Topological order
 and many-body entanglement

Xiào-Gang Wen, MITI (20i19/06, Quantum, Frontiers)

Our world is very rich with all kinds of materials

In middle school, we learned ...

there are four states of matter:

In university, we learned

- Rich forms of matter \leftarrow rich types of order
- A deep insight from Landau: different orders come from different symmetry breaking.
- A corner stone of condensed matter physics

Classify phases of quantum matter ($T=0$ phases)

For a long time, we thought that Landau symmetry breaking classify all phases of matter

- Symm. breaking phases are classified by a pair $G_{\psi} \subset G_{H}$ $G_{H}=$ symmetry group of the system. $G_{\Psi}=$ symmetry group of the ground states.
- 230 crystals from group theory

Topological orders in quantum Hall effect

- We used to think Landau symmetry breaking theory is complete: it describes all different phases of matter.

Topological orders in quantum Hall effect

- We used to think Landau symmetry breaking theory is complete: it describes all different phases of matter.
- Quantum Hall states $R_{x y}=V_{y} / I_{x}=\frac{m}{n} \frac{2 \pi \hbar}{e^{2}}$ vonKlitzing Dorda Pepper, PRL 45494 (1980) Tsui Stormer Gossard, PRL 481559 (1982)

- FQH states have different phases even when there is no symm. and no symm. breaking.

Topological orders in quantum Hall effect

- We used to think Landau symmetry breaking theory is complete: it describes all different phases of matter.
- Quantum Hall states $R_{x y}=V_{y} / I_{x}=\frac{m}{n} \frac{2 \pi \hbar}{e^{2}}$ vonKlitzing Dorda Pepper, PRL 45494 (1980) Tsui Stormer Gossard, PRL 481559 (1982)

- FQH states have different phases even when there is no symm. and no symm. breaking.
- FQH states must contain a new kind of order, which was named topological order

Wen, PRB 407387 (89); IJMP 4239 (90)

Every physical concept is defined by experiment

- The concept of crystal order is defined via X-ray scattering

- The concept of superfuild order is defined via zero-viscosity and quantization of vorticity

What measurable quantities define topo. order?

- There are three kinds of quantum matter:
(1) no low energy excitations (Insulator)
(2) some low energy excitations (Superfluid)
(3) a lot of low energy excitations (Metal)

What measurable quantities define topo. order?

- There are three kinds of quantum matter:
(1) no low energy excitations (Insulator)
(2) some low energy excitations (Superfluid)
(3) a lot of low energy excitations (Metal)
- FQH states have a finite energy gap \rightarrow FQH states are trivial at low energies - there is nothing.

What measurable quantities define topo. order?

- There are three kinds of quantum matter:
(1) no low energy excitations (Insulator)
(2) some low energy excitations (Superfluid)
(3) a lot of low energy excitations (Metal)
- FQH states have a finite energy gap \rightarrow FQH states are trivial at low energies - there is nothing.

Deg. $=1$

Deg. $=\mathrm{D}_{1}$

- The only non-trivial measurable low enery quantity is the ground state degeneracy, which may depend on the topology of space.

Topo. order is defined by topological degeneracy

- But, the ground state degeneracy of FQH states appears to a finite-size effect (which depends on
"boundary conditions" ie topologies), rather than a thermodynamic property. How can it defines a new phases of quantum matter?
- The ground state degeneracies are robust against any local perturbations that can break any symmetries. The ground state degeneracies have nothing to do with symmetry.
\rightarrow topological degeneracy
Wen Niu PRB 419377 (90)
- The ground state degeneracies can change by but some large changes of Hamiltonian \rightarrow gap-closing phase transition.

Many-body entanglement \rightarrow Topo. degeneracy

- For a highly entangled many-body quantum systems: knowing every parts still cannot determine the whole
- In other words, there are different "wholes", that their every local parts are identical.
- Local perturbations can only see the parts \rightarrow those different "wholes" (the whole quantum states) have the same energy.
- Those kinds of many-body quantum systems have
topological entanglement entropy
Kitaev-Preskill hep-th/0510092
Levin-Wen cond-mat/0510613

and long range quantum entanglement Chen-Gu-Wen arXiv:1004.3835

Macroscopic characterization \rightarrow microscopic origin

- From macroscopic characterization of topological order (topological ground state degeneracies, mapping class group representations)
\rightarrow microscopic origin (long range entanglement) took $20+$ years.

Macroscopic characterization \rightarrow microscopic origin

- From macroscopic characterization of topological order (topological ground state degeneracies, mapping class group representations)
\rightarrow microscopic origin (long range entanglement) took $20+$ years.
- From macroscopic characterization of superconductivity (zero-resistivity, quantized vorticity)
\rightarrow microscopic origin (BSC electron-pairing) took 46 years.

Topological order and many-body entanglement

This topology is not that topology

Topology in topological insulator/superconductor (2005) corresponds to the twist in the band structure of orbitals, which is similar to the topological structure that distinguishes a sphere from a torus. This kind of topology is classical topology.

This topology is not that topology

Topology in topological order (1989) corresponds to pattern of many-body entanglement in many-body wave function $\Psi\left(m_{1}, m_{2}, \cdots, m_{N}\right)$, that is robust against any local perturbations that can break any symmetry. Such robustness is the meaning of topological in topological order. This kind of topology is quantum topology.

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ more entangled

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
-

unentangled

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
$\bullet|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$ $=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
-
- (Q-Q-ब-ब-(Q-ब) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\cdot|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- unentangled
- (1)-(1)-(1-(1)-(1)-(1) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled

$=$ direct-product state \rightarrow unentangled state (classical)

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- unentangled
- (1)-(1)-(1-(c)-(1-(1) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled

$=$ direct-product state \rightarrow unentangled state (classical)
- Particle condensation (superfluid)
$\left|\Phi_{\mathrm{SF}}\right\rangle=\sum_{\text {all conf. }}|\because \vdots\rangle$

Entanglement through examples

- $|\uparrow\rangle \otimes|\downarrow\rangle=$ direct-product state \rightarrow unentangled (classical)
- $|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle \rightarrow$ entangled (quantum)
$\bullet|\uparrow\rangle \otimes|\uparrow\rangle+|\downarrow\rangle \otimes|\downarrow\rangle+|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle$
$=(|\uparrow\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|\downarrow\rangle)=|x\rangle \otimes|x\rangle \rightarrow$ unentangled
- unentangled
- (1)-(1)-(1)-(1-(1)-(1) $=(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes(|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle) \otimes \ldots \rightarrow$ short-range entangled (SRE) entangled

$=$ direct-product state \rightarrow unentangled state (classical)
- Particle condensation (superfluid)
$\left|\Phi_{\mathrm{SF}}\right\rangle=\sum_{\text {all conf. }}|\because \vdots\rangle=\left(|0\rangle_{x_{1}}+|1\rangle_{x_{1}}+..\right) \otimes\left(|0\rangle_{x_{2}}+|1\rangle_{x_{2}}+..\right) .$.
$=$ direct-product state \rightarrow unentangled state (classical)

How to make long range entanglement?

To make topological order, we need to sum over many different product states, but we should not sum over everything. $\sum_{\text {all spin config. }}|\uparrow \downarrow .\rangle=.|\rightarrow \rightarrow .$.

How to make long range entanglement?

To make topological order, we need to sum over many different product states, but we should not sum over everything.
$\sum_{\text {all spin config. }}|\uparrow \downarrow .\rangle=.|\rightarrow \rightarrow .$.

- sum over a subset of spin configurations:

$$
\begin{aligned}
& \left|\Phi_{\text {loops }}^{Z_{2}}\right\rangle=\sum\left|i \underset{\sim}{\sim} \tilde{\sigma}_{<}\right\rangle \\
& \left|\Phi_{\text {loops }}^{D S}\right\rangle=\sum(-)^{\# \text { of loops }}|i \approx \underset{\sim}{\sim} \underset{\sim}{c}\rangle \\
& \left|\phi_{\text {loops }}^{\theta}\right\rangle=\sum\left(e^{\mathrm{i} \theta}\right)^{\#} \text { of loops }|i \stackrel{\sim}{\mathscr{c}}{\underset{\sim}{c}}\rangle
\end{aligned}
$$

- Can the above wavefunction be the ground states of local Hamiltonians?

Local dance rule \rightarrow global dance pattern

- Local rules of a string liquid (for ground state):
(1) Dance while holding hands (no open ends)
(2) $\Phi_{\mathrm{str}}(\square)=\Phi_{\mathrm{str}}(\square), \Phi_{\mathrm{str}}\left(\square\langle)=\Phi_{\mathrm{str}}(\square \square)\right.$
\rightarrow Global wave function of loops $\Phi_{\text {str }}\left(\mathbb{N} \widetilde{\sim}_{<}\right)=1$
- There is a Hamiltonian H :
(1) Open ends cost energy
(2) string can hop and reconnect freely.

The ground state of H gives rise to the above string lqiuid wave function.

Local dance rule \rightarrow global dance pattern

- Local rules of another string liquid (ground state):
(1) Dance while holding hands (no open ends)
(2) $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square), \Phi_{\text {str }}\left(\square\langle)=-\Phi_{\text {str }}(\square \square)\right.$
\rightarrow Global wave function of loops $\Phi_{\text {str }}(\mathbb{N} \underset{\sim}{c})=(-)^{\#}$ of loops

Local dance rule \rightarrow global dance pattern

- Local rules of another string liquid (ground state):
(1) Dance while holding hands (no open ends)
(2) $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square), \Phi_{\text {str }}\left(\square\langle)=-\Phi_{\text {str }}(\square \square)\right.$
\rightarrow Global wave function of loops $\Phi_{\text {str }}\left(\mathbb{N} \widetilde{c}_{\substack{c}}\right)=(-)^{\# \text { of loops }}$
- The second string liquid $\Phi_{\text {str }}\left(\mathbb{N} \tilde{c}_{\text {c }}^{c}\right)=(-)^{\# \text { of loops }}$ can exist only in 2-dimensions.
The first string liquid $\Phi_{\text {str }}(\mathbb{\sim})=1$ can exist in both 2 - and 3-dimensions.

Knowing all the parts \neq knowing the whole

- Do those two string liquids really have topological order?
Do they have topo. ground state degenercy?

Knowing all the parts \neq knowing the whole

- Do those two string liquids really have topological order?
Do they have topo. ground state degenercy?
 WHOLE $=\sum^{\text {parts }+?}$
- 4 locally indistinguishable states on torus for both liquids \rightarrow topo. order
- Ground state degeneracy cannot distinguish them.

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone \rightarrow topological
- Let us fix 4 ends of string on a sphere S^{2}. How many locally indistinguishable states are there?
- There are 2 sectors $\rightarrow 2$ states.

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone \rightarrow topological
- Let us fix 4 ends of string on a sphere S^{2}. How many locally indistinguishable states are there?
- Thore are 2 sectors 12 states.

- In fact, there is only 1 sector $\rightarrow 1$ state, due to the string reconnection fluctuations $\Phi_{\text {str }}\left(\square\langle)= \pm \Phi_{\text {str }}(\square)\right.$.
- In general, fixed $2 N$ ends of string $\rightarrow 1$ state. Each end of string has no degeneracy \rightarrow no internal degrees of freedom.

