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Outline:

e (Limitations of) scientific measurements

e (Limitations of) calorimeter measurements in particle physics

* Dual-readout calorimetry
e Recent R&D results (DREAM)



Measurements and progress in science

Progress in scientific understanding has gone hand in hand with the
quality of measurements that could be performed

e Biology/medicine:
Invention of microscope — Breakthrough in understanding of the
functioning of living organisms

e Astronomy:

Telescopes have improved understanding of our place in space & time

e (Sub)atomic structure:

Understanding driven by quality of particle accelerators

A = h/p — for studying structure at the level of 10" m (size proton)
one needs a probe with p ~ 10°1° kg.m/s,i.e. ~ 100 MeV/c

Sometimes, further progress is limited by external factors,
not by the intrinsic quality of the instruments



The limiting effects of atmospheric turbulence
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Calorimeters

In particle physics, a calorimeter is a (massive) detector in which the particles
to be detected are completely STOPPED

The absorption process is usually referred to as “shower development™

The detector is instrumented such as to provide signals that make it possible
to determine the particle’s 4-vector

The signals may be provided by:

- Scintillator: The total amount of light produced in the absorption process
is a measure for the energy of the incoming particle
- Liquid argon: The charge liberated in the stopping process provides the signals

-Water: The Cerenkov light serves as the source of information

The segmentation of the instrumented volume makes it possible to determine
the momentum vector of the particles.

The signals in the different calorimeter “towers” indicate the shower axis,
and thus the direction of the incoming particle.

The particle type may be derived from the shower profile, the time structure
of the signals, ....



Calorimetry: Homogeneous calorimeters

* High-density crystals used as electromagnetic calorimeters
Example: CMS ECAL, PbWQOy. Density 8.3 g/cm?3, radiation length 8.9 mm.

e Very good energy resolution
o Very expensive
e Radiation damage a problem

* Other crystals:
Nal(Tl), Csl, BGO, BaF,

o B oy

'CMS Ecal



Calorimetry: Sampling calorimeters

o Different absorber and detector materials

* Better segmentation, energy resolution worse

absorber
detector
absorber
detector

e Absorber media: Fe, Cu, Pb, U, W

e Active media: Scintillator, LAr, gas...

(b

CMS Barrel HCAL




Why calorimetry?

Measure charged + neutral particles v
Obtain information on energy flow: AN e

Total (missing) transverse energy, jets, efc. / R

Obtain information fast
—s recognize and select interesting events 1n real time (trigger)

Performance of calorimeters improves with energy
(~ E"V2 if statistical processes are the limiting factor)

If E o signal,i.e. E o # signal quantan — O(E) & Vn

—> energy resolution % o« I\n « INE



In an ideal calorimeter, resolution scales as E 172
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Important calorimeter features

Energy resolution

Position resolution (need 4-vectors for physics)
Signal speed

Particle ID capability



The importance of (electromagnetic) energy resolution
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The importance of (hadronic) energy resolution
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F1G. 7.51. The WARO calorimeter as a high-resolution spectrometer. Total energy measured
with the calorimeter for minimum-bias events revealed the composition of the momen-
tum-selected CERN heavy-ion beam [You 89].



The importance of (hadronic) energy resolution (2)
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F1G. 7.50. Two-jet invariant mass distributions from the UA2 experiment [Alit 91]. Diagram
@) shows the measured data points, together with the results of the best fits to the QCD
background alone (dashed curve), or including the sum of two Gaussian functions describing
W, 7 — gq decays. Diagram b) shows the same data after subtracting the QCD background.
The data are compatible with peaks at myy = 80 GeV and m z = 90 GeV. The measured width
of the bump, or rather the standard deviation of the mass distribution, was 8 GeV, of which 5
(GeV could be attributed to non-ideal calorimeter performance [Jen 88].



Particle identification with calorimeters

e/T separation using time structure signals
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Calorimeters

Electromagnetic shower development

Processes that play a role in total absorption of high-energy particles
are more complicated than just ionization of the traversed material

m Electrons: “bremsstrahlung” . Photons: Compton effect, pair production

= Radiation of real photons in the Coulomb field of the nuclei of the medium O

m Any deflection of the electron from its original trajectory
accompanied by radiation of photons and deceleration of electrons

= Photo-electric effect ncident photon'\
1 E
5 __r
O-ph—el oC Z R &= 2
& m,c

= Compton scattering: vy +e -y + ¢’

Ing
o, €—
&
= Pair production: y + nucleus — et e- + nucleus
m Process independent of energy
s Dominates at high energies

o« Z*

o)

pair



Calorimeters

Electromagnetic shower development

When a high-energy electron or photon enters
a calorimeter, its energy is absorbed in a
cascade of processes in which many
different “shower” particles are
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Calorimeters

Hadronic shower development

m There are many more processes involved in hadronic shower development.
Also, some fraction of the energy is deposited through electromagnetic cascades

" A hadronic shower consists of two components

n Flectromagnetic component : -
1 ABSORBER (4
m electrons, photons ! - } Em

= neutral pions — 2y | component
= Hadronic (non-em) component O S S - } Non-em

m charged hadrons n* K* RNNZ component

= nuclear fragments, p ) A | s ruclear fragment

= neutrons, neutrino’s, soft y's |

m break-up of nuclei (“invisible”)

»  Hadronic shower development governed by nuclear interaction length A
A is typically > X, ~20 cm —> it takes tonnes to contain hadronic showers

®  Hadronic showers are characterized by very large fluctuations

»  Calorimetric techniques are destructive, but work for charged + neutral particles

m Charged particles: complementary information to momentum measurement
m Neutral particles: only way to obtain kinematic information



The calorimeter response to the two shower components
is NOT the same

(mainly because of nuclear breakup energy losses in non-n° component)
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Hadronic shower profiles: Fluctuations!
n® production may take place anywhere in the absorber
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F1G. 2.35. Longitudinal profiles for 4 different showers induced by 270 GeV pions in a
lead/iron/plastic-scintillator calorimeter. Data from [Gre 94].



