Time resolved diffraction & scattering studies of membrane protein dynamics using XFEL radiation

Richard Neutze University of Gothenburg

Faculty of Science

Peak Brilliance

Diffraction before Destruction

Reaction Dynamics

Muybridge's freeze-frame sequence revealed a horse's gait.

Energy Transduction

Photosynthetic Proteins

Photosynthetic Purple Bacteria

Blooming purple sulfur bacteria in a coastal lagoon

Photosynthetic reaction centres

- 135 kDa Membrane protein.
- Complex light driven proton pump.
- Electron movements driven by light.
- Coupled redox reactions pump protons.
- Descendent created O₂ rich atmosphere.

Proton pumping by reaction centres

- Electron movements driven by light.
- Coupled redox reactions pump protons.

Halo-archaea

Halobacteria Salinarium in high-salt ponds

Bacteriorhodopsin

- Retinal isomerisation starts a sequence of structural changes.
- One proton pumped per photon.

Scientific Question

Bacteriorhodopsin:

 What structural changes are needed to achieve proton pumping up-hill against a proton gradient?

Photosynthetic reaction centres:

 Do ultrafast conformational changes contribute to the primary charge separation reactions of photosynthesis?

X-ray scattering

Svergun & Koch, Biophys. Meth. (2002)

Time-resolved Wide Angel X-ray Scattering

Cammarata et al., Nature Methods (2008)

Time Resolved Wide Angle X-ray Scattering

Bacteriorhodopsin

- Retinal isomerisation starts a sequence of structural changes.
- One proton pumped per photon.

Faculty of Science

European Synchrotron Radiation Facility

Michael Wulff

Marco Cammarata

Experimental data & spectral decomposition

Andersson et al., Structure (2008)

Faculty of Science

Structural Refinement

Structural Conclusions

- Two intermediate conformations.
- Movements of helices E, F & C used to model these changes.
- 2/3 of the movement occurs prior to the first proton transfer step.

Time Resolved Serial Crystallography

Eriko Nango

So Iwata

SACLA at SPring8 Hyogo, Japan

Faculty of Science

Bacteriorhodopsin

- Retinal isomerisation starts a sequence of structural changes.
- One proton pumped per photon.

Faculty of Science

Photocycle of bacteriorhodopsin

- Highly coordinated structural changes control the pKa of key proton-exchange groups.
- Understanding the nature & timing of these events central to untangling the mechanism of proton pumping.

Photosynthetic reaction centres

- 135 kDa Membrane protein.
- Complex light driven proton pump.
- Electron movements driven by light.
- Coupled redox reactions pump protons.
- Descendent created O₂ rich atmosphere.

Time-resolved spectroscopy

Nature 363, 320 (1993)

ARTICLES

Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy

Marten H. Vos*, Fabrice Rappaport*, Jean-Christophe Lambry*, Jacques Breton* & Jean-Louis Martin**

"implicates coherent nuclear motion in the primary electron transfer reaction in functional reaction centres"

Time-resolved spectroscopy

Science 316, 747 (2007)

Protein Dynamics Control the Kinetics of Initial Electron Transfer in Photosynthesis

Haiyu Wang,^{1,2} Su Lin,^{1,2} James P. Allen,² JoAnn C. Williams,² Sean Blankert,^{1,2} Christa Laser,^{1,2} Neal W. Woodbury^{1,2}*

"These results indicate that initial photosynthetic charge separation is limited by protein dynamics rather than by a static electron transfer barrier"

Faculty of Science

Time resolved wide angle X-ray scattering

Linac Coherent Light Source (LCLS) Stanford, USA

John Spence Henry Chapman Anton Barty Sebastien Boutet

Time resolved wide angle X-ray scattering

TR-WAXS: Laser on minus laser off

Spectral decomposition

Linear recombination of amplitudes

Equilibrated & non-equilibrated heating

MD simulations: flow of heat

 MD simulations & TR-WAXS measurements both show heat equilibrates within ~ 100 ps.

Ultrafast-component

- Fitting with only co-factors moving.
- Rise: Sub-ps.
- t_{1/2} decay ~ 3-2 ps.

Arnlund et al., Nature Methods (2014)

c.w. TR-WAXS on bacteriorhodopsin

Fitting protein component

- Fitting with all protein atoms moving.
 - t_{1/2} rise ~ 1-4 ps
 - t_{1/2} decay ~ 44 ps.

Arnlund et al., Nature Methods (2014)

Overall conformational change

Time Resolved Serial Crystallography

Linac Coherent Light Source (LCLS) Stanford, USA

John Spence Henry Chapman Anton Barty Sebastien Boutet

Johansson et al., Nature Communications (2013).

