Time resolved x-ray spectroscopy with free-electron lasers

Following electron dynamics on surfaces and in solids in real-time

Wilfried Wurth, Physics Department and Center for Free-Electron Laser Science, University of Hamburg and DESY Photon Science

Wilfried Wurth | Nobel Symposium | June 17th, 2015 | Page 1

People

Michael Martins

Alexander Föhlisch

Martin Beye

Bill Schlotter

Giuseppe Mercurio

Ivan Baev, Torben Beeck, Nils Gerken, Sven Gieschen, Franz Hennies, Florian Hieke, Jon-Tobias Hoeft, Stephan Klumpp, Mitsuru Nagasono, Karolin Mertens, Holger Meyer, Steffen Palutke, Annette Pietzsch, Markus Scholz, Florian Sorgenfrei, Edlira Suljoti, Michael Wellhöfer, Lukas Wenthaus

Martina Dell'Angela

FLASH team FERMI team LCLS team

Some questions we might want to address

C. D. Stanciu, et al., PRL 99, 047601 (2007)

Can we understand and control complex phases?

Dynamic control with light fields e.g. how fast can one switch magnetisation?

ABC

© Martin Wolf

Surface catalysis Can we observe transition states in reactions?

Finding an answer ? – Electronic structure movies

- Start a process by a controlled excitation (May be "Stay away from light")
- Monitor the time-evolution of the electronic structure with x-ray spectroscopy

Wilfried Wurth | Nobel Symposium | June 17th, 2015 | Page 4

X-ray spectroscopy – the electronic structure toolbox

Add time as a variable – pump-probe spectroscopy

 $E(k, R_{nuc}, \sigma, t)$

Need short pulse x-ray sources → Free-Electron Lasers

Free-electron lasers worldwide

	Start	Photon energy range [eV]	Pulse energies [mJ]	Pulse duration [fs]	No. of pulses [1/s]	Average brightness
FLASH	2005	30-310	-0.5	few fs-200	8000	1E+23
LCLS	2009	250-10k	-6	1-500	120	3E+21
SACLA	2011	6k-20k	-0.5	<20	10-60	
FERMI (seeded)	2012	20-60 (60- 300)	0.1	(30)-100	10-50	
PAL FEL	~2016	12-120 1.8k-20k			60	
Swiss FEL	~2016	(180-1.8k) 1.8k-12k	0.005-0.2	1-200	100	2E+21
XFEL	~2016	250-25k	4	1-200	27000	3E+24
"LCLS II" (cw)	~2020	250-5k	0.002-0.1	1-200	100k-1M	1E+25

High repetition rate FEL's

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 6

From Extreme Ultraviolet to Hard X-Rays

Wilfried Wurth | Nobel Symposium | June

From Extreme Ultraviolet to Hard X-Rays

"If I have seen further it is by standing on the shoulders of giants." Isaac Newton

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 9

FLASH – FLASH1 and FLASH2

Photon energy range: 30-300eV tunable, up to 8000 pulses/s, pulse energy up to 500µJ

- Only high repetition rate XUV and soft x-ray FEL world-wide
- Since 2014 two independent FEL lines
- Very short FEL pulses (3fs-200fs)
- Fully optically synchronised
- Integrated THz sources

TTF-1 – The first short wavelength SASE FEL

CCD/mage: 1 bunch(es), 1 min, 5 mm aperture, 22 Feb 2000 Row [Pixel] 35 First lasing at DESY, Feb. 22nd, 2000 Coloumn [Pixel] Spectrum (average from row 230 to 281) ~100nm Intensity [Counts/Pixel]

H. Wabnitz et al., Nature **420**, 482 (2002)

Wavelength [nm]

FLASH - 10 years of operation as a user facility

Wilfried Wurth | Nobel Symposium | June 17th, 2015 | Page 12

Extreme brillance – ultrashort pulses

Coherence properties of FLASH

collaboration with the group of I.A. Vartanyants A. Singer et al., Optics Express 16, 17480 (2012)

Hanbury Brown-Twiss experiment

A. Singer et al., PRL 111, 034802 (2013)

Gaussian statistics – chaotic source

transverse coherence 80%, average pulse duration <50fs, degeneracy parameter 10⁹

A. Singer et al., PRL 111, 034802 (2013)

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 16

High repetition rate free-electron lasers – perfect for time-resolved spectroscopy

Ultra bright

 High average brightness (8000 pulses/s (FLASH) – 27000 pulses/s (XFEL) -100kHz-1MHz (LCLS II)

Ultra short

Pulse length down to a few fs – single spike SASE

80-90% pump-probe exp.

