil, 92312 Sèvres Cedex, France
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I. INTRODUCTION
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ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
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has general magnetic or dielectric properties, then e!r and
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The first four of these equations define traceless 3" 3
matrices, while the last defines a single coefficient. All e#
matrices are symmetric except e#o# which is antisymmetric
(odd parity). There are 19 independent coefficients of the #
tensors, which are generally used to quote and compare
experimental results [11–15].
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chosen to analyze a given experiment. In principle they*Electronic address: mike@physics.uwa.edu.au

PHYSICAL REVIEW D 71, 025004 (2005)

1550-7998=2005=71(2)=025004(15)$23.00 025004-1 © 2005 The American Physical Society

2

assume a(t) = a0 cos(!at). Note that all terms containing
ga�� are sometimes presented with the opposite sign, but
has no impact on this work as both representation are
correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become

✏r
~r · ~E =

⇢f

✏0
+ ga��c

~r · (a ~B), (7)

~r⇥ ~B

µr

=
✏r

c2

@ ~E

@t
+ µ0

~Jf � ga��

c

 
@(a ~B)

@t
+ ~r⇥ (a ~E)

!
,

(8)

which is a more convenient and consistent way of ex-
pressing modified axion electrodynamics. In general, it is
better to represent the photon-axion interaction term as
the product of the axion scalar amplitude, a(t,~r), multi-
plied by either the applied ~E-field or the applied ~B-field.
This is similar to the form of the equations in [14], but
without the magnetic monopole duality. Moreover, this
representation directly satisfies Faraday’s Law (Eqn..(5))
and ~r · ~B = 0 (Eqn.(6)). The former representation,
Eqns. (3)-(6) may lead to confusion, with Faraday’s Law
seemingly sometimes only approximately satisfied when
the applied field ~E has been set to zero. This is because
the last term in Eqn.(4), actually has a term that de-
pends on the time derivative of the ~B field. With further
manipulation one can show that the modified Maxwell’s
equations maintain a similar form to the non-modified
equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
, (12)

with the constitutive relations redefined as

~Da = ~D + ~Pa = ✏0✏r
~E � ga��a

r
✏0

µ0

~B, (13)

~Ha = ~H � ~Ma =
1

µ0µr

~B + ga��a

r
✏0

µ0

~E. (14)

Here ~D is the usual electric flux density (or ~D-field), ~H

the usual magnetic field intensity (or ~H-field), with ~Da

and ~Ha the modified definitions of these fields that sat-
isfy the equations (9) to (12) due to the additional axion
polarization, ~Pa and axion magnetization ~Ma (which we
will shortly define).

This is a similar approach to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which

includes in the Lagrangian all possible Lorentz invari-
ance violations. By comparison to SME modified elec-
trodynamics, it is apparent that ga��a is similar to an
oscillating odd-parity Lorentz invariance violation, DB

or HE . This type of Lorentz invariance violation is dis-
cussed in detail in [16] and is also presented in SI units
in this work.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define

⇢a = ga��

r
✏0

µ0

~r · (a ~B), (15)

~Ja = �ga��

r
✏0

µ0

@(a ~B)

@t
. (16)

In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
by;

~Ja =
@ ~Pa

@t
; ~Pa = �ga��

r
✏0

µ0
a ~B. (18)

In general, the total displacement current is defined by

~JDa =
@ ~Da

@t
= ✏0✏r

@ ~E

@t
� ga��

r
✏0

µ0

@(a ~B)

@t
. (19)

Note, there is also an axion bound current associated
with the induced magnetization given by;

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E) (20)

Since the axion modifications are in the source terms
it is instructive to think of the oscillating bound charges
and currents as providing oscillations in the magnetiza-
tion and polarization of the vacuum, in a similar way that
free electron charge and spin cause vacuum polarization
(due to electric screening) and vacuum magnetization
(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
small distance scales [17, 18]. Thus, the oscillating mag-
netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or
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Note, there is also an axion bound current associated
with the induced magnetization given by;
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free electron charge and spin cause vacuum polarization
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(due to magnetic anti-screening), which also causes ”run-
ning” of the fine structure constant at high energies and
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netization and polarization could be interpreted as an
oscillation of the fine structure constant, ↵ (i.e. Eqn.(1)
shows axion-photon coupling is proportional to ↵), or
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the e↵ective wave vector related to the axion Compton
wavelength. However, for most experiments it is su�-
cient to ignore the axion spatial dependence and assume
a(t) = a0 cos(!at). Note that all terms containing ga��

