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Introduction

Interactions

L =
1

2
∂µa∂

µa − 1

2
m2

aa
2 + gaggaGG̃ − gaγγ

4
aF F̃ + gaffΨf γ

µγ5Ψf ∂µa

g ∼ 1
fa

QCD axion: mafa = mπfπ

String ALP: ma and fa are free parameters.
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Introduction

Why astrophysics?

We know fa � 1010 GeV. To detect such small couplings, we can:

Measure things very carefully

Exploit resonance

Arrange for very big numbers
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Axion production

Space produces a lot of axions:

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Black hole superradiance

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Black hole superradiance

Photon to axion conversion

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Black hole superradiance

Photon to axion conversion

We can detect:

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Black hole superradiance

Photon to axion conversion

We can detect:

Axion to photon conversion or decay

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Black hole superradiance

Photon to axion conversion

We can detect:

Axion to photon conversion or decay

The absence of the energy source for axion production

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 5 / 25



Introduction

Axion production

Space produces a lot of axions:

Primordial production

Production in stars

Black hole superradiance

Photon to axion conversion

We can detect:

Axion to photon conversion or decay

The absence of the energy source for axion production

Gravitational effects
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Primordial axions

Primordial axion production

Axions may be produced in the early universe by:

Particle decay (dark radiation)
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Primordial axions

Primordial axion production

Axions may be produced in the early universe by:

Particle decay (dark radiation)

Misalignment production (dark matter and dark energy):

U(1)A symmetry spontaneously broken. Massless axion field created.
↓

Axion follows random walk in field space.
↓

Non-perturbative effects generate axion mass. Axion field is now
displaced from its minimum.

(See Jens’ talk)
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Primordial axions

Axion Dark Matter

Coherently oscillating scalar field: ä + 3Hȧ +m2
aa = 0

Oscillations are damped by the expansion of the universe

Energy density redshifts like dark matter

Axion stars and miniclusters
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Primordial axions

Detecting Axion Dark Matter

Axion decay to two photons:

Γa→γγ =
g2
aγγm

3
a

64π

Eγ = ma/2

ΔEγ = Eγ
σ
c
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Primordial axions

Detecting Axion Dark Matter

For ma ∼ 1µeV and gaγγ ∼ 10−10 GeV, τ ∼ 1032 years. The decay
rate could be significantly enhanced by stimulated decay from
ambient photons. From Caputo, Regis, Taoso & Witte (1811.08436):
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Production in stars

Production in stars

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 10 / 25



Production in stars

Stellar cooling from axions

The rate of cooling depends on the stellar environment.
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Production in stars

Stellar cooling from axions

The rate of cooling depends on the stellar environment.

Therefore we can place bounds on axions using the number of
stars observed in each stellar phase. (Raffelt & Dearborn 1987)

Bounds on gaγγ from ratio of Red Giant Branch to Horizontal
Branch stars. (Ayala et al, 1406.6053)

Bounds on gaee from the brightness of the Red Giant Branch
(Viaux et al, 1311.1669), and from the luminosity function of
white dwarfs (Raffelt 1986 and Blinnikov & Dunina-Barkovskaya,
1994).

This method constrains gaee < 9× 10−10 GeV−1

Axion hints from stellar cooling?
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Production in stars

Stellar cooling limits
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Black Hole Superradiance

Black Hole Superradiance

Reproduced from Brito, Cardosa & Pani, 1501.06570
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Black Hole Superradiance

Axion Black Hole Superradiance

Axions build up around Kerr black hole
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Stellar mass BH spin measurements exclude
6× 10−13 eV < ma < 2× 10−11 eV for fa � 1013GeV .
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Black Hole Superradiance

Axion Black Hole Superradiance

Axions build up around Kerr black hole

‘Bosenova’ explosion as axion cloud collapses (Arvanitaki &
Dubovsky, 1004.3558)

Depletion of black hole spin

Stellar mass BH spin measurements exclude
6× 10−13 eV < ma < 2× 10−11 eV for fa � 1013GeV .
(Arvanitaki, Baryakhtar & Huang, 1411.2263)

Advanced Ligo will be sensitive to ma � 10−10 eV. (Arvanitaki
et al, 1604.03958).

