Phase II of the **HAYSTAC** Axion Dark Matter Experiment: A New Application of Quantum Measurement Techniques

Yale University Quantum Connections: Nov 28, 2018 Stockholm, Sweden

Haystack

Motivation for a haloscope at high frequency

Continued motivation

• In the format of Monday's talk

From Monday talk by A. Ringwald

A quick history of HAYSTAC

Kelly Backes, Yale University

The phase 1 detector

Kelly Backes, Yale University

Nucl. Instrum. Methods A 854, 11

Phase 1 standard parameter values

Frequency range: $f_a = 5.6 - 5.8 \text{ GHz}$

Corresponding mass range: $m_a = 23.15 - 24 \ \mu eV$

Operating temperature: *T* = 127 mK

System noise per unit bandwidth: N_a = 2.3 quanta

Magnetic field: B = 9 T

$$TM_{010}$$
 form factor: $C = \sim 0.5$

Kelly Backes, Yale University

Phase 1 receiver system

- Input-output microwave lines for transmission/reflection measurements, JPA pumping, and signal readout
- Switch for hot and cold load for calibration
- Signals are amplified at 127 mK and room temperature
- IQ mixer down-converts signal to IF band
- Both I and Q are read-out and used for analysis

Analysis

- Remove baselines with Savitsky-Golay filter
- Combine spectra with maximum likelihood weighting
- Statistics of grand spectrum determine exclusion

Results from Phase 1

Model band: Cheng et al Phys. Rev. D 52, 3132 (1995)

Cavity

3 ports into the cavity

- Vernier: fine frequency tuning
- Weak port: fake axion injection and cavity transmission measurements
- Antenna: signal readout

- Tunable from 3.5 5.8 GHz
- Off-axis Cu tuning rod for frequency tuning
- Cold, unloaded Q of 30,000

Two types of motion control

Piezoelectric movement of tuning rod

- Driven by a sawtooth waveform: 50 Vpp,1.5 A
- Easily automated
- 100 kHz steps

Kelly Backes, Yale University

Stepper motor and kevlar line control of antenna and vernier

• Functions as linear drive for antenna and vernier

Pulley system for redirection

The magnet and JPA shielding

- From Cryomagnetics, Inc.
- 9 T magnetic field
- 3.6 K operating temperature, cooled by the magnet's cryocooler

JPA shielding can

- Shielding is made of three superconducting bucking coils around cryoperm can
- Field inside can minimized: $B = 10^{-3} G$

Haloscope figures of merit

Figures of merit:

$$SNR = \frac{P_S}{k_B T_S} \sqrt{\frac{\tau}{\Delta v_a}}$$

scan rate: $R \propto SNR^2$

Scaling:

decreased signal power: $P \propto V^2 C^2 Q$

 $Q \propto \nu^{-2/3}$ $C_{010}V \propto L\nu^{-2}$

effective scan rate scaling: $R \propto v^{-14/3}$

increased density of TE modes: $\rho_{TE} \propto \nu^2$

```
Standard quantum limit: kT_N \ge h\nu
```

Kelly Backes, Yale University

Improving sensitivity

Cryogenic upgrades

BlueFors BF-LD250 Dilution refrigerator:

- Liquid cryogen free
- Better vibrational isolation
- 460μ W cooling power at 100 mK

Magnicon temperature sensor:

Better monitoring of hot load temperature

Variable temperature stage:

 Can now vary the temp of the hot load for hot-cold load calibration

Mechanical improvements

Cavity realignment:

- Cavity axes realigned for smoother tuning
- Increased usable frequency range
- Increased Q

Redesigned cavity support:

 Fewer large copper pieces to reduce eddy currents in the case of a quench

Improved tuning rod thermal link

Before:

Improved tuning rod thermal link

Squeezed state receiver background

Squeezed state:

$$SNR = \frac{P_S}{k_B T_S} \sqrt{\frac{\tau}{\Delta \nu_a}}$$

scan rate: $R \propto SNR^2$

Signal: $\hat{V} = V_0(\hat{X}\cos(\omega t) + \hat{Y}\sin(\omega t))$

 \hat{X}, \hat{Y} are non-commuting observables: $[\hat{X}, \hat{Y}] = i$

Uncertainty: $Var(\hat{X})Var(\hat{Y}) \ge 1/4$

 \hat{Y} \hat{X} \hat{X}

Area of the state is unchanged: No added noise

Squeezed state receiver background

Signal: $\hat{V} = V_0(\hat{X}\sin(\omega t + \phi) + \hat{Y}\sin(\omega t))$

Now a phase-sensitive parametric amplifier can tell the quadratures apart

Kelly Backes, Yale University

Mock axion experiment

- Done at CU Boulder as a proof of principle before installing the system in HAYSTAC
- Non-tunable cavity and no magnetic field

arXiv:1809.06470v1

Squeezing to below vacuum

Enhanced signal visibility

- Large tone is injected into cavity
- Signal read through measurement port and amplified by amplifier JPA