are sometimes presented with the opposite sign, but does
not have an impact on this work as both representation
are correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
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which is a more consistent way of expressing modified
axion electrodynamics. In general, it is better to rep-
resent the photon-axion interaction term as the product
of the axion scalar amplitude, a(t,~r), multiplied by ei-
ther the applied ~E-field or the applied ~B-field. This is
similar to the form of the equations in [14], but without
the magnetic monopole duality. Moreover, this repre-
sentation directly satisfies Faraday’s Law (Eqn. (6)) and
Gauss’ Law for Magnetism (Eqn.(5)). The former rep-
resentation, Eqns. (3)-(6) may lead to confusion, with
Faraday’s Law seemingly sometimes only approximately
satisfied when the applied field ~E has been set to zero.
This is because the last term in Eqn. (4), actually has a
term that depends on the time derivative of the ~B field.

With further manipulation one can show that the mod-
ified Maxwell’s equations maintain a similar form to the
non-modified equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
@ ~Da

@t
, (10)

~r · ~B = 0, (11)
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with the constitutive relations redefined as

~Da = ✏0
~E + ~P + ~Pa where ~Pa = �ga��
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~Ha =
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(a ~E). (14)

Here ~Da and ~Ha the modified definitions of these fields
that satisfy the equations (9) to (12) due to the addi-
tional axion induced vacuum polarization, ~Pa and axion
induced vacuum magnetization ~Ma.

This description is similar to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which
includes in the Lagrangian all possible Lorentz invariance
violations. By comparison to SME modified electrody-
namics, it is apparent that ga��a is similar to an oscillat-
ing odd-parity Lorentz invariance violation, DB or HE .
This type of Lorentz invariance violation is discussed in
detail in [16] and was also presented in SI units.

With the modification defined thusly, it is straightfor-
ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define
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In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given

by ~Ja = @ ~Pa
@t

.
Note, there is also an axion bound current associated

with the induced magnetization given by

~Jba = ~r⇥ ~Ma = �ga��

r
✏0

µ0

~r⇥ (a ~E). (18)

Since the axion modifications are in the source terms,
it is instructive to think of the oscillating bound charges
and currents (which are due to virtual particles) as pro-
viding oscillations in the magnetization and polarization
of the vacuum. Vacuum polarization and magnetiza-
tion e↵ects also causes the running of the fine structure
constant, ↵, due to equal components of electric screen-
ing (polarization of vacuum) and magnetic anti-screening
(magnetization of vacuum). These e↵ects cause the per-
ceived quantum of electric charge to increase at small
distances, while the preceived quantum of magnetic flux
decreases[17, 18]. Thus the fine structure constant in-
creases at small distances and high energy scales, with
the vacuum e↵ectively acting as a dielectric and param-
agnetic medium. The oscillating magnetization and po-
larization could be interpreted as a tiny oscillation of the
fine structure constant due to oscillations in the screen-
ing and anti-screening process, or equivalently, an oscil-
lation in the refractive index of the vacuum (similar to a
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the e↵ective wave vector related to the axion Compton
wavelength. However, for most experiments it is su�-
cient to ignore the axion spatial dependence and assume
a(t) = a0 cos(!at). Note that all terms containing ga��

are sometimes presented with the opposite sign, but does
not have an impact on this work as both representation
are correct.
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which is a more consistent way of expressing modified
axion electrodynamics. In general, it is better to rep-
resent the photon-axion interaction term as the product
of the axion scalar amplitude, a(t,~r), multiplied by ei-
ther the applied ~E-field or the applied ~B-field. This is
similar to the form of the equations in [14], but without
the magnetic monopole duality. Moreover, this repre-
sentation directly satisfies Faraday’s Law (Eqn. (6)) and
Gauss’ Law for Magnetism (Eqn.(5)). The former rep-
resentation, Eqns. (3)-(6) may lead to confusion, with
Faraday’s Law seemingly sometimes only approximately
satisfied when the applied field ~E has been set to zero.
This is because the last term in Eqn. (4), actually has a
term that depends on the time derivative of the ~B field.

With further manipulation one can show that the mod-
ified Maxwell’s equations maintain a similar form to the
non-modified equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
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Here ~Da and ~Ha the modified definitions of these fields
that satisfy the equations (9) to (12) due to the addi-
tional axion induced vacuum polarization, ~Pa and axion
induced vacuum magnetization ~Ma.