Topological excitations

- Ends of strings behave like point objects.
- They cannot be created alone \rightarrow topological
- Let us fix 4 ends of string on a sphere S^{2}. How many locally indistinguishable states are there?
- Thore are 2 sectors 12 states.

- In fact, there is only 1 sector $\rightarrow 1$ state, due to the string reconnection fluctuations $\Phi_{\text {str }}\left(\square\langle)= \pm \Phi_{\text {str }}(\square)\right.$.
- In general, fixed $2 N$ ends of string $\rightarrow 1$ state. Each end of string has no degeneracy \rightarrow no internal degrees of freedom.
- Another type of topological excitation vortex at \times : $|m\rangle=\sum(-)^{\#}$ of loops around \times

Emergence of fractional spin

- Ends of strings are point-like. Are they bosons or fermions? Two ends $=$ a small string $=$ a boson, but each end can still be a fermion. Fidkowski-Freedman-Nayak-Walker-Wang cond-mat/0610583
- $\Phi_{\text {str }}\left(\underset{\sim}{\sim} \mathscr{N}_{<}\right)=1$ string liquid $\Phi_{\text {str }}\left(\square\langle)=\Phi_{\text {str }}(\square \square)\right.$
- End of string wave function: \mid end $\left.\rangle=\bullet+c^{\ominus}+c^{\ominus}\right\rangle+\cdots$ The string near the end is totally fixed, since the end is determined by a trapping Hamiltonian δH which can be chosen to fix the string. The string alway from the end is not fixed, since they are determined by the bluk Hamiltonian H which gives rise to a string liquid.
- 360° rotation: ${ }^{\bullet} \rightarrow \ominus$ and $\oplus={ }^{\ominus} \rightarrow \dagger: R_{360^{\circ}}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- We find two types of topological exitations
(1) $|e\rangle=\dagger+9 \operatorname{spin} 0$.
(2) $|f\rangle=\bullet-9$ spin $1 / 2$.

Spin-statistics theorem:
 Emergence of Fermi statistics

(a)

(b)

(c)
(d)

(e)

- (a) \rightarrow (b) $=$ exchange two string-ends.
- (d) $\rightarrow(\mathrm{e})=360^{\circ}$ rotation of a string-end.
- Amplitude (a) = Amplitude (e)
- Exchange two string-ends plus a 360° rotation of one of the string-end generate no phase.
\rightarrow Spin-statistics theorem

Z_{2} topological order and its physical properties

$\Phi_{\text {str }}\left(\underset{\sim}{i} \mathscr{\sigma}_{<}\right)=1$ string liquid has Z_{2}-topological order.

- 4 types of topological excitations:
(f is a fermion)
(1) $|e\rangle=\dagger+\emptyset$ spin 0 .
(2) $|f\rangle=\dagger-9$ spin $1 / 2$.
(3) $|m=e \otimes f\rangle=\times-\otimes \operatorname{spin} 0$.
(4) $|1\rangle={ }^{x}+\otimes \operatorname{spin} 0$.
- The type-1 excitation is the tirivial excitation, that can be created by local operators.
The type-e, type- m, and type- f excitations are non-tirivial excitation, that cannot be created by local operators.
- $1, e, m$ are bosons and f is a fermion. e, m, and f have π mutual statistics between them.
- Fusion rule:
$\begin{array}{lll}e \otimes e=1 ; & f \otimes f=1 ; & m \otimes m=1 ; \\ e \otimes m=f ; & f \otimes e=m ; & m \otimes f=e ; \\ 1 \otimes e=e ; & 1 \otimes m=m ; & 1 \otimes f=f ;\end{array}$

Z_{2} topo. order is described by Z_{2} gauge theory

Physical properties of Z_{2} gauge theory

$=$ Physical properties of Z_{2} topological order

- Z_{2}-charge (a representatiosn of Z_{2}) and Z_{2}-vortex (π-flux) as two bosonic point-like excitations.
- Z_{2}-charge and Z_{2}-vortex bound state \rightarrow a fermion (f), since Z_{2}-charge and Z_{2}-vortex has a π mutual statistics between them (charge-1 around flux- π).
- Z_{2}-charge, Z_{2}-vortex, and their bound state has a π mutual statistics between them.
- Z_{2}-charge $\rightarrow e, \quad Z_{2}$-vortex $\rightarrow m, \quad$ bound state $\rightarrow f$.
- Z_{2} gauge theory on torus also has 4 degenerate ground states

Emergence of fractional spin and semion statistics

$\Phi_{\text {str }}(\mathbb{i} \underset{\substack{c}}{\sim})=(-)^{\# \text { of loops }}$ string liquid. $\left.\Phi_{\text {str }}(\square\rangle\right)=-\Phi_{\text {str }}(\square \square)$

- End of string wave function: \mid end $\rangle=\boldsymbol{\dagger}+c^{\bullet}-c^{\ominus}+\cdots$
- 360° rotation: ${ }^{\bullet} \rightarrow \ominus$ and ${ }^{\ominus}=-\dagger^{\ominus} \rightarrow-\uparrow: R_{360^{\circ}}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
- Types of topological excitations:
($s_{ \pm}$are semions)
(1) $\left|s_{+}\right\rangle=\dagger+i^{\ominus}$ spin $\frac{1}{4}$.
(2) $\left|s_{-}\right\rangle=\dagger-i \upharpoonleft$ spin $-\frac{1}{4}$
(3) $\left|m=s_{-} \otimes s_{+}\right\rangle=\times-\otimes \operatorname{spin} 0$.
(4) $|1\rangle=x+\otimes \operatorname{spin} 0$.
- double-semion topo. order $=U^{2}(1)$ Chern-Simon gauge theory $L\left(a_{\mu}\right)=\frac{2}{4 \pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu \nu \lambda}-\frac{2}{4 \pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu \nu \lambda}$

Emergence of fractional spin and semion statistics

- End of string wave function: \mid end $\rangle=\boldsymbol{\dagger}+c^{\bullet}-c^{\ominus}+\cdots$
- 360° rotation: ${ }^{\bullet} \rightarrow \ominus$ and ${ }^{\ominus}=-i^{\ominus} \rightarrow-\uparrow: R_{360^{\circ}}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
- Types of topological excitations:
($s_{ \pm}$are semions)
(1) $\left|s_{+}\right\rangle=i+i^{\varrho}$ spin $\frac{1}{4}$.
(2) $\left|s_{-}\right\rangle=i-\mathrm{i} \bigcirc$ spin $-\frac{1}{4}$
(3) $\left|m=s_{-} \otimes s_{+}\right\rangle=\times-\otimes \operatorname{spin} 0$.
(4) $|1\rangle=\times+\otimes \operatorname{spin} 0$.
- double-semion topo. order $=U^{2}(1)$ Chern-Simon gauge theory $L\left(a_{\mu}\right)=\frac{2}{4 \pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu \nu \lambda}-\frac{2}{4 \pi} \tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda} \epsilon^{\mu \nu \lambda}$
- Two string lqiuids \rightarrow Two topological orders:
Z_{2} topo. order Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91), Moessner-Sondhi PRL 861881 (01) and double-semion topo. order Freedman etal cond-mat/0307511, Levin-Wen cond-mat/0404617

String-net liquid

Ground state:

- String-net liquid: allow three strings to join, but do not allow a string to end $\Phi_{\text {str }}$ (2)

Levin-Wen cond-mat/0404617

- The dancing rule : $\phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square)$

$$
\begin{aligned}
& \Phi_{\mathrm{str}}(\Omega)=a \Phi_{\mathrm{str}}(\Omega)+b \Phi_{\mathrm{str}}(\Omega) \\
& \Phi_{\mathrm{str}}(\Omega)=c \Phi_{\mathrm{str}}(\Omega)+d \Phi_{\mathrm{str}}(\Omega)
\end{aligned}
$$

- The above is a relation between two orthogonal basis: two local resolutions of how four strings join (quantum geometry)

$$
\begin{aligned}
& \text { 13, and } \\
& a^{2}+b^{2}=1, \quad a c+b d=0, \quad c a+d b=0, \quad c^{2}+d^{2}=1
\end{aligned}
$$

Self consistent dancing rule

$$
\begin{aligned}
\Phi_{\mathrm{str}}(\Omega) & =a\left(a \Phi_{\mathrm{str}}(\zeta)+b \Phi_{\mathrm{str}}(\zeta)\right) \\
& +b\left(c \Phi_{\mathrm{str}}(\zeta)+d \Phi_{\mathrm{str}}(\zeta)\right) \\
\Phi_{\mathrm{str}}(\zeta) & =c\left(a \Phi_{\mathrm{str}}(\zeta)+b \Phi_{\mathrm{str}}(\zeta)\right) \\
& +d\left(c \Phi_{\mathrm{str}}(\zeta)+d \Phi_{\mathrm{str}}(\zeta)\right)
\end{aligned}
$$

We find

$$
\begin{aligned}
& a^{2}+b c=1, \quad a b+b d=0, \quad a c+d c=0, \quad b c+d^{2}=1 \\
& \rightarrow d=-a, \quad b=c, \quad a^{2}+b^{2}=1
\end{aligned}
$$

More self consistency condition

－Rewrite the string reconnection rule（ $0 \rightarrow$ no－string， $1 \rightarrow$ string $)$

$$
\Phi\left(\stackrel{Y}{i}_{\substack{j}}^{Y_{l}}{ }_{l}^{k}\right)=\sum_{n=0}^{1} F_{k l n}^{i j m} \Phi\left(\stackrel{i}{i j}_{Y_{l}}^{j}{ }^{k}\right), \quad i, j, k, l, m, n=0,1
$$

The 2－by－2 matrix $F_{k l}^{i j} \rightarrow\left(F_{k l}^{i j}\right)_{n l}^{m}$ is unitary．
We have

$$
\begin{aligned}
& F_{000}^{000} \quad=1 \\
& \left.\left.F_{111}^{000}\left\langle\lessdot=\left(F_{100}^{011} \searrow\right\rangle\right)^{*}=\left(F_{010}^{101} \curvearrowright \text { 人 }\right)^{*}=F_{001}^{110}\right\rangle\right\rangle=1 \\
& F_{011}^{011} \text { < }=\left(F_{101}^{101} \nearrow \zeta\right)^{*}=1
\end{aligned}
$$

$$
\begin{aligned}
& \left.F_{110}^{110}\right\rangle\langle\bar{\lambda}=a \\
& \left.F_{111}^{110}\right\rangle\left\langle\Upsilon=b=\left(F_{110}^{111}\right\rangle<\text { 人 }\right)^{*}=c^{*} \\
& \left.F_{111}^{111}\right\rangle\langle X=d=-a \text {, }
\end{aligned}
$$

More self consistency condition

can be trans. to
through two different paths:

- The two paths should lead to the same relation

$$
\sum_{t} F_{k n t}^{i j m} F_{l p s}^{i t n} F_{l s q}^{j k t}=F_{l p q}^{m k n} F_{q p s}^{i j m}
$$

Such a set of non-linear algebraic equations is the famous pentagon identity.