Lower noise floor Signal remains same height

SNR and scan time improvement

Single quadrature measurement

Causes no decrease in SNR

	Signal power per quadrature	Noise power per quadrature	Single quadrature SNR	Final SNR
Single quadrature measurement	<u> Pa</u> 2	$rac{\hbar\omega}{4}$	<u>2Pa</u> ħω	$rac{\sqrt{2}P_a}{\hbar\omega}$
Double quadrature measurement	<u> Pa</u> 2	$\frac{\hbar\omega}{2}$	$rac{P_a}{\hbar\omega}$	$rac{\sqrt{2}P_a}{\hbar\omega}$

Microwave layout

Key differences:

- Five input-output lines
- Squeezer injects squeezed vacuum into cavity
- Switch for variable hot load and cold load for calibration
- Only one quadrature used for analysis

The phase 2 HAYSTAC detector

Kelly Backes, Yale University

Josephson parametric amplifiers

Piezoelectric tuning

microwave cavity

5 port circulator

9 T dry magnet

Expectations for Phase 2

- Integrate the Boulder SSR into HAYSTAC
- Continuing to explore in our 4-8 GHz range of interest
- Scan at comparable depth to our Phase 1 results wide and fast
- Show that haloscope scan-rates can continue to be improved through synergy with quantum information

HAYSTAC

projected

Seven rod cavity

- Will cover 5.48-7.41 GHz (22.7-30.7 µeV)
- Same cavity volume

• Currently being tested to find the "usable range" and study mode crossings Kelly Backes, Yale University

Future plans

single photon detection:

- Considering two methods: qubits and Rydberg atoms
- Above 10 GHz, single photon detection wins out over phase sensitive detectors

Figure 1. Schematic diagram of CARRACK II experimental system.

M. Tada, et al. Nuc. Phys. B 72, 164 (1999)

Photonic bandgap cavities:

Can reach higher frequencies
without mode crossings

Conclusion

- Phase 1 was run with a single-rod copper cavity and a single JPA
- Phase 1 excluded axions with coupling of $|g_{\gamma}| \ge 2.7 \times |g_{\gamma}^{\text{KSVZ}}|$ over $23.15 \le m_a \le 24 \,\mu\text{eV}$
- Squeezed state receiver allows for noise below standard quantum limit and faster scan times
- HAYSTAC will continue to serve as a development testbed for new technology

Further reading:

Squeezed state receiver: arXiv:1809.06470v1 (2018) Phase 1 results: Rev. D 97, 092001 (2018). Analysis: Phys. Rev. D 96, 123008 (2017). First results: Phys. Rev. Lett. 118, 061302 (2017). Instrumentation: Nucl. Instrum. Methods A 854, 11 (2017).

Kelly Backes, Yale University

Acknowledgements

Collaboration:

Yale: Kelly Backes, Danielle Speller, Yong Jiang, Sidney Cahn, Reina Maruyama, Steve Lamoreaux

Colorado: Daniel Palken, Maxime Malnou, Konrad Lehnert

Berkeley: Maria Simanovskaia, Samantha Lewis, Saad Al Kenany, Nicholas Rapidis, Isabella Urdinaran, Alex Droster, Karl van Bibber

Room-temp microwave layout

Kelly Backes, Yale University

Cavity Q

A needle in a HAYSTAC

Haystack

Motivation for a haloscope at high frequency

Astrophysical:

- Peccei Quinn symmetry broken after inflation: $m_a > 28 \,\mu \text{eV}$ (Nature 539, 69)
- SMASH model: $50 \ \mu \text{eV} \le m_a \le 200 \ \mu \text{eV}$ (arXiv:1610.01639)
- V.B. Klaer, G. Moore: 6.33 GHz to 48 GHz $m_a = 26.2 \pm 3.4 \,\mu \text{eV}$ (arXiv:1708.07521) 10-6 HAYSTAC 10-8 Axion Coupling |GATT | (GeV⁻¹) Helioscopes 10-10 (CAST Massive Stars 10-12 laloscopes (ADMX) 10-14 10-16 10⁻⁷ 10⁻⁶ 10⁻⁵ 10⁻⁴ 10⁻³ 10-2 10-8 10-1 10⁰ 10¹ Axion Mass m_A (eV)

- Experimental:
- Simplified cryogenics and smaller magnet

 Josephson parametric amplifiers (JPAs) work well in the 2-12 GHz range (Phys. Rev. Applied 9, 044023)