3.5 Å SFX structure

Johansson et al., Nature Communications (2013)

Ultrafast conformational gating?

- Photosynthetic reaction centres remarkably efficient.
 - Multiple contributing factors.
- Structural changes allow the energy surface for an electron on *the way out* to differ from that *back home*.
- May help extend the lifetime of the charge separated state.

Faculty of Science

Serial Femtosecond Crystallography @LCLS

CFEL-DESY	H. Chapman, J. Schulz, A. Barty, M. Liang, A. Aquila, T. White,	
	D. Deponte, S. Stern, A. Martin, C. Caleman, K. Nass, F. Stellato,	
	F. Wang, H. Fleckenstein, L. Gumprecht, L. Holmegaard, N.	
	Coppola, S. Bajt, M. Barthelmess,	
ASU	J. Spence, P. Fromme, U. Weierstall, B. Doak, M. Hunter,	
	R. Kirian, X.Wang, K. Schmidt, I. Grotjohann, R. Fromme	
Gothenburg	L. Johansson, D. Arnlund, G. Katona, E. Malmerberg	
SLAC-PULSE	M. Bogan, D. Starodub, R. Sierra, C. Hampton, D. Loh	
SLAC-LCLS	S. Boutet, G. Williams, M. Seibert, J. Kryzwinski, C. Bostedt, M.	
	Messerschmidt, J. Bozek, W. White, R. Coffee	
Uppsala	J. Hajdu, Nic Timneanu, J. Andreasson, M. Seibert, F. Maia, M.	
	Svenda, <i>J. Davidsson</i>	
MPG CFEL ASG I. Schlichting, R. Shoeman, L. Lomb, S. Kessemeyer, T. Barends,		
	J. Steinbrener, M. Bott, D. Rolles, S. Epp, A. Rudenko, L. Strüder,	
	R. Hartmann, L. Foucar, N. Kimmel, P. Holl, T. Barends, J. Ullrich	
LLNL	S. Hau-Riege, M. Frank	
LBNL	S. Marchesini, J. Holton	
Cornell	V. Elser, S. Gruner	
CAMP Team	Led by J. Ullrich and I. Schlichting	
LCLS detector	C. Kenney, R. Herbst, J. Pines, P. Hart, J. Morse	
Accelerator	Led by P. Emma	

Time resolved WAXS @ LCLS

Gothenburg	D. Arnlund, L. Johansson, C. Wikstrand, R. Dods, E. Malmerberg, G. Katona, J. Sjöhamn, S. Westenhoff.	
CFEL-DESY	A. Barty, H. Chapman, J. Schulz, M. Liang, A. Aquila, T. White,	
	D. Deponte, S. Stern, A. Martin, K. Nass, F. Stellato.	
ASU	J. Spence, P. Fromme, U. Weierstall, B. Doak, R. Kirian, D.Wang,	
	K. Schmidt, I. Grotjohann, R. Fromme, D. James.	
SLAC-LCLS	S. Boutet, G. Williams, M. Seibert, J. Kryzwinski, C. Bostedt,	
	M. Messerschmidt, J. Bozek, W. White, R. Coffee	
Uppsala	J. Davidsson	
MPI Heidelberg	I. Schlichting, R. Shoeman, T. Barends, S. Bari	
LCLS detectors	C. Kenney, R. Herbst, J. Pines, P. Hart, J. Morse	
LCLS accelerator Led by P. Emma		
LCLS fs laser	D. Milathianaki, A. Fry.	
LLNL	M. Frank	
Göttingen	G. Groenhof	
APS BioCARS	<i>R. Henning</i> , I. Kosheleva.	
TDU	K. Skov Kjær, T. Brandt van Driel, M. Meedom Nielsen.	

Faculty of Science

Time resolved SFX @ SACLA

Riken	Eriko Nango, So Iwata, Rie Tanaka, Toshiaki Hosaka,
	Iomoyuki Ianaka, Ayumi Yamashita, Jun Kobayashi, Ioshi Arima Minoru Kubo Tetsunari Kimura, Song Changyong
CNRS	Antoine Royant.
Tokyo Uni.	Takanori Nakane
Gothenburg	Robert Dods.
Uppsala	Jan Davidsson.
JASRI	Kensuke Tono, Yasumasa Joti,
Osaka Uni.	Eiichi Mizohata
Postech	Nam Daewoong

Time resolved WAXS @ ESRF

Gothenburg	<i>Magnus Andersson, Erik Malmerberg</i> , Sebastian Westenhoff, Gergely Katona, Annemarie Wöhri, Linda Johansson
ESRF	<i>Michael Wulff,</i> Marco Cammarata, Friederike Ewald.
Uppsala	<i>Jan Davidsson</i> ., Mattias Eklund.

Faculty of Science