Constraints on the axiverse mass spectrum (Stott & Marsh,
1805.02016)
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Axion-photon conversion

Axion-photon conversion


ω +




Δγ 0 Δγax

0 Δγ Δγay

Δγax Δγay Δa


− i∂z







| γx�
| γy�
| a�


 = 0

Δγ =
−ω2

pl

2ω

Plasma frequency: ωpl =
�
4πα ne

me

� 1
2

Δa =
−m2

a

ω
.

Here we take ma = 0. This is valid for ma � 10−12 eV.

Mixing: Δγai =
Bi

2M

Pa→γ(L) = | �1, 0, 0|f (L)� |2 + | �0, 1, 0|f (L)� |2
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Axion-photon conversion

Anomalous Transparency Hint

Axions and photons can interconvert in the magnetic fields of
galaixes, galaxy clusters, AGN, intergalactic space ...
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Axion-photon conversion

Anomalous Transparency Hint

Axions and photons can interconvert in the magnetic fields of
galaixes, galaxy clusters, AGN, intergalactic space ...

Photons above ∼ 100 GeV are attenuated in intergalactic space
due to pair production with extra-galactic background light.

The universe might be more transparent to such very high
energy photons than we thought (Horns & Meyer 1201.4711).

This anomaly can be explained by interconversion with axions,
as an intergalactic example of light shining through a wall.
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Axion-photon conversion

Anomalous Transparency Hint

Reproduced from Meyer, Horns & Raue, 1302.1208.
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Axion-photon conversion

Galaxy clusters
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Axion-photon conversion

Photon survival probability
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Axion-photon conversion

Bounds

The leading bounds are from NGC1275 in Perseus, 2E3140 in A1795
and M87 in Virgo: M � 7× 1011 GeV.
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Axion-photon conversion

Axion-photon conversion


ω +




Δγ 0 Δγax

0 Δγ Δγay

Δγax Δγay Δa


− i∂z







| γx�
| γy�
| a�


 = 0

Only the photon polarization parallel to the external
magnetic field participates in axion-photon conversion.
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Axion-photon conversion

IXPE
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Axion-photon conversion

Polarimetry oscillations
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Axion-photon conversion

Polarimetry bounds
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Conclusions

Conclusions

Astrophysical environments are excellent places to search for
axions.

The next generation of telescopes, as well as gravitational wave
astronomy, will allow us to place even more stringent bounds on
axions.

Photons, neutrinos and gravitational waves all play key roles in
axion searches.
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Single domain

tan (2θ) = 10.0× 10−3 ×
�
10−3 cm−3

ne

��
B⊥
1µG

�� ω

3.5 keV

��
1013 GeV

M

�

Δ = 0.015×
� ne
10−3 cm−3

��
3.5 keV

ω

��
L

1 kpc

�

P(a → γ) = sin2 (2θ) sin2
�

Δ

cos 2θ

�
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Small angle approximation

Over a distance R of R/L � 1 domains, with B randomised between
each domain, we can approximate:

P � 6.9× 10−7

�
L

1 kpc

R

30 kpc

��
B⊥
1µG

1013 GeV

M

�2

for θ,Δ � 1
In most astrophysical environments with have θ � 1 but not always
Δ � 1.
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Axion-photon conversion

Pa→γ ∝ B2
⊥

M2 for
B2
⊥

M2 � 1

Pa→γ increases with the field coherence length and the total
extent of the field.

High electron densities increase the effective photon mass,
suppressing conversion.

Astrophysical environments lead to the highest conversion
probabilities.

The conversion probability is pseudo-sinusoidal in 1/E .