The pentagon identity

- $i, j, k, l, p, m, n, q, s=0,1 \rightarrow$
$2^{9}=512+$ non-linear equations with $2^{6}=64$ unknowns.
- Solving the pentagon identity: choose $i, j, k, l, p=1$

$$
\sum_{t=0,1} F_{1 n t}^{11 m} F_{11 s}^{1 t n} F_{1 s q}^{11 t}=F_{11 q}^{m 1 n} F_{q 1 s}^{11 m}
$$

choose $n, q, s=1, m=0$

$$
\begin{aligned}
& \sum_{t=0,1} F_{11 t}^{110} F_{111}^{1 t 1} F_{111}^{11 t}=F_{111}^{011} F_{111}^{110} \\
& \rightarrow a \times 1 \times b+b \times(-a) \times(-a)=1 \times b \\
& \rightarrow a+a^{2}=1, \quad \rightarrow a=(\pm \sqrt{5}-1) / 2
\end{aligned}
$$

Since $a^{2}+b^{2}=1$, we find

$$
a=(\sqrt{5}-1) / 2 \equiv \gamma, \quad b=\sqrt{a}=\sqrt{\gamma}
$$

String-net dancing rule

- The dancing rule : $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}\left(\square^{3}\right)$

String-net dancing rule

- The dancing rule : $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square)$

- Topological excitations:

For fixed 4 ends of string-net on a sphere S^{2}, how many locally indistinguishable states are there?

String-net dancing rule

- The dancing rule : $\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square)$

- Topological excitations:

For fixed 4 ends of string-net on a sphere S^{2}, how many locally indistinguishable states are there? four states?

Topo. degeneracy with 4 fixed ends of string-net

To get linearly independent states, we fuse the end of the string-net in a particular order:

\rightarrow There are only two locally indistinguishable states
$=$ a qubit

This is a quantum memory that is robust angainst any environmental noise.
\rightarrow The defining character of topological order:
a material with robust quantum memory.

Topo. degeneracy with n fixed ends of string-net

- Let D_{n} is the number of locally indistinguishable states with n fixed ends of string-net, on a sphere S^{2}. (We know $D_{4}=2$)
- To compute D_{n}, we count different linearly independent ways to fuse n ends of string-net
$\underset{\substack{F_{2}=2}}{\text { P }}$

$\mathrm{F}_{3}=3$
- In general we have

$$
F_{n}=F_{n-1}+F_{n-2} \text { (Fibonacci numbers) }, \quad D_{n}=F_{n-2}
$$

$$
\rightarrow D_{0}=1, \quad D_{1}=0, \quad D_{2}=1, \quad D_{3}=1, \quad D_{4}=2
$$

$$
D_{5}=3, \quad D_{6}=5, \quad D_{7}=8, \quad D_{8}=13, \cdots
$$

- An end of string-net is called a Fibonacci anyon

Internal degrees of freedom of a Fibonacci anyon

- To obtain the internal degrees of freedom of a Fibonacci anyon, we consider the number of linearly independent states with n fixed Fibonacci anyons in large n limit: $\left.D_{n} \sim\right|_{n \rightarrow \infty} d^{n}$
- The number degrees of freedom $=$ quantum dimension:

$$
d=\lim _{n \rightarrow \infty} D_{n}^{1 / n}
$$

- To compute d, we note that $d=\lim _{n \rightarrow \infty} \frac{D_{n}}{D_{n-1}}=\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}$ We obtain $d=1+d^{-1}$ from $D_{n}=D_{n-1}+D_{n-2} \rightarrow$

$$
d=\frac{\sqrt{5}+1}{2}=1.618=2^{0.6942} \text { qubits }
$$

- A spin- $1 / 2$ particle has a quantum dimension $d=2=2^{1 \text { qubit }}$ $d \neq$ integer \rightarrow fractionalized degrees of freedom.

Double-Fibonacci topological order $=$ double G_{2} Chern-Simon theory at level 1

$$
\begin{aligned}
L\left(a_{\mu}, \tilde{a}_{\mu}\right) & =\frac{1}{4 \pi} \operatorname{Tr}\left(a_{\mu} \partial_{\nu} a_{\lambda}+\frac{i}{3} a_{\mu} a_{\nu} a_{\lambda}\right) \epsilon^{\mu \nu \lambda} \\
& -\frac{1}{4 \pi} \operatorname{Tr}\left(\tilde{a}_{\mu} \partial_{\nu} \tilde{a}_{\lambda}+\frac{i}{3} \tilde{a}_{\mu} \tilde{a}_{\nu} \tilde{a}_{\lambda}\right) \epsilon^{\mu \nu \lambda}
\end{aligned}
$$

a_{μ} and \tilde{a}_{μ} are G_{2} gauge fields.

String-net liquid can also realize gauge theory of finite group G

- Trivial type-0 string \rightarrow trivial represental of G
- Type- i string \rightarrow irreducible represental R_{i} of G
- Triple-string join rule If $R_{i} \otimes R_{j} \otimes R_{k}$ contain trivial representation \rightarrow type- i type- j type- k strings can join.
- String reconnection rule:

$$
i, j, k, l, m, n=0,1
$$

with $F_{k l n}^{i j m}$ given by the $6-j$ simple of G.

Topo. qubits and topo. quantum computation

- Four fixed Fibonacci anyons on S^{2} has 2-fold topological degeneracy (two locally indistinguishable states) \rightarrow topological qubit

- Exchange two Fibonacci anyons induce a 2×2 unitary matrix acting on the topological qubit \rightarrow non-Abelian statistics also appear in $\chi_{\nu=2}^{3}\left(z_{i}\right)$ FQH state, and the non-Abelian statistics is described by $\mathrm{SU}_{2}(3) \mathrm{CS}$ theory Wen PRL 66802 (91) \rightarrow universal Topo. quantum computation (via CS theory)

Freedman-Kitaev-Wang quant-ph/0001071; Freedman-Larsen-Wang quant-ph/0001108
Topological order is the natural medium (the "silicon") to do topological quantum computation

Pattern of long-range entanglements = topo. order

For gapped systems with no symmetry:

- According to Landau, no symmetry to break \rightarrow all systems belong to one trivial phase

Pattern of long-range entanglements = topo. order

For gapped systems with no symmetry:

- According to Landau, no symmetry to break \rightarrow all systems belong to one trivial phase

- Thinking about entanglement: Chen-Gu-Wen 2010
- long range entangled (LRE) states
- short range entangled (SRE) states

Pattern of long-range entanglements $=$ topo. order

For gapped systems with no symmetry:

- According to Landau, no symmetry to break \rightarrow all systems belong to one trivial phase

- Thinking about entanglement: Chen-Gu-Wen 2010
- long range entangled (LRE) states \rightarrow many phases
- short range entangled (SRE) states \rightarrow one phase
$|\mathrm{LRE}\rangle \neq \underset{\text { 而 }}{\text { m }} \mid$ product state $\rangle=|\mathrm{SRE}\rangle_{g_{2}}$

- All SRE states belong to the same trivial phase
- LRE states can belong to many different phases
$=$ different patterns of long-range entanglements
$=$ different topological orders Wen 1989

Lattice Hamiltonians to realize Z_{2} topological order

- Frustrated spin-1/2 model on square lattice (slave-particle meanfield theory) Read Sachdev, PRL 661773 (91); Wen, PRB 442664 (91).

$$
H=J \sum_{n n} \sigma_{i} \cdot \sigma_{j}+J^{\prime} \sum_{n n n} \sigma_{i} \cdot \sigma_{j}
$$

- Dimer model on triangular lattice (Mont Carlo numerics)

Moessner Sondhi, PRL 861881 (01)

Why dimmer liquid has topological order

To make topological order, we need to sum over many different product states, but we should not sum over everything. $\sum_{\text {all spin config. }}|\uparrow \downarrow .\rangle=.|\rightarrow \rightarrow .$.

Why dimmer liquid has topological order

To make topological order, we need to sum over many different product states, but we should not sum over everything. $\sum_{\text {all spin config. }}|\uparrow \downarrow .\rangle=.|\rightarrow \rightarrow .$.

- sum over a subset of spin configurations:

$$
\begin{aligned}
& \left|\Phi_{\text {loops }}^{Z_{2}}\right\rangle=\sum\left|\geqslant \stackrel{\sim}{\sim}{\underset{\sim}{c}}_{i}\right\rangle \\
& \left|\Phi_{\text {loops }}^{D S}\right\rangle=\sum(-)^{\# \text { of loops }}\left|\underset{\sim}{\sim} \mathscr{O}_{i}\right\rangle
\end{aligned}
$$

- Dimmer liquid \sim string liquid: Non-bipartite lattice: unoritaded string Bipartite lattice: oritaded string
- Can the above wavefunction be the ground states of local Hamiltonians?

Toric-code model: Z_{2} topo. order, Z_{2} gauge theory

Local Hamiltonian enforces local rules: $\hat{P} \Phi_{\text {str }}=0$

$$
\Phi_{\text {str }}(\square)-\Phi_{\text {str }}(\square)=\Phi_{\text {str }}(\square \square)-\Phi_{\text {str }}(\square)=0
$$

- The Hamiltonian to enforce the local rules: Kitaev quant-ph/9707021

$H=-U \sum_{\boldsymbol{I}} \hat{Q}_{1}-g \sum_{\boldsymbol{p}} \hat{F}_{\boldsymbol{p}}, \quad \hat{Q}_{\mathbf{I}}=\prod_{\text {legs of } \boldsymbol{I}} \sigma_{\boldsymbol{i}}^{z}, \quad \hat{F}_{\boldsymbol{p}}=\prod_{\text {edges of } \boldsymbol{p}} \sigma_{\boldsymbol{i}}^{x}$
- The Hamiltonian is a sum of commuting operators
$\left[\hat{F}_{\boldsymbol{p}}, \hat{F}_{\boldsymbol{p}^{\prime}}\right]=0,\left[\hat{Q}_{\mathbf{1}}, \hat{Q}_{\mathbf{I}^{\prime}}\right]=0,\left[\hat{F}_{\boldsymbol{p}}, \hat{Q}_{\mathbf{l}}\right]=0 . \hat{F}_{\boldsymbol{p}}^{2}=\hat{Q}_{1}^{2}=1$
- Ground state $\left|\Psi_{\text {grnd }}\right\rangle: \hat{F}_{p}\left|\Psi_{\text {grnd }}\right\rangle=\hat{Q}_{l}\left|\Psi_{\text {grnd }}\right\rangle=\left|\Psi_{\text {grnd }}\right\rangle$ $\rightarrow\left(1-\hat{Q}_{1}\right) \Phi_{\mathrm{grnd}}=\left(1-\hat{F}_{p}\right) \Phi_{\mathrm{grnd}}=0$.

