Aspects and Applications of THz FELs

A.F.G. van der Meer

FELIX Laboratory Radboud university, Nijmegen

Outline

Aspects of THz - FELs:

- Radiation bandwidth
- Resonator issues
- Slippage effects

Applications:

- nonlinear optics
- nano-spectroscopy
- 'action spectroscopy'

The FELIX laboratory

Generic layout

Institute for Molecules and Materials

Radiation bandwidth: linac pulse structure

Radiation bandwidth: Fourier transform

'transform limited' : no frequency / phase fluctuations of the carrier

Radiation bandwidth: Fourier transform

 $\Delta . \delta = O(1)$

Institute for Molecules and Materials

Radiation bandwidth: phase locking

M = 1000 - 2000

M = 25 - 50

Phase locking & single mode selection

Institute for Molecules and Materials

Phase locking & single mode selection

Institute for Molecules and Materials

Resonator issues

out-coupling schemes:

- 'semi-transparent' mirrors
- beam splitter
- hole coupling
- edge coupling

Resonator issues: on-axis hole coupling

Resonator issues: on-axis hole coupling

Resonator issues: on-axis hole coupling

Resonator issues: edge-coupling

Hole vs edge coupling: λ - dependence

Hole vs edge coupling: λ - dependence

Hole coupling: tuning curves

Hole coupling: measured losses

Partial-waveguide resonator

Eigenmodes are a combination of TE and Hermit-Gaussian modes:

$$\Psi_{m,n}(x, y, z) \sim H_m\left(\frac{\sqrt{2}y}{w(z)}\right) \sin(\frac{nx\pi}{g}) \exp(\frac{-y^2}{w^2(z)} + i(\frac{k_n^z y^2}{2R(z)} - \left(m + \frac{1}{2}\right) \tan^{-1}\frac{z}{z_r}))$$

with
$$w(z) = w_0 \cdot \sqrt{1 + \frac{z^2}{z_r^2}}$$
, $k_n^z = \sqrt{k^2 - n^2 k_\perp^2}$, $R(z) = z + \frac{z_r^2}{z}$

 $k_{\perp} = \frac{\pi}{g}$, where k is the wave vector in vacuum, z_r the Rayleigh range and w_0 the waist

and

Typical tuning curve FELIX waveguide FEL

Mode conversion in free-space part

Institute for Molecules and Materials

Measured roundtrip gain and loss

Institute for Molecules and Materials

Measured roundtrip gain and loss cont.

slit width = 15 mm

Institute for Molecules and Materials

'FLARE' in Nijmegen

e-beam: 10-15 MeV, 3 GHz, 10 μ s, 10 Hz wavelength range: 100 – 1500 μ m narrow-band mode

Institute for Molecules and Materials

FLARE tuning gaps

Institute for Molecules and Materials

Slippage effects

- Lethargy
- Efficiency enhancement
- Limit-cycles
- Bandwidth tuning

Slippage effects

FELIX macropulse shape at $\lambda = 40 \ \mu m$

Institute for Molecules and Materials

Slippage effects: gain and saturation

Slippage effects: gain and saturation

Slippage correction:

Institute for Molecules and Materials

Slippage effects: gain and saturation

Slippage effects: efficiency enhancement

short pulse propagation

Institute for Molecules and Materials

Slippage effects

Institute for Molecules and Materials

Slippage effects: limit cycles

Institute for Molecules and Materials

Slippage effects: bandwidth tunability

- bandwidth 0.4 6% [FWHM]
- near transform limited

Slippage effects: pulse length tunability

Exponential leading edge has a time constant: where α are the cavity losses and ΔL is the cavity detuning from synchronism

Nonlinear optics: lifetime of quantum-dot intersubband levels

InGaAs self-assembled quantum dots

Nonlinear optics: lifetime of quantum-dot intersubband levels

Lifetime strongly depends on energetically available decay channel

FELBE: E.Zibik et al., Nature Materials 8 (2009) 803

A hydrogen-like atom in a silicon chip

• Binding energy:

$$E_R = \frac{1}{2} \left(\frac{e^2}{2h}\right)^2 \frac{m_e}{\varepsilon^2}$$

- Bohr radius $a_0 = \frac{h^2}{\pi \cdot e^2} \frac{\varepsilon}{m_e}$
- Characteristic field $B_0 = \frac{\pi}{4} \left(\frac{e}{h}\right)^3 \frac{m_e^2}{\varepsilon^2}$

	Н	Si:P	
\mathcal{E}_r	1	11.4	
m _e	1	0.19	
E_R	13.6 eV	0.020 eV	
a_0	0.056 nm	3.2 nm	
B_0	117,000 T	32 T	