Hints from galaxy cluster soft X-ray excess and 3.5 keV line.
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Semi-analytic formula

For Pa→γ � 1:

Pa→γ(L) =
�

i=x ,y

����
� L

0

dze iϕ(z)Δγai(z)

����
2

, (1)

where,

ϕ(z) =

� z

0

dz �Δγ(z
�) = − 1

ω

� z

0

dz �ω2
pl(z

�) . (2)

Δγ(z) ∝ ne

Electron density rotates the probability amplitudes �1, 0, 0|f (L)�
and �0, 1, 0|f (L)� in the complex plane as L increases,
suppressing the efficacy of the magnetic field in increasing the
conversion probability over increasing distances.
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Photoelectric absorption

Use density matrix formalism to include photo-electric absorption of
photon components:
Damping parameter: Γ = σeff (nHI + 2nH2)

H =




Δγ 0 Δγax

0 Δγ Δγay

Δγax Δγay Δa


−




i Γ
2

0 0
0 i Γ

2
0

0 0 0


 = M − iD,

ρ =




| γx�
| γy�
| a�


⊗

�
| γx� | γy� | a�

�∗

ρ(z) = e−iHzρ(0)e iH
†z .
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Analysis

We analyse 8 likely looking point sources:

The AGN NGC1275 at the centre of Perseus

The quasars B1256+281 and SDSS J130001.48+275120.6
shining through Coma

The AGN NGC3862 in A1367

The AGN IC4374 at the centre of A3581

The bright Sy1 galaxy 2E3140 within A1795

The quasar CXOU J134905.8+263752 behind A1795

The central AGN UGC9799 of the cluster A2052
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Example: NGC3862 in A1367
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Projected bounds with Athena
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Stokes parameters

I = E 2
x + E 2

y

Q = E 2
x − E 2

y

U = 2Re
�
ExE

∗
y

�

V = −2Im
�
ExE

∗
y

�

plin =

√
Q2+U2

I

ψ = 1
2
tan−1

�
U
Q

�
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Measurement

Basic implementation of detector errors from Kislat et al (1409.6214),
using measured flux from NGC1275 and background from Perseus:

P(plin,ψ|p0,ψ0) =

�
I 2/W2plinµ

2

2πσ
×

exp

�
− µ2

4σ2
{p20 + p2lin − 2p0plincos(2(ψ0 − ψ))− p20p

2
linµ

2

2
sin2(2(ψ − ψ0))}

�

(3)

With

W2 = (RS + RBG )T (1− foff) + RBGTfoff

�
1− foff
foff

�2

, (4)

And

σ =

�
W2

I 2

�
1− p20µ

2

2

�
. (5)
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Polarimetry bounds

Initially assume a featureless intrinsic AGN polarisation of 0%,
1% or 5%.

Use the magnetic field experienced by photons from NGC1275
travelling through Perseus, marginalising over different field
configurations

Bin to IXPE’s energy resolution

Compare a constant polarisation hypothesis with a constant
source polarisation altered by axions
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Next Steps

Realistic source polarisation spectra

Instrumental modelling
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AGN

Reproduced from F Marin et al, 1709.03304
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Type I AGN polarization

gaγγ = 10−12 GeV−1
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Type I AGN polarization

gaγγ = 10−12 GeV−1
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Type I AGN polarization

gaγγ = 3× 10−13 GeV−1
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Type II AGN polarization

The linear polarization degree of a type-2 AGN in the absence (left) and
presence (right) of axions.
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Type II AGN polarization

The linear polarization angle of a type-2 AGN in the absence (left) and
presence (right) of axions.
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Type I AGN Instrumental Modelling

The linear polarization angle of a type-2 AGN in the absence (left) and
presence (right) of axions.

Work in progress
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Future directions

Type 2 targets

Other telescopes: enhanced X-ray Timing and Polarimetry
Mission

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 20 / 29



Type I AGN Instrumental Modelling
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Bounds method 1

1 Randomly generate 1000 different magnetic field realisations Bi

for the line of sight to NGC1275.

2 For each Bi , generate the ALP induced linear polarisation pi0(E )
and polarisation angle ψi

0(E ) spectra, by numerically
propagating the initial photon vector through the cluster.

3 From each {pi0(E ),ψi
0(E )} pair, generate 10 fake data sets.

4 Fit the no ALP constant model to each of the resulting 10,000
fake data sets, and find the corresponding likelihoods {Ligaγγ}.