Physical properties of exactly soluble model

A string picture

- The $-U \sum_{1} \hat{Q}_{1}$ term enforces closed-string ground state.
- \hat{F}_{p} adds a small loop and deform the strings \rightarrow
 permutes among the loop states $\left.\mid ;)_{i}^{\infty}\right\rangle \rightarrow$ Ground states

$$
\left|\Psi_{\text {grnd }}\right\rangle=\sum_{\text {loops }} \mid\left\lceil\widetilde{\sigma}_{<}\right\rangle \rightarrow \text { highly entangled }
$$

- There are four degenerate ground states $\alpha=e e, e o, o e, o o$

$D^{\text {tor }}=4$
- On genus g surface, ground state degeneracy $D_{g}=4^{g}$

The string operators and topological excitations

- Topological excitations:
e-type: $\hat{Q}_{1}=1 \rightarrow \hat{Q}_{1}=-1$ m-type: $\hat{F}_{\boldsymbol{p}}=1 \rightarrow \hat{F}_{\boldsymbol{p}}=-1$
- e-type and m-type excitations cannot be created alone due to identiy: $\prod_{l} \hat{Q}_{1}=\prod_{p} \hat{F}_{p}=1$

The string operators and topological excitations

- Topological excitations:
e-type: $\hat{Q}_{1}=1 \rightarrow \hat{Q}_{1}=-1$
m-type: $\hat{F}_{p}=1 \rightarrow \hat{F}_{p}=-1$
- e-type and m-type excitations cannot be created alone due to identiy: $\prod_{l} \hat{Q}_{I}=\prod_{p} \hat{F}_{p}=1$

- Type-e string operator: $W_{e}=\prod_{\text {string }} \sigma_{i}^{x}$
- Type- m string operator: $W_{m}=\prod_{\text {string }} \sigma_{i}^{z}$
- Type- f string operator: $W_{f}=\prod_{\text {string }} \sigma_{i}^{\times} \prod_{\text {legs }} \sigma_{i}^{z}$
- $\left[H, W_{e}^{\text {close }}\right]=\left[H, W_{m}^{\text {close }}\right]=\left[H, W_{f}^{\text {closed }}\right]=0$.
\rightarrow Closed strings cost no energy
- $\left[\hat{Q}_{1}, W_{e}^{\text {open }}\right] \neq 0 \rightarrow W_{e}^{\text {open }}$ flip $\hat{Q}_{1} \rightarrow-\hat{Q}_{1}$,
$\left[\hat{F}_{\boldsymbol{p}}, W_{m}^{\text {open }}\right] \neq 0 \rightarrow W_{m}^{\text {open }}$ flip $\hat{F}_{p} \rightarrow-\hat{F}_{\boldsymbol{p}}$
An open-string creates a pair of topo. excitations at its ends

Three types of topological excitations and their fusion

- Type-e string operator $W_{e}=\prod_{\text {string }} \sigma_{i}^{x}$
- Type- m string operator $W_{m}=\prod_{\text {string }} \sigma_{i}^{z}$
- Type- f string operator $W_{f}=\prod_{\text {string }} \sigma_{i}^{x} \prod_{\text {legs }} \sigma_{i}^{z}$
- Fusion algebra of string operators
$W_{e}^{2}=W_{m}^{2}=W_{\epsilon}^{2}=W_{e} W_{m} W_{\epsilon}=1$ when strings are parallel
- Fusion of topo. excitations:
e-type. $e \times e=1$ m-type. $m \times m=1$
f-type $=e \times m$
- 4 types of excitations: $1, e, m, f$

What are bosons? What are fermions?

- Statistical distribution

Boson: $n_{b}=\frac{1}{\mathrm{e}^{\epsilon \epsilon / k_{B} T}-1} \quad$ Fermion: $n_{f}=\frac{1}{\mathrm{e}^{\epsilon / k_{B} T}+1}$
They are just properties of non-interacting bosons or fermions

- Pauli exclusion principle

Only works for non-interacting bosons or fermions

- Symmtric/anti-symmetric wave function.

For identical particles $|x, y\rangle$ and $|y, x\rangle$ are just differnt names of same state. A generic state $\sum_{x, y} \psi(x, y)|x, y\rangle$ is always described symmetric wave function $\psi(x, y)=\psi(y, x)$ regardless the statistics of the identical particles.

- Commuting/anti-commuting operators Boson: $\left[a_{x}, a_{y}\right]=0 \quad$ Fermiion: $\left\{c_{x}, c_{y}\right\}=0$
- C-number-field/Grassmann-field

Boson: $\phi(x) \quad$ Fermion: $\psi(x)$

"Exchange" statistics and Braid group

- Quantum statistics is defined via phases induced by exchanging identical particles.
- Quantum statistics is not defined via exchange, but via braiding.

Yong-Shi Wu, PRL 522103 (84)

- Braid group:

"Exchange" statistics and Braid group

- Quantum statistics is defined via phases induced by exchanging identical particles.
- Quantum statistics is not defined via exchange, but via braiding.
Yong-Shi Wu, PRL 522103 (84)
- Braid group:
- Representations of braid group (not permutation group) define quantum statistics:
- Trivial representation of braid group \rightarrow Bose statistics.

- 1-dimensional representation of
 braid group \rightarrow Fermi/fractional statistics \rightarrow anyon.
- higher dimensional representation of braid group \rightarrow non-Abelian statistics \rightarrow non-Abelian anyon. Wen 91; More-Read 91

Statistics of ends of strings

- The statistics is determined by particle hopping operators

Levin-Wen cond-mat/0302460:

- An open string operator is a hopping operator of the 'ends'. The algebra of the open string op. determines the statistics.
- For type-e string: $t_{b a}=\sigma_{1}^{\times}, t_{c b}=\sigma_{3}^{x}, t_{b d}=\sigma_{2}^{x}$

We find $t_{b d} t_{c b} t_{b a}=t_{b a} t_{c b} t_{b d}$
The ends of type-e string are bosons

- For type- f strings: $t_{b a}=\sigma_{1}^{x}, t_{c b}=\underline{\sigma_{3}^{x}} \sigma_{4}^{z}, t_{b d}=\sigma_{2}^{\times} \underline{\sigma_{3}^{z}}$ We find $t_{b d} t_{c b} t_{b a}=-t_{b a} t_{c b} t_{b d}$
The ends of type- f strings are fermions

Topo. ground state degeneracy and code distance

- When strings cross, $W_{e} W_{m}=(-)^{\# \text { of cross }} W_{m} W_{e} \rightarrow$ 4^{g} degeneracy on genus g surface \rightarrow Topological degneracy
Degeneracy remain exact for any perturbations localized in a finite region.

Topo. ground state degeneracy and code distance

- When strings cross,
$W_{e} W_{m}=(-)^{\# \text { of cross }} W_{m} W_{e} \rightarrow$
4^{g} degeneracy on genus g surface
\rightarrow Topological degneracy
Degeneracy remain exact for any perturbations localized in a finite region.

e^{e}		
	\oint^{-1}	
-1		
		m

- The above degenerate ground states form a "code", which has a large code distance of order L (the size of the system).
- Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ that can be connected by first-order local perturbation $\delta H:\left\langle\psi^{\prime}\right| \delta H|\psi\rangle>O(|\delta H|), \quad L \rightarrow \infty$ \rightarrow code distance $=1$.
Two states $|\psi\rangle$ and $\left|\psi^{\prime}\right\rangle$ that can be connected by $n^{\text {th }}$-order local perturbation \rightarrow code distance $=n$.
- Symm. breaking ground states in d-dim have code distance $\sim L^{d}$ respected to symm. preserving perturbation. code distance ~ 1 respected to symm. breaking perturbation.

Toric-code model and closed string operators

- Toric-code Hmailtonian

$$
H=-U \sum_{\boldsymbol{l}} W_{m}^{\text {closed }}-g \sum_{\boldsymbol{p}} W_{e}^{\text {closed }}
$$

- A new Hamitonian

$$
H=-U \sum_{\boldsymbol{l}} W_{m}^{\text {closed }}-g \sum_{\boldsymbol{p}} W_{f}^{\text {closed }}
$$

which realizes the same Z_{2} topological order.

Double-semion model

Local rules:
Levin-Wen cond-mat/0404617

$$
\Phi_{\operatorname{str}}(\square)=\Phi_{\mathrm{str}}(\square), \Phi_{\mathrm{str}}\left(\square\langle)=-\Phi_{\mathrm{str}}(\square \square)\right.
$$

- The Hamiltonian to enforce the local rules:

$H=-U \sum_{I} \hat{Q}_{1}-\frac{g}{2} \sum_{\boldsymbol{p}}\left(\hat{F}_{\boldsymbol{p}}+h . c.\right), \quad \sigma^{z / 2} \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & \mathrm{i}\end{array}\right) \sim \sqrt{\sigma^{z}}$
$\hat{Q}_{\boldsymbol{I}}=\prod_{\text {legs of } \boldsymbol{I}} \sigma_{\boldsymbol{i}}^{z}, \quad \hat{F}_{\boldsymbol{p}}=\left(\prod_{\text {edges of } \boldsymbol{p}} \sigma_{\boldsymbol{j}}^{x}\right)\left(-\prod_{\text {legs of } \boldsymbol{p}} \sigma_{\boldsymbol{i}}^{z / 2}\right)$

Double-semion model

- The action of operator $\hat{F}_{\boldsymbol{p}}=\left(\prod_{\text {edges of } \boldsymbol{p}} \sigma_{\boldsymbol{j}}^{x}\right)\left(-\prod_{\text {legs of } \boldsymbol{p}} \sigma_{i}^{z / 2}\right)$: (1) flip string around the loop;
(2) add a phase $-i$ \# of strings attatched to the loop.

Combine the above two in the closed-string subspace: add a loop and a sign $(-)^{\text {change in \# of loops }}$

- \hat{F}_{p} is hermitian in the closed-string subspace.
- $\hat{F}_{p} \hat{F}_{p^{\prime}}=\hat{F}_{\boldsymbol{p}^{\prime}} \hat{F}_{p}$ in the closed-string subspace.
- Ground state wave function $\Phi(X)=(-)^{\sigma_{c}^{x}}$, where σ_{c}^{x} is the number of loops in the string configuration X.