- 50% optical/XUV
- 30% XUV/XUV
- 20% THz/XUV

AMO physics – XUV Pump – XUV probe

Electron rearrangement in dissociating molecules

K. Schnorr et al. PRL 113, 073001 (2014)

Challenges for TR-studies: Synchronisation and timing

Problem: Timing jitter between external lasers and FEL's **Solution**:

a) perfect synchronisation (eg. Seeding – FERMI 7fs rms)
or b) shot-to-shot timing diagnostics

Stability of FLASH: All-optical synchronization

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 20

S. Schulz et al, Nature Comm. DOI: 10.1038/ncomms6938

Timing diagnostics - Cross correlation

T. Maltezopoulos et al., NJP 10 (2008) 033026

Wilfried Wurth | Nobel Symposium | June 17th, 2015 | Page 21

Standard tool nowadays at all sources

Time-resolved spectroscopy with FEL's

Some examples from FLASH and LCLS

Chicken or Egg

©http://www.guardian.co. uk/science/2006/may/26/ uknews

Lattice driven or electron driven metal-insulator transitions ?

Wilfried Wurth | Nobel Symposium | June 17th, 2015 | Page 23

Transition metal dichalcogonides

Layered 2-dim-systems

Vb Vlb Vla IVb 16 23 Т s 40 **Z**r 34 Se 42 Mo ⁴¹ Nb 72 Hf 52 73 ′4 Та Те

ΙX₂

Metal - Insulator – Transition

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 25

Kai Rossnagel

Ta 4f photoemission – a local probe for charge order in TaS_2

Low T state

- Charge ordered
- Periodic lattice distortion

Equilibrium dynamics

Photo-induced melting of charge order

The picture - Non-thermal melting of charge order and subsequent thermalization

S. Hellmann et al., New Journal of Physics 14 (2012) 013062

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 28

Liquid polymorphism in silicon

- Existence of "transient" low density liquid phase ?
- Identification through time-resolved electronic structure maps ?

Fluence dependence of induced effects by femtosecond laser pulses in semiconductors

Sundaram, S.K. and Mazur, E. Nature Materials, 1, 217, 2002

Effects of strong photodoping in silicon

e-h-plasma formation

C.V. Shank, R. Yen and C. Hirlimann, PRL 50, 454 (1983)

Excitation of ~10% of valence electrons leads to drastic changes of potential energy surface of atoms

 \rightarrow Nonthermal melting

P. Stampfli and K.H. Bennemann, PRB 49, 7299 (1994)

Dynamics of highly photoexcited silicon-TR-XES

Ti:Sa LASER:

- •400nm
- •time structure synchronized to FLASH
- •260mJ/cm² on sample
- •120fs pulse length
- •10²²/cm³ excitation density

FLASH:

- •Si 2p ionisation 117eV Photons
- •30 bunches@250kHz
- •every 200ms
- •around 40µJ per pulse
- •30fs pulse length
- attenuated
- •~80mJ/cm²

Evolution of electronic structure after strong photoexcitation

Wilfried Wurth | Nobel Symposium | June 17th, 2015 | Page 33

M. Beye et al., 16772 | PNAS | 2010 | vol. 107

Liquid-liquid transition in silicon

Calculated density of states for different phases of silicon P. Ganesh and M. Widom, PRL 102, 075701 (2009)

Liquid polymorphism in silicon

", Transient" low density liquid phase accessible on short time scales ☑ Identification through time-resolved electronic structure maps ☑

Evidence for first-order transition

Heterogeneous catalysis

Nobel Prize in Chemistry Gerhard Ertl 2007

Angew. Chem. Int. Ed. 2008, 47, 3524

Real catalysts on the nanoscale -Understanding transition states

Nobel lecture by G. Ertl

Ba-promoted Ru-catalyst on BN for ammonia synthesis

Hansen et.al. Science 294, 1508 (2001)

Wilfried Wurth | Nobel Symposium | June 17th, 2015 | Page 37

Dynamics of surface reactions

FIG. 1. Schematic classification of the various aspects of the dynamics of surface reactions.

