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axions
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axion DM modifies maxwell equations:
• new equations:

axion electrodynamics
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axion electrodynamics

• zero-velocity limit (axion at rest): 

• with frequency 

• dark matter density: 
 
 

• the homogeneous axion-induced E field can be 
derived as 
 

• with
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axion electrodynamics
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axion electrodynamics
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challenges for ADMX-like experiments

arXiv:1804.05750emitted power from cavity

needs to scale 
with f-3

is expensive

given by nature
scan 
this

technical 
limitations, 

decreases with 
larger freach of cavity haloscope limited 

for higher frequency (mass)
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ADMX reach

C. Lee

8th General IAXO Collaboration Meeting !4

preferred by  
post-inflation scenarios
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dielectric haloscope
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dielectric haloscope
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dielectric haloscope
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• continuity:

:

:

because Maxwell eq:
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we get for the propagating fields:

assume:

with the Ea field discontinuity:
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• power emission by interface: 

• too small to detect
• stronger B field? larger area? 
➡resonator

P

A
= 2.2⇥ 10�27 W

m2

✓
Be

10T

◆2

C2
a�fDM

arXiv:1612.07057radiation at an interface
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Mirror Dielectric  Disks Receiver 

Be 

• resonator: multiple layers 
•

dielectric haloscope arXiv:1612.07057
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dielectric haloscope

• coherent superposition of amplitudes produced at all 
interfaces
•

• each layer transmits and reflects
• EM waves moving left and right
• transfer matrix formalism to relate amplitudes (skip here)
• can act as forced oscillator
• EM radiation escapes at open end



special case: 1 disc

• simple case: one single disc with two interfaces

x1 x2 

1 r = 0 2 

dielectric 
e > 1 

vacuum 
e = 1 

vacuum 
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G0 G1 P1 transmissivity:

reflectivity:

boost (amplitude in units of E0):
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trans-
mission

reflectivity

boost
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special case: 1 disc

• one single disc has no 
advantage over single 
mirror

• can be made completely 
transparent
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special case: mirror with 1 disc
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special case: mirror with 1 disc
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some other setups
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broadband response
20 discs with mirror, n=5

• desired bandwidth 50MHz

• find optimal disc positions by 
random walk in 20 dim param 
space
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• miracle: 

• axion-photon conversion can be boosted by 
appropriate disc placement 

• emitted power goes with boost2  
P

A
= 2.2⇥ 10�27 W

m2

✓
Be

10T

◆2

C2
a�fDM •β2
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broadband response

• boosted power emission by 80 layers: 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strategy

operating principles
• equidistant layers: 

• large boost, good S/N
• narrow frequency range
• frequent disk -repositioning required

• slight misalignment of layers: 
• smaller boost,  worse S/N
• broad frequency range
• less repositioning

→trade-off for optimal 
sensitivity
• all disks need individual 

high-precision adjustment

arXiv:1612.07057
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area law
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sensitivity calculation
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• all of previous slides was for an idealized 1D calculation  

• realistic situations include: diffraction, dielectric loss, tilts, 
surface roughness 

• investigated with finite element simulations (FEM) 
• yields approximate values of the  

unknowns at discrete number  
of points over the simulation domain

• subdivides a large problem into  
smaller, simpler parts (called  
finite elements)

• simple equations that model these  
finite elements are then assembled  
 into a larger system of equations  
that models the entire problem

simulation
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FEM simulation

• PDE to solve

• verify simple cases:

• fraction of received power:

• find that power is lost through diffraction
• loss is larger for smaller axion masses
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FEM simulation

• compare FEM to Kirchhoff calculation:

• can reproduce analytical results as far as available
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FEM simulation

• single dielectric disc:
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comparison single disk
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comparison disk plus mirror
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disk plus mirror: convergence
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• convergence is an issue for FEM solvers, even 
in simple cases (mirror plus very few disks)

• impossible to fully simulate 3D model of full 
experiment: 

• convergence
• too much CPU 
• too much memory 

• in the process of developing custom “fast” 
simulation

• could be based on 1D calculations with “fudge” factors 
applied

MADMAX simulation
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MADMAX sketch

mirror

microwave 
receiver

magnet
booster (movable 
dielectric layers)

carriage

vacuum, 
cryo enclosure
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Fake axion

Signal analyzer
(4 samplers, 1.4% dead time)
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receiver test

• Inject fake 18GHz axion signal with 10-22 W power  
• Measurement for 28 hours (integrate signal):  

Receiver at LHe temp. 
! Cross correlation analysis (8kHz Lorentz shaped) 
! found ~5σ signal succesfully 
 
! For 1 week measurement: 

Sensitivity at the level of ~ few 10-23 W 
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MADMAX test setup
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test setup in Munich
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MADMAX prototype

„Wave 
guide“ 

Dielectric discs 
(Saphire) 

Horn 
antenna 

Removable 
copper mirror 

Mirror 
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MADMAX prototype
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probing the boost factor

Boost Factor

Reflectivity

Group Delay
(scaled)