Statistics of ends of dressed strings

- The statistics is determined by particle hopping operators Levin-Wen cond-mat/0302460:

- For the dressed strings: $t_{b a}=\sigma_{1}^{\times}, t_{c b}=\sigma_{3}^{\times} \sigma_{4}^{z / 2}, t_{b d}=\sigma_{2}^{\times} \underline{\sigma_{3}}{ }^{z / 2}$ We find $t_{b d} t_{c b} t_{b a}=-i t_{b a} t_{c b} t_{b d}$ via
$\sigma_{1}^{\times} \sigma_{3}^{\times} \sigma_{4}^{z / 2} \quad \sigma_{2}^{\times}{\underline{\sigma_{3}}}^{z / 2}=-\mathrm{i} \sigma_{2}^{\times}{\underline{\sigma_{3}}}^{z / 2} \quad \sigma_{3}^{\times} \sigma_{4}^{z / 2} \sigma_{1}^{\times}$
when acting on a state with two ends of strings at a, b \rightarrow The ends of dressed strings are semions

3D Z_{2} topological order on Cubic lattice

- Untwisted-string model: $H=-U \sum_{I} Q_{1}-g \sum_{p} F_{p}$

$$
Q_{ı}=\prod_{i \text { next to } \boldsymbol{I}} \sigma_{i}^{z}, \quad F_{\boldsymbol{p}}=\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x}
$$

Can get 3D fermions for free (almost) Levin \& Wen 03 Just add a little twist

- Twisted-string model: $H=U \sum_{1} Q_{1}-g \sum_{p} F_{p}$

$$
F_{\boldsymbol{p}}=\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x} \sigma_{5}^{z} \sigma_{6}^{z}
$$

String operators and Z_{2} charges Levin \& Wen 03

- A pair of Z_{2} charges is created by an open string operator which commute with the Hamiltonian except at its two ends. Strings cost no energy and is unobservable.

dressed string
- In untwisted-string model - untwisted-string operator

$$
\sigma_{i_{1}}^{x} \sigma_{i_{2}}^{x} \sigma_{i_{3}}^{x} \sigma_{i_{4}}^{x} \ldots
$$

- In twisted-string model - twisted-string operator

$$
\left(\sigma_{i_{1}}^{x} \sigma_{i_{2}}^{x} \sigma_{i_{3}}^{x} \sigma_{i_{4}}^{x} \ldots\right) \quad \prod \quad \sigma_{i}^{z}
$$

i on crossed legs of C

Twisted string operators commute $\left[W_{1}, W_{2}\right]=0$

$$
\begin{aligned}
& W_{1}=\left(\sigma_{1}^{x} \sigma_{2}^{x} \sigma_{3}^{x} \sigma_{4}^{x} \sigma_{5}^{x} \sigma_{6}^{x} \sigma_{7}^{x}\right)\left[\sigma_{d}^{z} \sigma_{e}^{z} \sigma_{f}^{z}\right] \\
& W_{2}=\left(\sigma_{h}^{x} \sigma_{c}^{x} \sigma_{5}^{x} \sigma_{4}^{x} \sigma_{3}^{x} \sigma_{d}^{x} \sigma_{g}^{x}\right)\left[\sigma_{6}^{z} \sigma_{e}^{z}\right]
\end{aligned}
$$

- We also have $\left[W, Q_{I}\right]=0$ for closed string operators W, since W only create closed strings.

Statistics of ends of twisted strings

- The statistics is determined by particle hopping operators
Levin-Wen 03:

- An open string operator is a hopping operator of the 'ends'. The algebra of the open string op. determine the statistics.
- For untwisted-string model: $t_{b a}=\sigma_{2}^{\times}, t_{c b}=\sigma_{3}^{\times}, t_{b d}=\sigma_{1}^{\times}$

We find $t_{b d} t_{c b} t_{b a}=t_{b a} t_{c b} t_{b d}$
The ends of untwisted-string are bosons

- For twisted-string model: $t_{b a}=\sigma_{4}^{z} \sigma_{1}^{z} \sigma_{2}^{x}, t_{c b}=\sigma_{5}^{z} \sigma_{3}^{x}, t_{b d}=\sigma_{1}^{x}$

We find $t_{b d} t_{c b} t_{b a}=-t_{b a} t_{c b} t_{b d}$
The ends of twisted-string are fermions

Principle of emergence

Different orders \rightarrow different wave equations
\rightarrow different physical properties.

- Atoms in fluid have a random distribution
\rightarrow cannot resist shear deformations (do nothing)
\rightarrow liquids do not have shapes

Wave Eq. \rightarrow Euler Eq.
$\partial_{t}^{2} \rho-\partial_{x}^{2} \rho=0 \quad$ One longitudinal mode

Principle of emergence

- Atoms in solid have a ordered lattice distribution \rightarrow can resist shear deformations
\rightarrow solids have shapes

Wave Eq. \rightarrow elastic Eq. $\partial_{t}^{2} u^{i}-C^{i j k l} \partial_{x^{j}} \partial_{x^{k}} u^{l}=0$ One longitudinal mode and two transverse modes

Origin of photons, gluons, electrons, quarks, etc

- Do all waves and wave equations emerge from some orders?

Wave equations for elementary particles

- Maxwell equation \rightarrow Photons
$\boldsymbol{\partial} \times \boldsymbol{E}+\partial_{t} \boldsymbol{B}=\boldsymbol{\partial} \times \boldsymbol{B}-\partial_{t} \boldsymbol{E}=\boldsymbol{\partial} \cdot \boldsymbol{E}=\boldsymbol{\partial} \cdot \boldsymbol{B}=0$

- Yang-Mills equation \rightarrow Gluons
$\partial^{\mu} F_{\mu \nu}^{a}+f^{a b c} A^{\mu b} F_{\mu \nu}^{c}=0$

- Dirac equation \rightarrow Electrons/quarks (spin- $\frac{1}{2}$ fermions!) $\left[\partial_{\mu} \gamma^{\mu}+m\right] \psi=0$

What orders produce the above waves?
What are the origins of light (gauge bosons) and electrons (fermions)?

Elementary or emergent?

- We used to think all orders are described by symmetry breaking, and different symmetry breaking orders indeed leads to different wave equations.
- We just pick a particular symmetry breaking to produce the Maxwell equation.

Elementary or emergent?

- We used to think all orders are described by symmetry breaking, and different symmetry breaking orders indeed leads to different wave equations.
- We just pick a particular symmetry breaking to produce the Maxwell equation.
- But none of the symmetry breaking orders can produce:
- electromagnetic wave satisfying the Maxwell equation
- gluon wave satisfying the Yang-Mills equation
- electron wave satisfying the Dirac equation.

Elementary or emergent?

- We used to think all orders are described by symmetry breaking, and different symmetry breaking orders indeed leads to different wave equations.
- We just pick a particular symmetry breaking to produce the Maxwell equation.
- But none of the symmetry breaking orders can produce:
- electromagnetic wave satisfying the Maxwell equation
- gluon wave satisfying the Yang-Mills equation
- electron wave satisfying the Dirac equation.

Two choices:

- Declare that photons, gluons, and electrons are elementary, and do not ask where do they come from.
- Declare that the symmetry breaking theory is incomplete. Maybe new orders beyond symmetry breaking can produce the Maxwell, Yang-Mills, and the Dirac equations.

Long range entanglements (closed strings)

\rightarrow emergence of electromagnetic waves (photons)

- Wave in superfluid state $\left|\Phi_{\mathrm{SF}}\right\rangle=\sum_{\text {all position conf. }}$
 density fluctuations:
Euler eq.: $\partial_{t}^{2} \rho-\partial_{\chi}^{2} \rho=0$
\rightarrow Longitudinal wave

- Wave in closed-string liquid $\left.\left|\Phi_{\text {string }}\right\rangle=\sum_{\text {closed strings } 03, \text { Levin-Wen } 05}\right\rangle$:

String density $E(x)$ fluctuations \rightarrow waves in string liquid. Closed string $\rightarrow \partial \cdot E=0 \rightarrow$ only two transverse modes.
Equation of motion for string density \rightarrow Maxwell equation:

$$
\dot{E}-\partial \times B=\dot{B}+\partial \times E=\partial \cdot B=\partial \cdot E=0 .
$$

Long range entanglements (string nets) \rightarrow Emergence of Yang-Mills theory (gluons)

- If string has different types and can branch \rightarrow string-net liquid \rightarrow Yang-Mills theory
- Different ways that strings join \rightarrow different gauge groups

Closed strings $\rightarrow U(1)$ gauge theory String-nets \rightarrow Yang-Mills gauge theory

XXZ Spin-1 model on 2D Kagome lattice

- Only has nearest-neighbor and two-spin interactions:

$$
H=J_{1} \sum\left(S_{i}^{z}\right)^{2}+J_{2} \sum S_{i}^{z} S_{j}^{z}-J_{x y} \sum\left(S_{i}^{x} S_{j}^{x}+S_{i}^{y} S_{j}^{y}\right)
$$

Eigenstates of S^{z} :

$$
S^{z}|\uparrow\rangle=|\uparrow\rangle \quad S^{z}|0\rangle=0 \quad S^{z}|\downarrow\rangle=-|\downarrow\rangle
$$

A spin state with spin pointing in x-direction:

$$
|\rightarrow\rangle=|\uparrow\rangle+|0\rangle+|\downarrow\rangle
$$

Pictures of a few ground states of the spin system

- $J_{1}>0, J_{2}=g=0$:

All spins in the $|0\rangle$ state:

$$
\left|\Phi_{0}\right\rangle=|00 \ldots 0\rangle=|0\rangle \otimes|0\rangle \otimes \ldots \otimes|0\rangle
$$

Excitations above the ground state: spin flips with finite gap.

- $J_{x y}>0, J_{1}=J_{2}=0$:

All spins in the $|\rightarrow\rangle$ state:

$$
\begin{aligned}
\left|\Phi_{0}\right\rangle & =|\rightarrow\rangle \otimes|\rightarrow\rangle \otimes \ldots \otimes|\rightarrow\rangle \\
& =(|\uparrow\rangle+|0\rangle+|\downarrow\rangle) \otimes(|\uparrow\rangle+|0\rangle+|\downarrow\rangle) \otimes \ldots \\
& =|\uparrow 00 \ldots\rangle+|0 \uparrow \downarrow \ldots\rangle+|\downarrow \uparrow \uparrow \ldots\rangle+\ldots \\
& =\text { a superposition of all } S^{z} \text {-spin configurations }
\end{aligned}
$$

Excitations above the ground state: spin waves with no energy gap.

String liquid ground state

Introduce $\Delta J=J_{1}-J_{2}$ and rewrite $H=\frac{J_{2}}{2} \sum\left(S_{1}^{z}+S_{2}^{z}+S_{3}^{z}\right)^{2}+\Delta J \sum\left(S_{i}^{z}\right)^{2}-g \sum\left(S_{1}^{+} S_{2}^{-} S_{3}^{+} S_{4}^{-} S_{5}^{+} S_{6}^{-}+\right.$h.c. $)$

When $\Delta J=g=0$, the no string state and closed string
states all have zero energy:

No string state: $|000 \ldots\rangle$
Closed-string state

- The strings are oriented.
- The effect of ΔJ term: String tension
- The effect of g term: String hopping

When $\Delta J \ll g \ll J_{2}$, the ground state is a superposition of all closed-string states. Such a state is called string-net condensed state - a new state of matter that breaks no symmetries.
Compare with some well known states

- Crystal: Particles have a fixed regular positions.
- Superfluid (liquid): Particles have uncertain positions. Ground state $=$ superposition of all particle positions.
- Plastic: Polymers have a fixed random configuration.
- String liquid: Strings have uncertain configurations. Ground state $=$ superposition of all string-net configurations.

3D String-net condensation in cubic lattice

Here S^{z} is the angular momentun of a rotor.
$S^{ \pm}$is raising/lowering operator of S^{2}.
$U \sum_{1} Q_{i}^{2}$:
$J \sum\left(S_{i}^{z}\right)^{2}:$
$g \sum_{p}\left(B_{p}+\right.$ h.c. $): \quad$ string hopping

Equation of motion approach \rightarrow Maxwell equation

To understand the dynamics of $\hat{H}=\frac{\hat{\rho}^{2}}{2 m}+\frac{K}{2} \hat{x}^{2}$:

$$
\frac{d}{d t}\langle\hat{x}\rangle=\langle i[\hat{H}, \hat{x}]\rangle=\langle\hat{p} / m\rangle, \quad \frac{d}{d t}\langle\hat{p}\rangle=\langle i[\hat{H}, \hat{p}]\rangle=-\langle K \hat{x}\rangle
$$

Equation of motion of an oscillator.

