Alba Nova and Nordita Colloquium

Stockholm - May 7, 2009

Superconductivity through intra-atomic excitations

Collaborations:

J. Chang, I. Eremin P. McHale P. Thalmeier, G. Zwicknagl • mpipks

Superconductivity

instability of the normal state **——** Cooper-pair formation

Schrödinger equat. for 2 electrons with attrat. $V(\mathbf{r}_1 - \mathbf{r}_2)$ $\longrightarrow \Delta E = -2\omega_D e^{-2/(N(0)V)}$ creation operat. for single pair : $\phi_0^+ = \sum_{\mathbf{k}} g(\mathbf{k}) c_{\mathbf{k}\uparrow}^+ c_{-\mathbf{k}\downarrow}^+$ $\phi(\mathbf{r}_1 - \mathbf{r}_2) = \sum_{\mathbf{k}} g(\mathbf{k}) e^{i\mathbf{k}(\mathbf{r}_1 - \mathbf{r}_2)}$

BCS ground state :

coherent state:
$$|\psi_0\rangle = e^{\phi_0^+}|0\rangle = \exp\left(\sum_{\mathbf{k}}g(\mathbf{k})c^+_{\mathbf{k}\uparrow}c^+_{-\mathbf{k}\downarrow}\right)|0\rangle$$

pairing in time reversed states !

Taking retardation into account: Eliashberg equations for T_c:

$$\longrightarrow = K(\mathbf{p} - \mathbf{p}', \boldsymbol{\omega} - \boldsymbol{\omega}')$$
$$\longrightarrow = G(\mathbf{p}', \boldsymbol{\omega}')$$

filled skutterudites

$$LaOs_4Sb_{12} T_c = 0.74 K$$

 $\mathbf{PrOs}_4 \mathbf{Sb}_{12} \qquad \mathbf{T}_{\mathbf{c}} = 1.85 \text{ K}$

 T_{h} symmetry , presumable isotropic s-wave superconductivity large jump in specific heat : $\Delta C/T_{c} \approx 500 \text{mJ}/(\text{mol} \cdot \text{K}^{2})$

→ strong coupling

only difference : La^{3+} has $4f^0$ while Pr^{3+} has $4f^2$ electrons

phonons are practically the same in both cases

Hund's rules \longrightarrow total J Pr³⁺ \longrightarrow J = 4 9-fold degeneracy

split by CEF of neighborhood

effect of CEF excitations on superconductivity

(P.F., L. Hirst, A. Luther, Z. Phys. 1970)

interactions with cond. electrons

there is also anisotropic exchange, total of 2(2L+1) interactions; usually H_{ex} dominant

PrOs₄Sb₁₂ : from inelast neutron scatt. experiments :

LaOs₄Sb₁₂ : phonon $\omega_E = 26 \text{ meV}$, $\mu^* = 0.1$ $\lambda_{ph} = 0.33 \longrightarrow T_c = 0.74 \text{ K}$

$$\lambda = \lambda_{ph} + \lambda_Q \pm \lambda_M$$

adjusted: $\Delta T_c = 1.11 \text{ K}$ and $\frac{m^*}{m_b} \approx 2.5 \text{ dHvA}$

coupling constants agree with the ones estimated from the dispersion of the magnetic and quadrupolar excitons

 $Pr(Os_{1-x} Ru_x)_4 Sb_{12}$:

CEF splitting increases with x

 T_{c} decreases in agreement with experiment

UPd₂Al₃

SC with $T_c = 1.8 \text{ K}$ AF with $T_N = 14.3 \text{ K}$ $\mathbf{Q} = \left(0, 0, \frac{\pi}{c}\right)$

heavy quasiparticles : $C = \gamma T$; $\gamma = 0.12 \text{ J/mol } \text{K}^2$

50% $5f^2$ from LDA : $n_{5f} \cong 2.5$ and $50\% 5f^3$

Dual Model of 5f electrons

(G. Zwicknagl, A. Yaresko, P.F., 2002)

consider 5f² :
$$j = 5/2$$
 combined to $J = 4, 2, 0$
 $U_{J=2} - U_{J=4} = 1.1 \text{ eV}$ $U_{J=0} - U_{J=4} = 2.8 \text{ eV}$
 $\longrightarrow \Delta U > t$

 $5f^3 \longrightarrow 5f^2$: f^2 must be able to form J = 4 (Hund's rule) state

some of the hybridization matrix element renormal. to zero

→ electrons in some orbitals remain localized

can be studied by microscopic model calculations

Multiplet structure of 5f² system:

only electrons in $|j_z = \pm 3/2\rangle$ are delocalized; $t_{5/2}$ and $t_{1/2}$ renormalized to zero 6 states from $|j_z = \pm 5/2\rangle$ and $|j_z = \pm 1/2\rangle$

