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Motivation

» Many exotic quantum phases observed in real quantum magnets, e.g., BEC of
magnons, BKT behavior, magnetization plateaus, etc.

» Spin fluctuations are believed to underlie the mechanism behind high-Tc
superconductivity in Cuprates

» Tailored quantum magnets possible — can simulate designer Hamiltonians (to a
limited extenet)

» Testbed to study several many-body phenomena — specially bosonic phases.

» Possible relevance to quantum information processing / quantum computation
(entanglement, decoherence, etc.)

Reference

Quantum Theory of Magnetism, 3. Ed. by Robert M. White (Springer 2006)



Origin of magnetic moments
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1. Moment due to orbital current density,j: 1M = — d°rr x J
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2. Moment due to intrinsic spin (electron): 1Ml = g,uBS/h, wp = ——
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g-factor Bohr magneton

For a free electron, Dirac equation gives: g=2. Inclusion of radiataive corrections within QED yields a
more accurate value
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Dirac equation
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W is a 4-component Dirac spinor

Non-relativistic limit -- mc? largest energy scale

Upper 2 components predominantly positive energy components
But Dirac Hamiltonian mixes the upper and lower components
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One can block diagonalize the Dirac Hamiltonian by the Foldy-Wouthuysen transformation.

Expanding in powers of (mc?)!, we obtain the Hamiltonian for a single electron
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Numerical value of Bohr magneton: HB = 2 = 5.79 x 10 eV/T

|:> Zeeman energy small at realistic magnetic fields.



Bohr-von Leewuen theorem:

Magnetic moment due to orbital elecrton motion cannot be explained by classical statistical mechanics.

Partition function can be made explicitly independent of the vector potential by a simple change of
variables.
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OTOH, magnetic moment due to intrinsic spin is correctly described by classical statistical mechanics
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Atomic magnetism

Hamiltonian for a N-electron atom with nuclear charge Ze
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Electronic shell configurations: Hund'’s rules; periodic table

Crystal field splitting

Degeneracy of (anisotropic) orbitals is lifted by atomic environment in a crystal. Orbitals that minimize
Coulomb repulsion with neighboring anions are energetically favored. This can lead to :violation” of Hund’s
rule and result in different net spin moment for the same ion in different crystals., e.g., Co** can carry a net
moment S=1/2 or §=5/2 depending on the crystal structure of the parent compound.




Itinerant magnetism: non-interacting spins

Pauli paramagnetism:
lgnore orbital effects of the applied magnetic field

At 7=0, B=0, electrons fill the Fermi sea with NT = N¢
In an external magnetic field, the Zeeman term lifts the degeneracy of the up and dn spins
Hz = upB(Ny — N)

The zero-T magnetization density

Energy of up/dn spins shifted by :E/LBB . This gives

1
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Hence

Xp = up9(er)
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Pauli susceptibility: paramagnetic



Landau diamagnetism:

Include orbital contribution and finite temperatures
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Quantized energy levels for a charged particle in a uniform field
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After some lengthy, but straightforward, algebra we obtain the net susceptibility of free
electrons at finite temps
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Pauli paramagnetic susceptibility Landau diamagnetic susceptibility



Itinerant magnetism: interacting spins

Non-interacting electron gas never develops spontaneous long range magnetic order.

Magnetism in solids arise from Coulomb repulsion between electrons.

The Hubbard model:
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» Single band (orbital) model

» Hopping between nearest neighbors

» Long-range Coulomb repulsion approximated by on-site U
» Quantization axis chosen along the magnetic field

» No crystal field effect



The Heisenberg model as the large-U limit if the Hubbard model at half-filling:
> Nip +ny =1

> § = () = every site has exactly one electron — massively degenerate ground
state

» t < U, but finite: degeneracy lifted by fluctuations induced by kinetic energy

» 2 antiparallel spins can gain k.e. by virtual tunneling to intermediate state with
double occupancy - not possible for parallel spins

» Antiferromagnetism arises naturally from strong Coulomb repulsion

» Extend to an extended lattice to obtain the Heisenberg model



Model spin Hamiltonians

Fluctuating magnetic moments at latice sites - charge degrees of freedom “frozen”.

Classical spin systems

Ising model: spins can locally exist in 2 states —up or down

S, = +1. E = JZSS

(1,5)
XY model: spins are represented by a vector of fixed length in the XY plane

S; = (cosB;,sin6;), E=J Z cos(0; — 0,)




Quantum spin systems

Projection of individual spins on the quantization axis takes discrete values

S7=-8-S+1,....8—1,8

Spin operators obey commutation relations
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Raising and lowering operators defined as
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Quantum Heisenberg model

H = JZ[ (S8 +8787) + 5757

(1,7)



Mean field theory

H=-J) Si-S;—v» h-S J>0
(2,5) z
Assume small fluctuations about mean value
S; = m; +9S;, m; = (S;)
S;-S, = m;-m;+m, S, +m,;-5S;+3S;-5S;
= —m; -m;+m;-S;+m;-S;+0S;-0S;
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Neglecting higher order fluctuation terms (
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Self-consistency requires that the mean local magnetization satisfies the following
eff
- TrS;exp(vh;”” - S;/kgT)
e
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Under the same conditions, the free energy is given by
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Some commonly used classical models

Ising model: S; = *1

m; = tanh(8~h; + 5Jzm)

F{m;} =J Z MM, — kBTZ In 2 cosh (Bvh; + BzJm)
(4,9) t



Ising model: S; = —1,0,+1
o 2sinh(Byh; + BzJm)
1+ 2cosh(Bvyh; + BzJm)

F{m;} =J Z m;m; — kBTZIH{l + 2 cosh (Byh; + BzJm)}
(4,5) z

Heisenberg model: S; = (sin 6; cos ¢;, sin 0; sin ¢;, cos 6;)

fo% df; sin 0; cos 0; exp {B cos 0; (yh; + zJm)}

m; = (cosf;) = 2

fo% df; sin 0; exp {B cos 0; (yh; + zJm)}
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Quantum antiferromagnetic Heisenberg model
H=J)» S;i-S;—vY h-S J>0
(2,5) ¢

Assume bipartite lattice — 2 order parameters M, and Mg sublattice magnetization
Proceed as before — small fluctuations about mean field values of magnetizations

Effective field on each sublattice
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For a spin-S Heisenberg model SZZ - {—S, —S -+ 1, cee —|—S}
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Optimum configuration — canted antiferromagnetic ordering — spin flop