Emergence of Maxwell equation

$$
\begin{aligned}
B_{\boldsymbol{p}} & =e^{i \phi_{\boldsymbol{p}}}, \quad S_{i}^{z}=E_{\boldsymbol{i}} \\
\partial_{t}\left\langle S_{\boldsymbol{i}}^{z}\right\rangle & =\left\langle i\left[H, S_{i}^{z}\right]\right\rangle \sim i\left\langle\sum_{a=1, \ldots, 4} B_{\boldsymbol{p}_{\boldsymbol{a}}}-h . c .\right\rangle \sim \sum_{a=1, . ., 4} \phi_{\boldsymbol{p}_{\boldsymbol{a}}} \\
& \rightarrow \dot{\boldsymbol{E}}=\boldsymbol{\partial} \times \boldsymbol{B} \\
\mathrm{i} \partial_{t}\left\langle\phi_{\boldsymbol{p}}\right\rangle & =\partial_{t}\left\langle B_{\boldsymbol{p}}\right\rangle=\left\langle i\left[H, B_{\boldsymbol{p}}\right]\right\rangle \sim i\left\langle\sum_{a=1, . ., 4} S_{i_{a}}^{z} B_{\boldsymbol{p}}\right\rangle \sim i \sum_{a=1, . ., 4} S_{i_{a}}^{z} \\
& \rightarrow \dot{\boldsymbol{B}}=\boldsymbol{\partial} \times \boldsymbol{E}
\end{aligned}
$$

The experimental discovery of FQH effect

- Quantum Hall states (1980's) Quantized Hall conductance: $\sigma_{x y}=\frac{1}{V_{H}}=\frac{m}{n} \frac{e^{2}}{h}=\frac{1}{R_{H}}$
$\frac{m}{n}=\nu=\frac{\# \text { of electrons }}{\# \text { of flux quanta }}$

Introduction of IQH states

- One-particle in magnatic field (choose $B=1$ and

$$
z=x+i y): \quad H_{0}=-\sum\left(\partial_{z}-\frac{B}{4} z^{*}\right)\left(\partial_{z^{*}}+\frac{B}{4} z\right)
$$

- First Landau level state: $\Psi(z)=z^{m} \mathrm{e}^{-\frac{1}{4}|z|^{2}}$, since
$\mathrm{e}^{\frac{1}{4} z z^{*}}\left(\mathrm{i} \partial_{z}-\mathrm{i} \frac{1}{4} z^{*}\right)\left(\mathrm{i} \partial_{z^{*}}+\mathrm{i} \frac{1}{4} z\right) \mathrm{e}^{-\frac{1}{4} z z^{*}}=\left(\mathrm{i} \partial_{z}-\mathrm{i} \frac{1}{2} z^{*}\right) \mathrm{i} \partial_{z^{*}}$ $\nu=1$ IQH state:

- Higher Landau levels:
$\nu=2$ IQH state:

Introduction of FQH states

- N-electrons (fermionic or bosonic) in a magnetic field:

$$
H=\sum_{i=1}^{N}\left(\mathrm{i} \partial_{z_{i}}-\mathrm{i} \frac{B}{4} z_{i}^{*}\right)\left(\mathrm{i} \partial_{z_{i}^{*}}+\mathrm{i} \frac{B}{4} z_{i}\right)+\sum_{i<j} V\left(x_{i}-x_{j}, y_{i}-y_{j}\right)
$$

- When $V=0$, there are many minimal energy wave functions
$\psi=P\left(z_{1}, \cdots, z_{N}\right) \mathrm{e}^{-\frac{1}{4} \sum_{i=1}^{N} z_{i} z_{i}^{*}}, \quad P=$ a (anti-)symm. polynomial all have zero energy (for any P):

$$
\left[\sum_{i=1}^{N}\left(\mathrm{i} \partial_{z_{i}}-\mathrm{i} \frac{B}{4} z_{i}^{*}\right)\left(i \partial_{z_{i}^{*}}+\mathrm{i} \frac{B}{4} z_{i}\right)\right] P\left(z_{1}, \cdots, z_{N}\right) \mathrm{e}^{-\frac{1}{4} \sum_{i=1}^{N} z_{i} z_{i}^{*}}=0
$$

Introduction of FQH states

- N-electrons (fermionic or bosonic) in a magnetic field:

$$
H=\sum_{i=1}^{N}\left(\mathrm{i} \partial_{z_{i}}-\mathrm{i} \frac{B}{4} z_{i}^{*}\right)\left(\mathrm{i} \partial_{z_{i}^{*}}+\mathrm{i} \frac{B}{4} z_{i}\right)+\sum_{i<j} V\left(x_{i}-x_{j}, y_{i}-y_{j}\right)
$$

- When $V=0$, there are many minimal energy wave functions
$\psi=P\left(z_{1}, \cdots, z_{N}\right) \mathrm{e}^{-\frac{1}{4} \sum_{i=1}^{N} z_{i} z_{i}^{*}}, \quad P=$ a (anti-)symm. polynomial
all have zero energy (for any P):

$$
\left[\sum_{i=1}^{N}\left(\mathrm{i} \partial_{z_{i}}-\mathrm{i} \frac{B}{4} z_{i}^{*}\right)\left(i \partial_{z_{i}^{*}}+\mathrm{i} \frac{B}{4} z_{i}\right)\right] P\left(z_{1}, \cdots, z_{N}\right) \mathrm{e}^{-\frac{1}{4} \sum_{i=1}^{N} z_{i} z_{i}^{*}}=0
$$

- For small non-zero V, there is only one minimal energy wave function P whose form is determined by V.

3 ideal FQH states: the exact ground states

- $\nu=1 / 2$ bosonic Laughlin state: $z_{1} \approx z_{2}$, second order zero

$$
\begin{gathered}
P_{1 / 2}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}, \quad V_{1 / 2}\left(z_{1}, z_{2}\right)=\delta\left(z_{1}-z_{2}\right), \\
{\left[\sum_{i<j} V_{1 / 2}\left(z_{i}-z_{j}\right)\right] P_{1 / 2}=0}
\end{gathered}
$$

All other states have finite energies in $N \rightarrow \infty$ limit (gapped).

3 ideal FQH states: the exact ground states

- $\nu=1 / 2$ bosonic Laughlin state: $z_{1} \approx z_{2}$, second order zero

$$
\begin{aligned}
& P_{1 / 2}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}, \quad V_{1 / 2}\left(z_{1}, z_{2}\right)=\delta\left(z_{1}-z_{2}\right), \\
& \quad\left[\sum_{i<j} V_{1 / 2}\left(z_{i}-z_{j}\right)\right] P_{1 / 2}=0 .
\end{aligned}
$$

All other states have finite energies in $N \rightarrow \infty$ limit (gapped).

- $\nu=1 / 4$ bosonic Laughlin state: $z_{1} \approx z_{2}$, fourth-order zero

$$
\begin{aligned}
P_{1 / 4} & =\prod_{i<j}\left(z_{i}-z_{j}\right)^{4} \\
v_{1 / 4}\left(z_{1}, z_{2}\right) & =v_{0} \delta\left(z_{1}-z_{2}\right)+v_{2} \partial_{z_{1}^{*}}^{2} \delta\left(z_{1}-z_{2}\right) \partial_{z_{1}}^{2}
\end{aligned}
$$

3 ideal FQH states: the exact ground states

- $\nu=1$ Pfaffian state: $z_{1} \approx z_{2}$, no zero; $z_{1} \approx z_{2} \approx z_{3}$, second-order zero:

$$
\begin{aligned}
P_{\mathrm{Pf}}= & \mathcal{A}\left(\frac{1}{z_{1}-z_{2}} \frac{1}{z_{3}-z_{4}} \cdots \frac{1}{z_{N-1}-z_{N}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right) \\
= & \operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right) \\
& V_{\mathrm{Pf}}\left(z_{1}, z_{2}, z_{3}\right) \\
= & \mathcal{S}\left[v_{0} \delta\left(z_{1}-z_{2}\right) \delta\left(z_{2}-z_{3}\right)-v_{1} \delta\left(z_{1}-z_{2}\right) \partial_{z_{3}^{*}} \delta\left(z_{2}-z_{3}\right) \partial_{z_{3}}\right]
\end{aligned}
$$

3 ideal FQH states: the exact ground states

- $\nu=1$ Pfaffian state: $z_{1} \approx z_{2}$, no zero; $z_{1} \approx z_{2} \approx z_{3}$, second-order zero:

$$
\begin{aligned}
P_{\mathrm{Pf}}= & \mathcal{A}\left(\frac{1}{z_{1}-z_{2}} \frac{1}{z_{3}-z_{4}} \cdots \frac{1}{z_{N-1}-z_{N}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right) \\
= & \operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right) \\
& V_{\mathrm{Pf}}\left(z_{1}, z_{2}, z_{3}\right) \\
= & \mathcal{S}\left[v_{0} \delta\left(z_{1}-z_{2}\right) \delta\left(z_{2}-z_{3}\right)-v_{1} \delta\left(z_{1}-z_{2}\right) \partial_{z_{3}^{*}} \delta\left(z_{2}-z_{3}\right) \partial_{z_{3}}\right]
\end{aligned}
$$

- $\nu=1$ fermionic IQH state: $z_{1} \approx z_{2}$, first-order zero:

$$
P_{1}=\prod_{i<j}\left(z_{i}-z_{j}\right) ; \quad V_{1}\left(z_{1}, z_{2}\right)=0
$$

Non-Abelian topo. order in quantum Hall systems

Abelian topological order \rightarrow fractional statistics

- IQH and Laughlin many-body state Laughlin PRL 501395 (1983)
$\begin{aligned} \chi_{1}=\prod_{1 \leq i<j \leq N}\left(z_{i}-z_{j}\right) \mathrm{e}^{-\frac{1}{4} \sum\left|z_{i}\right|^{2}}, \quad \Psi_{\nu=1 / n}= & \prod\left(z_{i}-z_{j}\right)^{3} \mathrm{e}^{-\frac{n}{4} \sum\left|z_{i}\right|^{2}} \\ & =\left(\chi_{1}\right)^{3}\end{aligned}$
where $z_{i}=x_{i}+\mathrm{i} y_{i}$ and $\chi_{m}=m$ filled Landau levels.