This description is similar to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which
includes in the Lagrangian all possible Lorentz invariance
violations. By comparison to SME modified electrody-
namics, it is apparent that ga��a is similar to an oscillat-
ing odd-parity Lorentz invariance violation, DB or HE .
This type of Lorentz invariance violation is discussed in
detail in [16] and was also presented in SI units.

With the modification defined thusly, it is straightfor-
ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define
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In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a
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, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given

by ~Ja = @ ~Pa
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.
Note, there is also an axion bound current associated

with the induced magnetization given by

~Jba = ~r⇥ ~Ma = �ga��
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Since the axion modifications are in the source terms,
it is instructive to think of the oscillating bound charges
and currents (which are due to virtual particles) as pro-
viding oscillations in the magnetization and polarization
of the vacuum. Vacuum polarization and magnetiza-
tion e↵ects also causes the running of the fine structure
constant, ↵, due to equal components of electric screen-
ing (polarization of vacuum) and magnetic anti-screening
(magnetization of vacuum). These e↵ects cause the per-
ceived quantum of electric charge to increase at small
distances, while the preceived quantum of magnetic flux
decreases[17, 18]. Thus the fine structure constant in-
creases at small distances and high energy scales, with
the vacuum e↵ectively acting as a dielectric and param-
agnetic medium. The oscillating magnetization and po-
larization could be interpreted as a tiny oscillation of the
fine structure constant due to oscillations in the screen-
ing and anti-screening process, or equivalently, an oscil-
lation in the refractive index of the vacuum (similar to a
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the e↵ective wave vector related to the axion Compton
wavelength. However, for most experiments it is su�-
cient to ignore the axion spatial dependence and assume
a(t) = a0 cos(!at). Note that all terms containing ga��

are sometimes presented with the opposite sign, but does
not have an impact on this work as both representation
are correct.
By substituting the following vector identities, ~B·~ra =

~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
along with (5) and (6), into equations (3) and (4), the
modified Gauss’ and Ampere’s Law become
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which is a more consistent way of expressing modified
axion electrodynamics. In general, it is better to rep-
resent the photon-axion interaction term as the product
of the axion scalar amplitude, a(t,~r), multiplied by ei-
ther the applied ~E-field or the applied ~B-field. This is
similar to the form of the equations in [14], but without
the magnetic monopole duality. Moreover, this repre-
sentation directly satisfies Faraday’s Law (Eqn. (6)) and
Gauss’ Law for Magnetism (Eqn.(5)). The former rep-
resentation, Eqns. (3)-(6) may lead to confusion, with
Faraday’s Law seemingly sometimes only approximately
satisfied when the applied field ~E has been set to zero.
This is because the last term in Eqn. (4), actually has a
term that depends on the time derivative of the ~B field.
With further manipulation one can show that the mod-

ified Maxwell’s equations maintain a similar form to the
non-modified equations, given by
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@ ~Da

@t
, (10)

~r · ~B = 0, (11)

~r⇥ ~E = �@ ~B

@t
(12)

with the constitutive relations redefined as

~Da = ✏0
~E + ~P + ~Pa where ~Pa = �ga��

r
✏0

µ0
(a ~B), (13)

~Ha =
~B

µ0
� ~M � ~Ma where ~Ma = ga��

r
✏0

µ0
(a ~E). (14)

Here ~Da and ~Ha the modified definitions of these fields
that satisfy the equations (9) to (12) due to the addi-
tional axion induced vacuum polarization, ~Pa and axion
induced vacuum magnetization ~Ma.

This description is similar to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which
includes in the Lagrangian all possible Lorentz invariance
violations. By comparison to SME modified electrody-
namics, it is apparent that ga��a is similar to an oscillat-
ing odd-parity Lorentz invariance violation, DB or HE .
This type of Lorentz invariance violation is discussed in
detail in [16] and was also presented in SI units.
With the modification defined thusly, it is straightfor-

ward to show that the continuity equation is satisfied.
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In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a
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, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given

by ~Ja = @ ~Pa
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.
Note, there is also an axion bound current associated