6 x 6 matrix: doubly degenerate ground state with $J_z = \pm 3$, J = 4

CEF lifts degeneracy \longrightarrow $|\Gamma_3\rangle$ and $|\Gamma_4\rangle$

$$|\Gamma_{4}\rangle \xrightarrow{\uparrow} |\Gamma_{4}\rangle = \frac{1}{\sqrt{2}}(|+3\rangle + |-3\rangle)$$
$$|\Gamma_{3}\rangle \xrightarrow{\downarrow} |\Gamma_{3}\rangle = \frac{1}{\sqrt{2}}(|+3\rangle - |-3\rangle)$$

coupling of $|\Gamma_3\rangle \longrightarrow |\Gamma_4\rangle$ excitations via conduction electrons magnetic excitons

Magnetic excitations:

 $H_{CF} = \delta \sum_{i} |\Gamma_{4}\rangle \langle \Gamma_{4}|_{i} \qquad \text{(intra-atomic excit.)}$ plus intersite interaction $J(ij) J_{i} J_{j}$ plus coupling to conduction electrons: RKKY

exp: A. Mason + G. Aeppli theory: P. Thalmeier

induced AF: $\mathbf{Q} = (0, 0, 1/2)$ approxim.: $\omega_{\rm E}(\mathbf{q}) = \omega_{\rm ex} \left[1 + \beta \cos(\mathrm{cq}_z) \right]$ $\omega_{\rm ex} = 5 \,\mathrm{meV}$, $\beta = 0.8$

when averaged over q_x , q_y

superconductivity due to intra-atomic excitations

boson :

$$\mathbf{K}(\mathbf{q}_{z},\boldsymbol{\omega}) = \frac{\mathbf{I}^{2}}{2} \frac{\boldsymbol{\omega}_{ex}}{\boldsymbol{\omega}_{\mathbf{q}}^{2} - \boldsymbol{\omega}^{2}}$$

I = coupl. const. cond. electrons with CEF states

search for solutions $\Delta(q_z)$ $\omega_a = \omega_{ex} [1 + \beta \cos cq_z]$

. . .

solution of Eliashberg equations

$$\Delta(\mathbf{p}) = \Delta \cos(c\mathbf{p}_z) \quad \text{or} \quad \Delta(\mathbf{p}) = \Delta \sin(c\mathbf{p}_z)$$

anisotropic thermal conduct. in applied field
 → nodal structure

(Watanabe et al.)

with
$$I = 0.16 \text{ eV}$$
 and $N(E_F) \cong 1 \frac{\text{state}}{\text{eV} \cdot \text{uc}} \longrightarrow T_c = 3K$

scattering of conduct. electrons: no time reversal symmetry

 \rightarrow no s-wave superconduct.

but : if $\Delta(\mathbf{p})$ changes sign pairing is possible

at the same time: $m^*/m_b \cong 10$

from
$$\frac{\mathbf{m}^*}{\mathbf{m}_{\mathrm{b}}} = 1 - \frac{\partial \Sigma}{\partial \omega} \Big|_{\omega=0}$$

	m* (exp)	m* (theory)	
ζ	65	59.6	
γ	33	31.9	
β	19	25.1	
ε2	18	17.4	
E3	12	13.4	
α	5.7	9.6	

no adjustable parameter

Magnetic resonance can be understood too!

$$K(\mathbf{q}, \boldsymbol{\omega}) = \frac{I^2}{2} \frac{\omega_{ex}}{\omega^2 - \omega_q^2 + 2g^2 \Delta_{CEF} \operatorname{Re} \chi_0(\mathbf{q}, \boldsymbol{\omega})}$$

$$\rightarrow \quad \boldsymbol{\omega}^2 = \omega_q^2 - 2g^2 \Delta_{CEF} \operatorname{Re} \chi_0(\mathbf{q}, \boldsymbol{\omega})$$

new pole due to sc. $\chi_0(\mathbf{q}, \boldsymbol{\omega})$
Im $K(\mathbf{q}_z, \boldsymbol{\omega})$ as measured by INS

Conclusions

- intra-atomic low energy excitations (CEF) can result in Cooper pairing
- in the filled skutterudite PrOs₄Sb₁₂ quadrupolar excitations contribute more than 50 % to Cooper-pair formation
- in UPd_2Al_3 superconductivity, the magnet. resonance below T_c and the strong anisotropic mass enhancements can be explained well within the Dual Model