Non-Abelian topo. order in quantum Hall systems

Abelian topological order \rightarrow fractional statistics

- IQH and Laughlin many-body state Laughlin PRL 501395 (1983) $\begin{aligned} \chi_{1}=\prod_{1 \leq i<j \leq N}\left(z_{i}-z_{j}\right) \mathrm{e}^{-\frac{1}{4} \sum\left|z_{i}\right|^{2}}, \quad \Psi_{\nu=1 / n}= & \prod\left(z_{i}-z_{j}\right)^{3} \mathrm{e}^{-\frac{n}{4} \sum\left|z_{i}\right|^{2}} \\ = & \left(\chi_{1}\right)^{3}\end{aligned}$ where $z_{i}=x_{i}+\mathrm{i} y_{i}$ and $\chi_{m}=m$ filled Landau levels. Non-abelian topological order \rightarrow non-abelian statistics
- $S U(m)_{2}$ state via slave-particle

$$
\Psi_{S U(2)_{2}}=\chi_{1}\left(\chi_{2}\right)^{2}, \nu=\frac{1}{2} ; \quad \Psi_{S U(3)_{2}}=\left(\chi_{2}\right)^{3}, \nu=\frac{2}{3}
$$

$\rightarrow S U(m)_{2}$ Chern-Simons effective theory \rightarrow non-abelian statistics

- Pfaffien state via CFT correlation $\Psi_{\text {Pfa }}=\mathcal{A}\left[\frac{1}{z_{1}-z_{2}} \frac{1}{z_{3}-z_{4}} \cdots\right] \prod\left(z_{i}-z_{j}\right)^{2} \mathrm{e}^{-\frac{1}{4} \sum\left|z_{i}\right|^{2}}, \quad \nu=\frac{1}{2}$
- The $\Psi_{S U(2)_{2}}$ and $\Psi_{\text {Pfa }}$ have the same Ising non-abelian statistics
- The $\Psi_{S U(3)_{2}}$ state has the Fibonacci non-abelian statistics.

Non-Abelian statistics

Non-Abelian statistics $=$ presence of topo. degeneracy even when all the quasiparticles are fully trapped.

- The ground state $\chi_{1}\left(\chi_{2}\right)^{2}=\chi_{1} \chi_{2} \chi_{2}$ is non-degenerate.
- Degeneracy $D_{\text {deg }}$ of 4 trapped quasiparticles at $x_{1}, x_{2}, x_{3}, x_{4}$: many different wave functions: $\chi_{1} \chi_{2}^{x_{1} x_{2}} \chi_{2}^{x_{3} x_{4}} \neq \chi_{1} \chi_{2}^{x_{1} x_{3}} \chi_{2}^{x_{2} x_{4}}$

Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy even when all the quasiparticles are fully trapped.

- The ground state $\chi_{1}\left(\chi_{2}\right)^{2}=\chi_{1} \chi_{2} \chi_{2}$ is non-degenerate.
- Degeneracy $D_{\text {deg }}$ of 4 trapped quasiparticles at $x_{1}, x_{2}, x_{3}, x_{4}$: many different wave functions: $\chi_{1} \chi_{2}^{x_{1} x_{2}} \chi_{2}^{\chi_{3} x_{4}} \neq \chi_{1} \chi_{2}^{\chi_{1} x_{3}} \chi_{2}^{x_{2} x_{4}}$

- The above represent a topological degeneracy, since locally the two wave functions $\chi_{1} \chi_{2}^{\chi_{1}} \chi_{2}$ and $\chi_{1} \chi_{2} \chi_{2}^{\chi_{1}}$ are identical.

Non-Abelian statistics

Non-Abelian statistics = presence of topo. degeneracy even when all the quasiparticles are fully trapped.

- The ground state $\chi_{1}\left(\chi_{2}\right)^{2}=\chi_{1} \chi_{2} \chi_{2}$ is non-degenerate.
- Degeneracy $D_{\text {deg }}$ of 4 trapped quasiparticles at $x_{1}, x_{2}, x_{3}, x_{4}$: many different wave functions: $\chi_{1} \chi_{2}^{x_{1} x_{2}} \chi_{2}^{\chi_{3} \chi_{4}} \neq \chi_{1} \chi_{2}^{\chi_{1} \chi_{3}} \chi_{2}^{x_{2} \chi_{4}}$

- The above represent a topological degeneracy, since locally the two wave functions $\chi_{1} \chi_{2}^{\chi_{1}} \chi_{2}$ and $\chi_{1} \chi_{2} \chi_{2}^{\chi_{1}}$ are identical.

- The presence of the topological degeneracy \rightarrow The braiding is described by unitary matrix $U\left(D_{\text {deg }}\right) \rightarrow$ non-Abelian statistics.

Fractionalized degrees of freedom

- N trapped quasiparticle \rightarrow degeneracy $D_{\operatorname{deg}}(N)$. Each particle carries degrees of freedom $d=\lim _{N \rightarrow \infty}\left[D_{\operatorname{deg}}(N)\right]^{\frac{1}{N}}$ (the quantum dimension of the particle).
- $d=2$ from spin- $1 / 2$ particles
$d=3$ from spin-1 particles.
- For $\chi_{1}\left(\chi_{2}\right)^{2}$ state $d=\sqrt{2}$
(half qubit) - Ising anyon.
- For $\left(\chi_{2}\right)^{3}$ state $d=\frac{\sqrt{5}+1}{2}$
(0.69 qubits) - Fibonacci anyon.

How to known $\left[\chi_{m}\left(z_{1}, \ldots, z_{N}\right)\right]^{n}$
is a non-Abelian QH state?
What kind of non-Abelian state?

Fractionalized degrees of freedom

- N trapped quasiparticle \rightarrow degeneracy $D_{\text {deg }}(N)$. Each particle carries degrees of freedom $d=\lim _{N \rightarrow \infty}\left[D_{\operatorname{deg}}(N)\right]^{\frac{1}{N}}$ (the quantum dimension of the particle)
- $d=2$ from spin- $1 / 2$ particles
$d=3$ from spin-1 particles.
- For $\chi_{1}\left(\chi_{2}\right)^{2}$ state $d=\sqrt{2}$ (half qubit) - Ising anyon.
- For $\left(\chi_{2}\right)^{3}$ state $d=\frac{\sqrt{5}+1}{2}$
(0.69 qubits) - Fibonacci anyon.

How to known $\left[\chi_{m}\left(z_{1}, \ldots, z_{N}\right)\right]^{n}$ is a non-Abelian QH state?
What kind of non-Abelian state

Split an electron into partons

Projective construction for Laughlin states

Assume the bosonic electrons have an interaction to have a gaped ground wavefunction:

$$
\Psi\left(z_{1}, \ldots, z_{N}\right)=\left[\chi_{1}\left(z_{1}, \ldots, z_{N}\right)\right]^{2}=P\left[\chi_{1}\left(z_{1}^{(1)}, \ldots\right) \chi_{1}\left(z_{1}^{(2)}, \ldots\right)\right]
$$

- Electron $\rightarrow 2$ kinds of partons, each kind $\rightarrow \nu=1$ IQH χ_{1}
- The projection P binds 2-partons into an electron
$z_{i}^{(1)}=z_{i}^{(2)}=z_{i}$
- Effective theory of independent partons $(I=1,2)$
$L=\psi_{l}^{\dagger}\left[\partial_{t}-\mathrm{i} \frac{1}{2}\left(\bar{A}_{0}+\delta A_{0}\right)\right]^{2} \psi_{I}+\frac{1}{2 m} \psi_{l}^{\dagger}\left[\partial_{i}-\mathrm{i} \frac{1}{2}(\overline{\boldsymbol{A}}+\delta \boldsymbol{A})\right]^{2} \psi_{l}$
The electron density (and the parton density) is such that each parton form a $\nu=1$ IQH state χ_{1}.
- Integrating out ψ_{l} in path integral \rightarrow effective Lagrangian

$$
L\left(\delta A_{\mu}\right)=\frac{1}{4 \pi} \delta A_{\mu} \partial_{\nu} \delta A_{\lambda} \epsilon^{\mu \nu \lambda}\left[\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right]
$$

$\rightarrow U(1)$ Chern-Simons gauge theory.
Hall conductance $\sigma_{x y}=\frac{e^{2}}{h}\left[\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right]$

The low energy effective theory

- Introduce dynamical $U(1)$ gauge field to do projection (glue partons back to electrons):

$$
L=\psi_{l}^{\dagger}\left[\partial_{t}-\mathrm{i} \frac{1}{2} \bar{A}_{0}-\mathrm{i} a_{0}\right]^{2} \psi_{I}+\frac{1}{2 m} \psi_{l}^{\dagger}\left[\partial_{i}-\mathrm{i} \frac{1}{2} \overline{\boldsymbol{A}}-\mathrm{i} a\right]^{2} \psi_{l}
$$

- Integrating out ψ_{l} in path integral \rightarrow effective Lagrangian

$$
L\left(a_{\mu}\right)=\frac{1+1}{4 \pi} a_{\mu} \partial_{\nu} a_{\lambda} \epsilon^{\mu \nu \lambda}-\frac{1}{g}\left(f_{\mu \nu}\right)^{2}
$$

$\rightarrow U(1)_{2}$ Chern-Simons gauge theory at level 2 .

- $U(1)_{m}$-Chern-Simons theory at level m have fractional statistics $\theta=\pi / m$.
$U(1)_{2}$ Chern-Simons gauge theory has semions $\theta=\pi / 2$.

Projective construction for non-Abelain FQH states

Wen PRL 66802 (1991)
Assume electrons have an interaction such that the following many-body wave function is a gaped ground state:
$\Psi\left(z_{1}, \ldots, z_{N}\right)=\left[\chi_{m}\left(z_{1}, \ldots, z_{N}\right)\right]^{n}=P\left[\chi_{m}\left(z_{1}^{(1)}, \ldots\right) \chi_{m}\left(z_{1}^{(2)}, \ldots\right) \cdots\right]$

- Electron $\rightarrow n$ kinds of partons, each kind $\rightarrow \nu=m$ IQH χ_{m}
- We then bind n-partons into an electron $z_{i}^{(I)}=z_{i}^{(J)}=z_{i}$
- Effective theory of independent partons

$$
L=\psi_{l}^{\dagger}\left[\partial_{t}-\mathrm{i} \frac{1}{n} \bar{A}_{0}\right] \psi_{I}+\frac{1}{2 m} \psi_{l}^{\dagger}\left[\partial_{i}-\mathrm{i} \frac{1}{n} \overline{\boldsymbol{A}}\right]^{2} \psi_{I}, \quad I=1, \cdots, n
$$

The electron density (and the parton density) is such that each parton form a $\nu=m$ IQH state χ_{m}.

Projective construction for non-Abelain FQH states

- Introduce dynamical $S U(n)$ gauge field to do projection (glue partons back to electrons):

$$
\psi_{l}^{\dagger}\left[\boldsymbol{\partial}_{t}-\mathrm{i} \frac{1}{n} \bar{A}_{0} \delta_{I J}-\mathrm{i}\left(a_{0}\right)_{I J}\right]^{2} \psi_{J}+\frac{1}{2 m} \psi_{I}^{\dagger}\left[\boldsymbol{\partial}_{i}-\mathrm{i} \frac{1}{n} \overline{\boldsymbol{A}} \delta_{I J}-\mathrm{i} \boldsymbol{a}_{I J}\right]^{2} \psi_{J}
$$

- Integrating out ψ_{l} in path integral \rightarrow effective Lagrangian

$$
L\left(a_{\mu}\right)=\frac{m}{4 \pi} \operatorname{Tr}\left(a_{\mu} \partial_{\nu} a_{\lambda}+\frac{\mathrm{i}}{3} a_{\mu} a_{\nu} a_{\lambda}\right) \epsilon^{\mu \nu \lambda}-\frac{1}{g}\left(f_{\mu \nu}\right)^{2}
$$

$\rightarrow S U(n)_{m}$ Chern-Simons gauge theory at level m.

