Light-control of quantum solids

Andrea Cavalleri

Max Planck Institute for the Structure and Dynamics of Matte

Hamburg

Department of Physics University of Oxford

Strong correlations

Big consequences

Materials with strong correlations possess a wide variety of competing phases with different and unconventional properties:

Metal-insulator transitions

Colossal magnetoresistance

High-temperature superconductivity

E. Dagotto, Science 309, 257 (2005)

Complex materials

Strong correlations produce collective giant responses to small external perturbations.

Such responses are often *functionally* relevant.

Our goal is to CONTROL materials, induce these phenomena at higher temperatures or modulate amplify their responses

Complex solids: many competing phases

Chemical doping

Ground states and hidden phases

Chemical doping

mpsd

Dynamical control (1): switching into hidden phases

Dynamical control (2): creating new order by driving

Dynamical control (2): creating new order by driving

Driven systems often exhibit new regions of stability. A famous example – take a pendulum and vibrate its pivot point:

P.L. Kapitza, "Dynamic stability of a pendulum with an oscillating point of suspension," *Zh. Eksp. Teor. Fiz.* 21, 588 (1951)

L.D. Landau and E.M. Lifschitz Mechanics (Pergamon, Oxford 1976)

Dynamical phenomena: experiments

High energy scales

Incoherent

Entropy

mpsd

Control at THz frequencies: natural energy scales

Low energy scales

Long coherence times

Coherent control of the lattice

Why? e.g. controlling bond angles in oxides

mpsd

Can I control a bond angle with light

Pr_{0.7}Ca_{0.3}MnO₃: Phonon Driven I-M Transition

mpsd

How can optical excitation displace the crystal bond angles?

Linear response: no average displacement

2

$$V = \frac{1}{2} \mu_{IR} \omega_{IR}^2 Q_{IR}^2$$

$$\ddot{Q}_{IR} + 2\gamma \dot{Q}_{IR} + \omega_{IR}^2 Q_{IR} = A \exp(i\omega t)$$

Anharmonic coupling to a second mode

With Roberto Merlin, Univ. of Michigan

M. Foerst et al., Nature Physics 7, 854 (2011)

Equations of Motion: Two coupled oscillators mpso

$$(\ddot{Q}_{IR} + 2\gamma \dot{Q}_{IR} + \omega_{IR}^2 Q_{IR}) = A \exp(i\omega t)$$
$$(\ddot{Q}_2 + 2\gamma \dot{Q}_2 + \omega_2^2 Q_2) = B Q_{IR}^2$$

Selection rules

Q_{IR} of B_{1u} symmetry

As in: $Pr_{0.7}Ca_{0.3}MnO_3$ $La_{1.5}Ca_{0.5}MnO_4$ $YBa_2Cu_3O_{6+x}$

 $\mathbf{Q}_{\mathrm{IR}}^{2} \mathbf{Q}_{2} \neq \mathbf{0}$

only if Q₂ is a Raman mode of A_g symmetry

M. Foerst et al., Nature Physics 7, 854 (2011)

Rectified stretching leads to bending

Is there a nonzero average displacement ?

How far are the atoms being displaced ?

THz pump - Ultrafast x-ray diffraction probe

Femtosecond x-rays: quantify displacement

Mid-IR pump (E_{1u} mode)

X-ray probe

M. Foerst et al. Solid State Comm. 169, 4 (2013)

Displacive field (E_g mode)

With Steve Johnson, ETH

Theory: octahedral rotations make a metal

Frozen Phonon

Electronic Structure in the distorted state -> metallic

A. Subedi, A. Cavalleri, A. Georges Phys Rev B 89, 220301 (2014)

What else can I control ?

High Temperature Cuprate Superconductivity

Below a critical temperature T_c resistivity vanishes

Competing orders can quench T_c

Fradkin and Kivelson, Nature Physcs (2012)

Eu:LSCO_{1/8} stripe charge order

With Hide Takagi MPI Stuttgart

Excitation of in plane Cu-O stretch

16 μm wavelength μJ pulses MV/cm fields

> With Hide Takagi MPI Stuttgart

How do I recognize a transient superconductor ?

Josephson Plasmon

Kresin and Morawitz PRB (1988)

van der Marel and A. A. Tsvetkov Czech. J. Phys. (1996)

Mid-IR pump / THz Probe Spectroscopy

A light Induced Josephson plasma edge

Equilibrium LSCO Photo-induced LESCO Superconducting (eq.) Superconducting (non eq.) 1.0-0.0050 0.8 $\mathrm{E}_{\mathrm{refl}}$ / $\mathrm{E}_{\mathrm{inc}}$ ∆r/r(%) 0.6 0.0045 - Reflectance 0.4 Model 0.0040 0.2 40 50 60 80 70 50 60 70 Frequency (cm⁻¹) 600 cm⁻¹

D. Fausti et al., Science 331, 6014 (2011)

Am I melting charge stripes with light ?