5 If fewer than 5% of the {Ligaγγ} are equal to or higher than
LavnoALP (or L90noALP for the more pessimistic case), gaγγ is
excluded at the 95% confidence level.
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Results 1

0% 1% 5%
LavnoALP 1.2× 10−12 GeV−1 1.2× 10−12 GeV−1 6× 10−13 GeV−1

L90noALP 1.4× 10−12 GeV−1 1.3× 10−12 GeV−1 1.2× 10−12 GeV−

Table: Projected upper limits on gaγγ with IXPE. The columns correspond
to different intrinsic polarisations of the AGN. The rows correspond to
whether the average or 90th percentile likelihood value is used to
characterize how well the no ALP model fits the simulated data.

Francesca Day (University of Cambridge) Astrophysical searches for axions Axions in Stockholm 23 / 29



Bounds method 2

Follow Fermi-LAT (1603.06978)

For each intrinsic source polarisation, simulate 1000 data sets
{Di} with no ALPs present.

Simulate transfer matrices for each value of g considered and for
100 different magnetic field configurations {Bj}.
For each transfer matrix, find the final spectrum including ALPs
for a range of different values for the intrinsic source polarisation
degree psourcelin and angle ψsource. We take psource

lin = 0− 10% in
steps of 0.1% and ψsource = 0− π in steps of π

100
, and we use an

interpolating function derived from this data for the
maximisation procedure later on.
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Bounds method 2

We now fit the spectra with ALPs generated in the previous step
to the fake data generated without ALPs. For each set
(g ,Bj ,Di) we find the values of psourcelin and ψsource that
maximize the likelihood
L(g ,Bj , p

source
lin ,ψsource|Di) =

�

bins

Lk(g ,Bj , p
source
lin ,ψsource|Di). In

each bin k , Lk is the probability of measuring the plin and ψ
values given by Di , given that the true values are those predicted
by an ALP model with parameters (g ,Bj , p

source
lin ,ψsource). These

are calculated from Equation (3). We thus obtain a set of
maximised likelihoods L(g ,Bj |Di).
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Bounds method 2

For each value of g and each Di , sort the L(g ,Bj |Di) obtained
from different magnetic fields, and select the 95th quantile L
value, and the corresponding magnetic field. We thus obtain a
set of likelihoods L(g |Di).

For each Di , find the value of g , ĝ that leads to the maximum
L(g |Di).

We first consider the discovery potential of the data—i.e., the
possibility of excluding a null hypothesis of no ALPs. For each

Di , we construct a test statistic TSi = −2ln
�

L(g=0|Di )
L(g=ĝ |Di )

�
.
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Bounds method 2

We have hence found the distribution of TS under a null
hypothesis of no ALPs. We find the threshold TS value TSthresh

such that 95% of the TSi are lower than TSthresh. This value
can be used to demonstrate our discovery potential for ALPs, by
finding the TS for some of our fake data with ALPs included.
We note that this test statistic does not obey Wilk’s theorem as
our hypotheses are not nested.

We now turn to excluding values of g . Our null hypothesis is
now that ALPs exist with some coupling g , and the alternative
hypothesis H1 is that g ≤ ĝ . H1 obviously includes the case
where ALPs do not exist, but excluding ALPs with g ≤ ĝ should
not be possible. Our test statistic for each g is now

λ(g ,Di) = −2ln
�

L(g |Di )
L(ĝ |Di )

�
.
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Bounds Method 2

We take the median value of λ(g ,Di) over the Di to represent
that g . So we now have simply λ(g) for our test statistic.

We now need the null distribution of λ(g) under the hypothesis
that ALPs exist with coupling g. We assume that λ(g) and the
test statistic for a null hypothesis of no ALPs, TS above, have
the same distribution, and therefore λ(g)thresh = TSthresh. We
therefore exclude a value of g if λ(g) > TSthresh.
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Results 2

0% 1% 5%
LavnoALP 6× 10−13 GeV−1 9× 10−13 GeV−1 1.3× 10−12 GeV−1

Table: Projected upper limits on gaγγ with IXPE using the likelihood ratio
method. The columns correspond to different intrinsic polarisations of the
AGN.
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