with the induced magnetization given by
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Since the axion modifications are in the source terms,
it is instructive to think of the oscillating bound charges
and currents (which are due to virtual particles) as pro-
viding oscillations in the magnetization and polarization
of the vacuum. Vacuum polarization and magnetiza-
tion e↵ects also causes the running of the fine structure
constant, ↵, due to equal components of electric screen-
ing (polarization of vacuum) and magnetic anti-screening
(magnetization of vacuum). These e↵ects cause the per-
ceived quantum of electric charge to increase at small
distances, while the preceived quantum of magnetic flux
decreases[17, 18]. Thus the fine structure constant in-
creases at small distances and high energy scales, with
the vacuum e↵ectively acting as a dielectric and param-
agnetic medium. The oscillating magnetization and po-
larization could be interpreted as a tiny oscillation of the
fine structure constant due to oscillations in the screen-
ing and anti-screening process, or equivalently, an oscil-
lation in the refractive index of the vacuum (similar to a
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the e↵ective wave vector related to the axion Compton
wavelength. However, for most experiments it is su�-
cient to ignore the axion spatial dependence and assume
a(t) = a0 cos(!at). Note that all terms containing ga��

are sometimes presented with the opposite sign, but does
not have an impact on this work as both representation
are correct.

By substituting the following vector identities, ~B·~ra =
~r · a ~B + a(~r · ~B) and ~ra ⇥ ~E = (~r⇥ a ~E) � a(~r⇥ ~E)
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which is a more consistent way of expressing modified
axion electrodynamics. In general, it is better to rep-
resent the photon-axion interaction term as the product
of the axion scalar amplitude, a(t,~r), multiplied by ei-
ther the applied ~E-field or the applied ~B-field. This is
similar to the form of the equations in [14], but without
the magnetic monopole duality. Moreover, this repre-
sentation directly satisfies Faraday’s Law (Eqn. (6)) and
Gauss’ Law for Magnetism (Eqn.(5)). The former rep-
resentation, Eqns. (3)-(6) may lead to confusion, with
Faraday’s Law seemingly sometimes only approximately
satisfied when the applied field ~E has been set to zero.
This is because the last term in Eqn. (4), actually has a
term that depends on the time derivative of the ~B field.

With further manipulation one can show that the mod-
ified Maxwell’s equations maintain a similar form to the
non-modified equations, given by

~r · ~Da = ⇢f , (9)

~r⇥ ~Ha = ~Jf +
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Here ~Da and ~Ha the modified definitions of these fields
that satisfy the equations (9) to (12) due to the addi-
tional axion induced vacuum polarization, ~Pa and axion
induced vacuum magnetization ~Ma.

This description is similar to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which
includes in the Lagrangian all possible Lorentz invariance
violations. By comparison to SME modified electrody-
namics, it is apparent that ga��a is similar to an oscillat-
ing odd-parity Lorentz invariance violation, DB or HE .
This type of Lorentz invariance violation is discussed in
detail in [16] and was also presented in SI units.

With the modification defined thusly, it is straightfor-
ward to show that the continuity equation is satisfied.
From equations (7) and (8) we may define
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In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain

r · ~Ja = �@⇢a

@t
, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given

by ~Ja = @ ~Pa
@t

.
Note, there is also an axion bound current associated

with the induced magnetization given by

~Jba = ~r⇥ ~Ma = �ga��
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Since the axion modifications are in the source terms,
it is instructive to think of the oscillating bound charges
and currents (which are due to virtual particles) as pro-
viding oscillations in the magnetization and polarization
of the vacuum. Vacuum polarization and magnetiza-
tion e↵ects also causes the running of the fine structure
constant, ↵, due to equal components of electric screen-
ing (polarization of vacuum) and magnetic anti-screening
(magnetization of vacuum). These e↵ects cause the per-
ceived quantum of electric charge to increase at small
distances, while the preceived quantum of magnetic flux
decreases[17, 18]. Thus the fine structure constant in-
creases at small distances and high energy scales, with
the vacuum e↵ectively acting as a dielectric and param-
agnetic medium. The oscillating magnetization and po-
larization could be interpreted as a tiny oscillation of the
fine structure constant due to oscillations in the screen-
ing and anti-screening process, or equivalently, an oscil-
lation in the refractive index of the vacuum (similar to a

Vacuum Bound Charge

Vacuum Polarization Current

Satisfies the Continuity Equation

⃗P a = − gaγγaϵ0(c ⃗B )