Abbamonte et al Nature Physics 1, 155 (2005)

Ultrafast soft X-ray diffraction

O Kedge

With John Hill, BNL

mpsd

Ultrafast soft X-ray diffraction

M. Foerst et al., Phys Rev Lett 112, 157002 (2014)

With John Hill, BNL

mpsd

Charge stripe melting - superconductivity

• Charge Stripes melt concomitantly with the formation of the SC

superconductivity

M. Foerst et al., Phys Rev Lett 112, 157002 (2014)

Can I do this in other cuprates ?

Bilayer cuprates: YBCO

With B. Keimer MPI Stuttgart

Apical oxygen correlates with T_c at equilibrium

E. Pavarini et al., PRL 87, 047003 (2001)

C. Weber et al. Phys. Rev. B 82, 125107 (2010).

Can I induce coherence above T_c?

With B. Keimer MPI Stuttgart

Light induced Josephson Coupling – 2 X Tc

W. Hu. et al. Nature Materials 13, 705 (2014)

Surprise..... Up to room temperature

S. Kaiser, et al., *Phys. Rev. B* 89, 184516 (2014)

Throughout the pseudogap phase

W. Hu. et al. Nature Materials 13, 705 (2014)

What is the lattice doing ?

Nonlinear Phononics: YBCO

 Q_{IR} of B_{1u} symmetry

 $\mathbf{Q}_{\mathrm{IR}}^{2} \mathbf{Q}_{2} \neq \mathbf{0}$

only if Q₂ is a Raman mode of A_g symmetry

Excite B_{1u} and displace along A_q

Doped YBCO: 11 A_g Raman modes

Only three Ag modes are coupled strongly with B1u

Alaska Subedi – Antoine Georges (Ecole Polytechnique)

Femtosecond X-ray Scattering

R. Mankowski et al. Nature 516,71 (2014)

A new, transient crystal structure

R. Mankowski et al. Nature 516,71 (2014)

Is this the structure of a room temperature superconductor ?

1) Staggered motion of the planes

Spectral weight from high frequency

W. Hu. et al. *Nature Materials* 13, 705 (2014)

2) Empty chain band moves down in energy

R. Mankowski et al. Nature 516,71 (2014)

3) A "cleaner" LDA electronic structure

R. Mankowski et al. Nature 516,71 (2014)

3) Charge transfer from the planes to the chains

R. Mankowski et al. *Nature 516,71 (2014)*

1) Staggered motion of the layers

2) Charge transfer from to chains

3) dx²-y² Fermi surface

Is this a phenomenon specific to cuprates or is it more general ?

K₃C₆₀: a 20 K superconductor

- Organic molecular solid
- High T_C (20 K)
- 3D electronic structure

From literature data, MM PhD thesis

Equilibrium Superconducting Transition

mpsd

- Increase in R(ω)
- Gap opening in $\sigma_1(\omega)$
- Increase in $\sigma_2(\omega)$

Pairing Interaction in K₃C₆₀

"On ball" vibrations plus correlations favor local pairing

Schluter, Varma, Tosatti, Capone, Gunnarson.....

Kivelson, Chakravarty

Vibrational pump

MIR pump 170 meV (7.3 μm)

Iwasa et al. PRB 51, 3678 (1995)

Vibrational pump THz probe in K₃C₆₀

MIR pump 170 meV (7.3 μm)

Striking similarity with the low temperature SC mpsd

T=25 K

Temperature dependence

Crossover at ~10 times T_c

K₃C₆₀ : Stimulated superconductivity ?

What is going on?

T_{1u} vibration: no linear e-ph coupling

 $Q_{T1u}^2 Q_{Hg}$

 T_{1u}^{2}

T_{1u}(4) 1370 cm⁻¹

Dynamical enhancement of pairing ?

mpsd

Or something else.....

Our new LCLS proposal

People

Matteo Mitrano

Roman Mankowski

Wanzheng Hu

Alice Cantaluppi

Stephen Clark Dieter Jaksch **Oxford**

A. Georges **Paris**

Samples

B. Keimer Stuttgart

G. Gu Brookhaven

H. Takagi **Stuttgart**

Daniele Nicoletti

Stefan Kaiser

Alaska Subedi

Cassi Hunt

Controlling solids with light

Driving competing orders

Dynamical materials discovery

Non-equilibrium order

Non-equilibrium superconductivity