- $S U(n)_{m}$-CS theory have non-Abelian statistics if $m>1$.
- $S U(2)_{2}$ CS gauge theory has Ising non-Abelian anyon.
- $S U(2)_{3} C S$ gauge theory has Fibonacci non-Abelian anyon.
- $S U(3)_{2}$ CS gauge theory has Fibonacci non-Abelian anyon.

How to realize non-Abelian FQH states

- $\Psi_{\nu=2 / 5}=\left(\chi_{1}\right)^{2} \chi_{2}$ can be realized if 2 LLs are degenerate $\Psi_{S U(2)_{2}}=\chi_{1}\left(\chi_{2}\right)^{2}$ can be realized if 3 LLs are degenerate $\Psi_{S U(3)_{2}}=\left(\chi_{2}\right)^{3}$ can be realized if 4 LLs are degenerate
- Realizing non-Abelian FQH state in bi-layer systems Starting with (nnm) state

$$
\Phi_{n n m}=\prod\left(z_{i}-z_{j}\right)^{n}\left(w_{i}-w_{j}\right)^{n}\left(z_{i}-w_{i}\right)^{m} e^{-\frac{1}{4} \sum\left|z_{i}\right|^{2}+\left|w_{i}\right|^{2}}
$$

where $n=$ odd for fermionic electron.

- Phase diagram for increasing interlayer repulsion
nnm double
layer state ??? Chlmb state
$V_{\text {inter }}$

Two possibilities from exciton condensation

- Fractionalized exciton in (nnm) state has fractional statistics $\theta=\frac{2 \pi}{n-m}$

$$
\begin{gathered}
\mathrm{e} /(\mathrm{n}-\mathrm{m}) \\
-\mathrm{e} /(\mathrm{n}-\mathrm{m}) \\
\end{gathered}
$$

- If the exciton has $k \neq 0$

\rightarrow Wigner crystal:
nnm double

- If the exciton has $k=0$
\rightarrow charge-2e
Laughlin state ($K=(8)$)

nnm double \downarrow layer state

WC Chlmb state

Critical theory for quantum phase transition

- Start with GL theory for bosonic excitons and anti-excitons:

$$
\mathcal{L}=\left|\partial_{\mu} \phi\right|^{2}+M|\phi|^{2}+U|\phi|^{4}
$$

$M=0$ at the transition.

- GL-CS theory to reproduce statistics $\theta=\frac{2 \pi}{n-m}$
$\left|\left(\partial-i a_{1}+i a_{2}\right) \phi\right|^{2}+M|\phi|^{2}+U|\phi|^{4}+\frac{1}{4 \pi} a_{l} \partial a_{\jmath} K^{I J}, \quad K=\left(\begin{array}{cc}n & m \\ m & n\end{array}\right)$
- CS term does not destroy the critical point of GL theory, but changes the critical exponents $(n n m) \rightarrow 2 e$-Laughlin is a continuous transition between two states with the SAME symmetry
- When $n-m=2$, critical theory is a massless Dirac fermion theory

$$
\mathcal{L}=\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+M \bar{\psi} \psi
$$

The mass $M=0$ at the transition.

Phase diagram with interlayer tunneling

- Without interlayer tunneling: Effective theory near transition

$$
\begin{aligned}
& \mathcal{L}=\left|\left(\partial-i a_{1}+i a_{2}\right) \phi\right|^{2}+M|\phi|^{2}+U|\phi|^{4}+\frac{K^{I J}}{4 \pi} a_{l} \partial a_{\jmath} . \\
& \mathcal{L}=\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+M \bar{\psi} \psi, \quad \text { for } n-m=2
\end{aligned}
$$

- With interlayer tunneling: Effective theory near transition ($n-m$ excitons $=$ interlayer particle-hole)

$$
\begin{aligned}
\mathcal{L}= & \left|\left(\partial-i a_{1}+i a_{2}\right) \phi\right|^{2}+M|\phi|^{2}+U|\phi|^{4}+\left(t \phi^{n-m} \hat{M}+h . c\right)+\frac{k^{I J}}{4 \pi} a_{l} \partial a_{\jmath} . \\
& \mathcal{L}=\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+m \bar{\psi} \psi+\left(t \psi^{T} \psi+\text { h.c. }\right), \quad \text { for } n-m=2
\end{aligned}
$$

States from interlayer tunneling: $\mathcal{A}(331), \mathcal{A}(330)$

- Two-layer state to one-layer state via anti-symmetrization:

$$
\Psi_{\mathcal{A}(n n m)}\left(x_{i}\right)=\mathcal{A}\left[\prod\left(z_{i}-z_{j}\right)^{n}\left(w_{i}-w_{j}\right)^{n}\left(z_{i}-w_{j}\right)^{m}\right]
$$

- Characterize them with pattern-of-zeros:
(similar to s-wave, p-wave, etc of superconducting states)

	S_{2}	S_{3}	S_{4}	S_{5}	\cdots
$\Psi_{\mathcal{A}(331)}$	1	5	10	18	\cdots
$\Psi_{\mathcal{A}(330)}$	1	3	6	12	\cdots
$\prod\left(z_{i}-z_{j}\right)^{n}$	n	$3 n$	$6 n$	$10 n$	\cdots

$S_{a}=$ total relative angular momentum of a electrons.

POZ theory of FQG states

- Obtain their properties using POZ \rightarrow Spectrum of gapless edge excitations. The ground state has a total angular momentum M_{0}. The chiral edge excitations have higher angluar mementa $M_{0}+m$. $D_{\text {edge }}(m)=$ number of edge excitations at $M_{0}+m$.
- How to compute $D_{\text {edge }}(m)$?
$D_{\text {edge }}(m)=$ number of anti-symmetric holomorphic functions
$\psi\left(z_{i}\right)$ whose n-electron relative angular momentum $\tilde{S}_{n} \geq S_{n}$.
The edge spectrum $D_{\text {edge }}(m)$

$m:$	0	1	2	3	4	\cdots	c	remark
$\Psi_{\mathcal{A}(331)}$	1	1	3	5	10	\cdots	$\frac{3}{2}$	Z_{2} parafermion
$\Psi_{\mathcal{A}(330)}$	1	1	3	6	13	\cdots	2	Z_{4} parafermion
$\prod\left(z_{i}-z_{j}\right)^{n}$	1	1	2	3	5	P_{m}	1	Abelian Laughlin state

Central charge for the edge states

- The edge spectrum $D_{\text {edge }}(m)$ is described by central charge c. For $\prod\left(z_{i}-z_{j}\right)^{m}: P_{m} \sim \frac{1}{4 m \sqrt{3}} \mathrm{e}^{\pi \sqrt{\frac{2 M}{3}}} \sim \mathrm{e}^{c \pi \sqrt{\frac{2 M}{3}}}$ with $c=1$. In general $D_{\text {edge }}(m) \sim e^{c \pi \sqrt{\frac{2 M}{3}}}$
- The central charge can be measured by specific heat $C=c \frac{\pi}{6} \frac{k_{B}^{2} T}{v \hbar}$ or thermal Hall conductivity $\kappa_{x y}=c \frac{\pi}{6} \frac{k_{B}^{2} T}{\hbar}$
- The edge spectrum $D_{\text {edge }}(m)=$ finger print for FQH states:
- $D_{\text {edge }}(m)=$ partition number $\rightarrow \Psi_{\nu=1 / m}$ is an Abelian state.
- $\Psi_{\mathcal{A}(331)}$ is a Z_{2} parafermion state.
- $\Psi_{\mathcal{A}(330)}$ is a Z_{4} parafermion state. (Related to $\chi_{1}\left(\chi_{4}\right)^{2}$ state SU(2)4.) Blok-Wen Nucl. Phys. B374, 615 (92); Read-Rezayi cond-mat/9809384
- Interlayer tunneling can induce the above non-Abelian states.

Bilayer FQH in a quantum well (width $=48 \mathrm{~nm}$)

- For very large interlayer tunnelin we get a single-layer compressibl state at $\nu=1 / 2$.
- For very small interlayer tunnelin we get a bi-layer (331) state.
- In between, we may get the Z_{2} parafermion non-Abelian state.
- To get (331) state from $\nu=1 / 2$ FL state, we need a d-wave pairing \rightarrow impossible.
- p-wave pairing on $\nu=1 / 2 \mathrm{FL}$ state gives us Z_{2} parafermion non-Abelian state.
- With less interlayer tunneling, can we see Z_{2} parafermion \rightarrow (331) transition?

Two-component states in bi-layer systems

We have discussed one-component states (ie single-layer states) in bi-layers: $\Psi\left(\left\{x_{i}\right\}\right)$.

- Now we consider two-component states in bi-layers, such as $\Psi\left(z_{i}, w_{i}\right)=\prod\left(z_{i}-z_{j}\right)^{n}\left(w_{i}-w_{j}\right)^{n}\left(z_{i}-w_{j}\right)^{m}$
- The pattern-of-zeros description of two-component states: $S_{a b}=$ the total relative angular momentum for a cluster of a electron in layer-1 and b electron in layer-2.
- For the ($n n m$) state $S_{a b}=n \frac{a(a-1)}{2}+n \frac{b(b-1)}{2}+m a b$:
$\Psi_{(331)}^{\nu=1 / 2}, c=2$

$\mid S_{a b}$	0	1	2	3
0	0	0	3	9
1	0	1	5	12
2	3	5	10	18
3	9	12	18	27

$\Psi_{(111)}^{\nu=1}$, gapless "superfluid"

$S_{a b}$	0	1	2	3
0	0	0	1	3
1	0	1	3	6
2	1	3	6	10
3	3	6	10	15

(331) state has a stronger intralayer avoidance than (111)

Fibonacci non-Abelian statistics in bi-layer systems

- There are other more interesting FQH states described by different POZs, such as $\nu=\frac{4}{5}, \frac{4}{7}$ bi-layer states:
arXiv:0906.0341
$\Psi^{\nu=4 / 5}{ }_{S U(3)_{2} / U^{2}(1)}, c=3 \frac{1}{5}$

$S_{a b}$	0	1	2	3
0	0	0	1	5
1	0	1	2	7
2	1	2	4	9
3	5	7	9	15

$\Psi^{\nu=4 / 7}$

$\nu=4(3)_{2} / U^{2}(1)$	c	$c=3 \frac{1}{5}$		
$S_{a b}$	0	1	2	3
0	0	0	1	5
1	0	1	4	9
2	1	4	8	15
3	5	9	15	23

- Compare to the (111) state, the $\nu=4 / 5$ state has a stronger intralayer avoidance and a weaker interlayer avoidance.
- Compare to the $\nu=\frac{2}{5}+\frac{2}{5}$ state, the $\nu=4 / 5$ state has the same intralayer avoidance and a stronger interlayer avoidance.
- Appear in weak interlayer tunneling limit.
- Just like $\left(\chi_{2}\right)^{3}$ state, those $\Psi_{S U(3)_{2} / U^{2}(1)}$ states also have Fibonacci non-Abelian anyon with quantum dimension

Fibonacci non-Abelian statistics in wide quantum wells ?

- $\nu=4 / 5$ FQH state was observed in bi-layer systems (wide quantur wells).
Is it a Fibonacci FQH state that can do universal topologicaı quantum computation?