0

80 discs
1

0.5

• boost factor cannot be measured directly
• exploit correlation with observable quantities

arXiv:1612.07057



 45

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.05

0.1

0.15

0.2

0.25

0.3

14 16 18 20 22 24

G
ro

up
 d

el
ay

 [n
s]

 

Re
fle

ct
iv

ity
 

Frequency [GHz] 

Reflectivity Measurement
Reflectivity Simulation
Group Delay Measured
Group Delay Simulated

measurement at test setup



next step: 20 disc setup
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next step: 20 disc setup
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next step: 20 disc setup
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Disk Spacings 
Repeatability

(Fitting Physical Disk Positions)

disc positioning

• match group delay to prediction 
of the 1D model

• discs are physically moved 
during fit

• movement done through special 
algorithms (genetic, Nelder-
Mead,…) 

• figure shows positions after 
repeating procedure multiple 
times

• note that there is degeneracy in 
positions



• challenges:
• huge and strong magnet 10 T (never built before)
• large, thin dielectric media 1m2, to be moved around 

with high precision (in vacuum, cold, strong field) 
• tiny signal, unknown frequency 
• (is DM located here or elsewhere?) 
• coherence:
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MADMAX experiment
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Problem:      find the ideal dielectric material to obtain 
high boost factors 
over a large surface   

ideal dielectric has:
High dielectric constant (ε > 10) for large axion/photon conversion factor

Low loss (tan δ < 10-5) in order to reduce photon loss 

real dielectric = ideal capacitor + equivalent series resistance (ESR) 

ESR should be minimum, i.e. tan δ should be small

dielectric material
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Transparent and Cavity Mode Results: tan ” in Discs
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7 / 12

• note: state of the art uncertainty in  
          tan δ measurement: ~10-6 (see later slides)

• 10-6 can make a significant difference in boost factor 

dielectric material

• boost factor also depends on loss factor:
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dielectric material
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1 m2 dielectric crystals cannot be grown (today)
Solution: tiling 

how to cut dielectric crystals ? (bridle)
how to glue ?
how to test dielectric properties after glueing ? 

test of dielectric disk tiling
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test of dielectric disk tiling
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disc positioning system

• Discs have to be positioned with relative distances between 2 and 20 
mm with few μm precision  

• currently investigating piezo motor technique:
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• commerically available piezo motors have been tested, failed at cold 
temperature

disc positioning system
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magnet

B2·A  ≳100 T2m2 over 2m

first dipole of that size has never been produced:
• design studies by innovation partners
• from prototype to full scale magnet
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magnet
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magnet
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The Forces

<200 Mpa Ppeak stress in conductor
<300 Mpa peak stress in yoke
à Accepatble!

magnet
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Homogeneity

+ 4.6 % / -1.7 %+ 2.4 % / -3.0 %

magnet
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Weight: < 200.000 Kg

Length: 6900 mm

Diameter: 4400 mm

Warm bore: 1350* mm

Operating temperature: ~2 K

Superconducting cable: 35.000 m

Superconducting wire: > 700.000 m NbTi 

So far no show stoppers, the show goes on!

More details by C. Boffo (Bilfinger-Noell) 
tomorrow at 12:15 + poster

magnet
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MADMAX white paper: 

madmax website:  
https://www.mpp.mpg.de/forschung/astroteilchenphysik-und-kosmologie/madmax-suche-nach-axionen-als-dunkler-materie/

MADMAX white paper
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MADMAX collaboration
• MADMAX collaboration formed on 18. October 2017

• MPI Munich
• MPIfR Bonn
• RWTH Aachen
• Universität Hamburg
• Universität Tübingen
• Universidad de Zaragoza
• CEA-IRFU Saclay
• DESY Hamburg
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MADMAX site

• DESY Hamburg (underground hall HERA-north)
• excellent infrastructure (cryogenic supply) 

• location of ALPS-II 

• low EM noise  
environment 

• support from DESY
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HERA north hall

HERA

concrete

concrete

H1 cold box

Electronic Trailer

Iron yoke

Cut

ALPS IIc

ALPS IIc (valve box)

@ DESY HERA hall north

offered to host MADMAX 

HERA yoke
and control room
available
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Build prototype with 20 discs, 30cm diameter
Use inside prototype ( few T) magnet:
à Test feasibility of 1m² booster
à First physics results

VERY PRELIMINARY DESIGN!

:

Mirror + Discs + Mechanics Parabolic

mirro
r

Antenna

prototype
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sensitivity calculation
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time line

2018-2020
Finish Proof of principle phase, 
full understanding of 3D effects

2018-2022
Prototype magnet & booster available
à Integration, first physics runs, 

search for ALPs and hidden photons

Afterwards:
Build final magnet
Build final booster
à Start scanning 10-30GHz 
(40-120 µeV) range



CONCLUSION
Ø Axions could solve strong CP and DM problems
Ø ALPs could solve astrophysical inconsistencies
Ø Mass range 40-400 µeV very well motivated, 

previously no experimental concepts!
Ø Dielectric haloscope could cover

~40-400 µeV axion/ALP mass rang
Ø MADMAX collaboration formed in Oct. 2017
Ø Magnet seems feasible
Ø So far no show stoppers found
Ø : to be continued!
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