⃗Pa = − ϵ0(gaγγac ⃗B ) ⃗E a screen = gaγγac ⃗B V/m

⃗E screen
⃗E 0

⃗E = ⃗E 0 + ⃗E screen
V0 V

+ + + + + + + + + + + + + + + + +

− − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − −

+ + + + + + + + + + + + + + + + +

⃗E screen = −
χe

χe + 1
⃗E 0 = − χe

⃗E

⃗D = ϵ0
⃗E + ⃗P ⃗P = ϵ0 χe

⃗E

Consider a Capacitor with Linear Dielectric

Axion Electrodynamics

= − ϵ0
⃗E screen

⃗P

Note if                         then                ⃗E a screen = 0 ⃗P a = 0

2

the e↵ective wave vector related to the axion Compton
wavelength. However, for most experiments it is su�-
cient to ignore the axion spatial dependence and assume
a(t) = a0 cos(!at). Note that all terms containing ga��
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which is a more consistent way of expressing modified
axion electrodynamics. In general, it is better to rep-
resent the photon-axion interaction term as the product
of the axion scalar amplitude, a(t,~r), multiplied by ei-
ther the applied ~E-field or the applied ~B-field. This is
similar to the form of the equations in [14], but without
the magnetic monopole duality. Moreover, this repre-
sentation directly satisfies Faraday’s Law (Eqn. (6)) and
Gauss’ Law for Magnetism (Eqn.(5)). The former rep-
resentation, Eqns. (3)-(6) may lead to confusion, with
Faraday’s Law seemingly sometimes only approximately
satisfied when the applied field ~E has been set to zero.
This is because the last term in Eqn. (4), actually has a
term that depends on the time derivative of the ~B field.

With further manipulation one can show that the mod-
ified Maxwell’s equations maintain a similar form to the
non-modified equations, given by
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Here ~Da and ~Ha the modified definitions of these fields
that satisfy the equations (9) to (12) due to the addi-
tional axion induced vacuum polarization, ~Pa and axion
induced vacuum magnetization ~Ma.

This description is similar to that which is adopted
when deriving modified Maxwell’s equations for the pho-
ton sector Standard Model Extension (SME)[15], which
includes in the Lagrangian all possible Lorentz invariance
violations. By comparison to SME modified electrody-
namics, it is apparent that ga��a is similar to an oscillat-
ing odd-parity Lorentz invariance violation, DB or HE .
This type of Lorentz invariance violation is discussed in
detail in [16] and was also presented in SI units.
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In the situation where there are no free charges or free
conducting electrons, we interpret ⇢a as a vacuum bound
charge and ~Ja as a polarization current. Taking the time
derivative of Eqn.(15) and the divergence of Eqn. (16)
we obtain
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, (17)

demonstrating that the continuity equation is satisfied.
This means we may interpret the e↵ective current den-
sity, ~Ja, due to the displacement of e↵ective bound
charge, ⇢a, as an oscillating vacuum polarization Pa given
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.
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Since the axion modifications are in the source terms,
it is instructive to think of the oscillating bound charges
and currents (which are due to virtual particles) as pro-
viding oscillations in the magnetization and polarization
of the vacuum. Vacuum polarization and magnetiza-
tion e↵ects also causes the running of the fine structure
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ing (polarization of vacuum) and magnetic anti-screening
(magnetization of vacuum). These e↵ects cause the per-
ceived quantum of electric charge to increase at small
distances, while the preceived quantum of magnetic flux
decreases[17, 18]. Thus the fine structure constant in-
creases at small distances and high energy scales, with
the vacuum e↵ectively acting as a dielectric and param-
agnetic medium. The oscillating magnetization and po-
larization could be interpreted as a tiny oscillation of the
fine structure constant due to oscillations in the screen-
ing and anti-screening process, or equivalently, an oscil-
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A
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jωa
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ELECTRODYNAMICS







FACULTY OF SCIENCE

Perth, Australia

 Broadband Electric-field Axion Sensing Technique 
(BEAST) 

 BT McAllister,   M Goryachev,  J Bourhill,  EN Ivanov, ME Tobar



BEAST: First Limits
Higher resolution search was conducted around 5 kHz, with the minimal spectral resolution of 4.5 
mHz (increasing at higher frequencies)

All sharp peaks greater than  4.4 standard deviations from the mean originating from the SQUID 
were able to be excluded, due to a similar signal appearing in the flux line

Using this data, we may place the 95 % confidence exclusion limits on axion-photon coupling