Institute for Molecules and Materials

QIP proposal: THz control of entanglement

A. M. Stoneham et al, J. Phys. C, 15, L447, 2003.

Coherent control of orbital states: Hahn echo in Si:P

Coherent control of orbital states: Hahn echo in Si:P

Greenland et al, Nature 465 (2010) 1057

Nano spectroscopy: single quantum dot

FELBE: R. Jacob et al., Nano lett. 12 (2012) 4336

Nano spectroscopy: PHB inside bacteria

Nano spectroscopy: PHB inside bacteria

CLIO: C. Mayet et al., Analyst 135 (2010) 2540

Institute for Molecules and Materials

Nano spectroscopy: spin-off

Institute for Molecules and Materials

Infrared Action Spectroscopy

Mechanism, Infrared Spectrum, Molecular Structure

Large organic compounds in space

Institute for Molecules and Materials

Gas-phase infrared spectra of ionic PAHs

ApJ 542 404 (2000) ApJL 560 L90 (2001) JPC-A 105 8302 (2001) JPC-A 107 782 (2003) ApJ 591 968 (2003) ApJ L66 706 (2009) JCP 131 184307 (2009) ANIE 50 7004 (2011) ApJ 83 746 (2012) ApJ 170 787 (2014)

• • • • •

- Investigate various and larger systems in various states – cation, anion, protonated, deprotonated etc.

Understanding Mechanisms of Peptide sequencing

b/y fragmentation pathway

Institute for Molecules and Materials

Do all *b*² ions have oxazolone structures?

International Journal of Mass Spectrometry 210/211 (2001) 71-87

Mass Spectrometry

www.elsevier.com/locate/ijms

Do all b₂ ions have oxazolone structures? Multistage mass spectrometry and ab initio studies on protonated *N*-acyl amino acid methyl ester model systems[†]

Jason M. Farrugia, Richard A. J. O'Hair*, Gavin E. Reid¹

School of Chemistry, University of Melbourne, Victoria 3010, Australia

Received 5 December 2000; accepted 19 February 2001

Alternative *b/y* pathway: N-terminus as nucleophile

Institute for Molecules and Materials

Oxazolone fragment structure identified by spectroscopy

February 2009 Volume 20 Number 2

b₂ from AAA

Oomens, Young, Molesworth, van Stipdonk, *JASMS* **2009**, *20*, 334

b₂ from AGG

Yoon, Chamot-Rooke, Perkins, Hilderbrand, Poutsma, Wysocki *JACS, 2009, 20,* 334

b₂ from GGG

Chen, Steill, Oomens, Polfer, JACS, 2009, 191, 18272

N-terminus as nucleophile: Arg

Institute for Molecules and Materials

Zou, Oomens, Polfer, *IJMS* 2012, *316-318*, 1 Radboud University Nijmegen

Spectroscopy in the THz range

Production of clusters

- Smalley-type cluster source
- Laser vaporization of metal rod in presence of He
- Clusters cooled to ~ 100K
- Optional: reaction gas added in reaction channel (prior to expansion)
- Interaction with laser(s)
- Mass spectrometric detection

Catalysis: Structure determination of metal clusters

Gruene, Science 321, 674 (2008).

Institute for Molecules and Materials

Catalysis: Molecular vs dissociative adsorption

Institute for Molecules and Materials

The FELIX Laboratory

Institute for Molecules and Materials

The FELIX Laboratory

Institute for Molecules and Materials

The FELICE beam line

Institute for Molecules and Materials

FELIX vs FELICE

Institute for Molecules and Materials

The FELIX Laboratory

three independent beamlines to serve user experiments simultaneously

- FLARE
- FELIX FEL1 or FEL2
- FELICE

FELIX-1 : 30 - 150 μm FELIX-2 : 3 - 45 μm

FELICE : 5 - 100 µm

n n n n n 8 88

FLARE : 100 - 1500 µm

FELIX facility @ Nijmegen: User Laboratories

User laboratory 1 – FLARE & FELIX

He-droplet machine Havenith (Bochum) Dilution Refrigerator EPSRC, Aeppli, Murdin Ultrafast laser system Kimel & Rasing (RU)

FLARE Diagnostic Station

Cold 22-pole ion trap Schlemmer (Cologne) Molecular beam apparatus

Paul type Ion trap

Institute for Molecules and Materials

FELIX facility @ Nijmegen: User Laboratories

Ultrafast laser systems

Versatile FTICR mass spectrometer

User laboratory 2 -FELIX & FELICE

Non-linear optics laboratory

FELICE FTICR mass spectrometer

Our neighbour: HFML

014				
Site	Magnet	Planned	Bore	
1 32T (Optics above)			50mm	
2	38T		32mm	
3	33T (FIR above)	38T (2015)	32mm	
4 30T (hybrid, 10MW)			50mm	
5	33T	38T (2015)	32mm	
6		45T (2017)	32mm	
		IR	and TH:	z FEL light 🔪 🖳 🏒
			1	
	Main Entrance	•• • •		
	1		5	
		Control Room		

2

٠

4

٠

 \square

٠

6

Р1

Institute for Molecules and Materials

V

 \wedge

٠

Combination of THz radiation and Magnetic Field

Institute for Molecules and Materials

Magneto-plasma oscillations: n-type InSb

Te-doped n-InSb

 $\omega_p = 6.33 \text{ THz}$ $m_{eff} = 0.021 \text{ m}_0$ $n = 1.66 \text{ x } 10^{17} \text{ cm}^{-3}$

 $\frac{1}{4\pi} \left(\sqrt{\omega_c^2 + 4\omega_p^2 \pm \omega_c} \right)$

Magneto-plasma oscillations: n-type InSb

Thank you for your attention