G. Ertl, in Advances in Catalysis

Ultrafast Surface Chemistry and Catalysis Collaboration

F. Abild-Petersen, T. Anniyev, Martin Beye, R. Coffee, G.L. Dakowski, Martina Dell'Angela, A. Föhlisch, J. Gladh, M. Hantschmann, F. Hieke, T. Katayama, S. Kaya, O. Krupin, D. Kühn, J. LaRue, G. Mercurio, M.P. Minitti, A. Mitra, S. P. Möller, Andreas Moegelhoej, M.L. Ng, A. Nilsson, J. K. Norskov, D. Nordlund, Henrik Öberg, Hirohito Ogasawara, Henrik Öström, L. G.M. Pettersson, M. Persson, W. F. Schlotter, J. A. Sellberg, F. Sorgenfrei, J. J. Turner, M. Wolf, W. Wurth, Hongliang Xin

Stockholm University, Helmholtz-Zentrum Berlin, Fritz Haber Institute, University of Liverpool, SLAC (LCLS, SIMES, SSRL, SUNCAT), University of Hamburg and CFEL

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 39

"Trigger" surface femtochemistry – the pump step

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 40

A model phototriggered reaction

 $O_{ad} + CO_{ad} \rightarrow CO_2 / Ru(0001)$

Investigate:

- CO desorption
- O activation
- \succ CO₂ production

after M. Bonn et al., Science 285, 1042 (1999)

Time-resolved RIXS and surface catalysis

Use resonant inelastic x-ray scattering (RIXS) as electronic structure probe Element specificity, chemical sensitivity, independent of environment

Photoinduced desorption of CO molecules

S. Funk et al, J. Chem. Phys. 112, 9888 (2000)

M. Dell'Angela et al., Science 339, 1302 (2013)M. Beye et. al., PRL 110, 186101 (2013)

T. Katayama et al, J.of El. Spec. 187, 9 (2013)

"4-Dim"-RIXS maps – the probe step

XAS

532 534 Photon Energy (eV)

XES

Time evolution of valence states

Transient changes on time scale up to 10 ps show pronounced weakening of bond to surface

Transient precursor state of CO

Postulated from kinetic exp. – first direct observation!

The Nobel Prize in Chemistry 1932 Irving Langmuir

Transients cannot be explained by thermal population of ground state PES Entropic barrier – dynamic precursor state populated

Theory by J. K. Norskov, L.G.M. Petterson and coworkers

Oxygen activation

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 47

M. Beye et al. submitted

CO oxidation

 $O_{ad} + CO_{ad} \rightarrow CO_2 / Ru(0001)$

H. Öström et al. Science 347,978 (2015)

CO oxidation

Time-resolved XAS

H. Öström et al. Science 347,978 (2015)

CO oxidation

H. Öström et al. Science 347,978 (2015)

Wilfried Wurth| Nobel Symposium| June 17th, 2015 | Page 51

CO desorption:

- Triggered by laser-induced "temperature jump"
- Transient precursor state observed after a few ps

Oxygen activation:

- Triggered by "hot electrons"
- Activation from hcp-hollow site to bridge site in less than 200fs

CO oxidation:

- Critical step oxygen activation
- Transient state reached on timescale of about 1ps

- Time-resolved x-ray spectroscopies can provide electronic structure movies of dynamic changes in condensed matter physics, chemistry and biochemistry, and nanoscience
- Ideally a combination of lab-based short pulse XUV sources and (seeded) x-ray free-electron laser sources with high repetition rate is needed

"next generation FEL facility"

- Requires joint effort from theory and experiment
- Development of new methods (e.g. stimulated Raman) and new instrumentation (e.g. efficient spectrometers and fast detectors) is very important

Key properties of FLASH 2020 currently under discussion:

- CW operation with up to 1MHz repetition rate
- Extended energy range ~30-550eV 1st harmonic (chemistry and biology driven: C-, N-,O-K edges, "water window")
- up to 1keV 2nd harmonic (materials science driven: 3d transition metals)
- operation of multiple FEL lines with 100kHz
- ➤ variable polarization
- external seeding up to 100kHz