(Fluctuations in) the electromagnetic shower fraction, f,,,

i.e. the fraction of the shower energy deposited by 1°s
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Consequences for LHC calorimeters
Hadronic response and signal linearity (CMS)

CMS pays a price for its focus on em energy resolution
ECAL has e/h =2.4,while HCAL has e/h=1.3

—> Response depends strongly on starting point shower
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Consequences for LHC calorimeters
Hadronic energy resolution (ATLAS): no E!? scaling

Energy (GeV) —
8 11 16 25 44 100 400 o0
25 T T T T T T T
§ 20 - \\\\
5 N
3 15¢F -
= S~
o S
Tp RS
8 10 o~ ~
> [ o
= — o/E= == ®e . _
M 5 VE @~ - - _ _
_ 05
---0/E= JE @ 0.05
() 1 1 1 1 1 | 1
0.4 0.3 0.2 0.1 0



Consequences for LHC calorimeters

Different response functions for (300 GeV) p, T
CMS
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Important calorimeter features

e Energy resolution
e Position resolution (need 4-vectors for physics)

e Signal speed
e Particle ID capability
but also
e Gaussian response function (avoid bias for steeply falling distributions)
o Signal linearity, or at least

o Well known relationship between signal & energy (reliable calibration)

Most hadron calorimeters fall short in this respect



Design goal ILC/CLIC: separate W,Z — qq

* Hadronic energy resolution very important for this multi-jet spectroscopy.

LEP-like detector LC design goal

AE,, = 0.60 & ol AR =B A0NE A ] ]

o No kinematic constraints as in LEP (beamstrahlung)



Hadron Detection in CMS
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Fluctuations in the em shower component ( f,,. )

o Why are these important ?

- Electromagnetic calorimeter response # non-em response (e/h # /)
- Event-to-event fluctuations are large and non-Gaussian
- <fom> depends on shower energy and age

e Cause of all common problems in hadron calorimeters

- Energy scale different from electrons, in energy-dependent way
- Hadronic non-linearity

- Non-Gaussian response function

- Poor energy resolution

- Calibration of the sections of a longitudinally segmented detector



Recent results from the DREAM ¥ project

* DREAM 1s a collaboration of US and Italian institutions
TTU, UCSD, ISU (USA), PV, RM1, CS, CG, PI(I)



An attractive option for improving the quality of hadron calorimetry:

Use Cerenkov light!! Why?

em component (T°)

Hadron showers < non-em component (mainly soft p)

Calorimeter response to these components not the same (¢//1 # 1)

Cerenkov light almost exclusively produced by em component %
(~80% of non-em energy deposited by non-relativistic particles)

= DREAM (Dual REAdout Method) principle:
Measure f,,, event by event by comparing C and dE/dx signals

* How do we know this?

-CMS HEFE: e/h ~ 5
- LLateral profiles of hadronic showers



Radial hadron shower profiles (DREAM)
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DREAM: Structure

—2.5 mm-
~— 4 mm——-

e Some characteristics of the DREAM detector

- Depth 200 cm (10.0 Ajyt)

Effective radius 16.2 cm (0.81 Aint, 8.0 pyr)

Mass instrumented volume 1030 kg

Number of fibers 35910, diameter 0.8 mm, total length &~ 90 km

Hexagonal towers (19), each read out by 2 PMTs



DREAM readout
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DREAM: How to determine f, and E?
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DREAM: Signal dependence on f{.,,
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Calorimeter response
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DREAM: Eftect of corrections (200 GeV "jets")
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CONCLUSIONS

from tests

e DREAM offers a powerful technique to /71prove hadronic calorimeter performance:
- Correct hadronic energy reconstruction, in an instrument calibrated with electrons!

- Linearity for hadrons and jets

- Gaussian response functions

- Energy resolution scales with 1/vE

- 0/E < 5% for high-energy "jets", in a detector with a mass of only | ton!

dominated by fluctuations in shower leakage

e These, and many other, experimental results are described in 3 papers:

Hadrons & jets: Nucl. Instr. & Meth. A537 (2005) 537
Electrons: Nucl. Instr. & Meth. A536 (2005) 29
Muons: Nucl. Instr. & Meth. A533 (2004) 305



How to improve DREAM performance

e Build a larger detector — reduce effects side leakage



DREAM: The importance of leakage and its fluctuations

Lateral shower containment (Tt)
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How to improve DREAM performance ?

e Build a larger detector — reduce effects side leakage

e Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/VE

No reason why DREAM principle 1s limited to fiber calorimeters

Homogeneous detector ?!
—> Need to separate the light into its C, S components



Cerenkov component in light from PbWO, crystals?

e Light yield typically ~10 p.e./MeV (dependent on T, readout)

o Lead glass: 500 - 1000 p.e./GeV from Cerenkov effect (3 - 5%/\/E)
—— Expect substantial C component in PbWO, signals

e How to detect / isolate Cerenkov component?

- Directionality of Cerenkov component
- Time structure of the signals
- Spectral differences



Experimental setup Cerenkov measurements
(directionality)

A\

n=22,cos 0.=1/n — 6.=63°
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0<0 — L>R
0>0 — L<R

Measure ﬁ;g (0)




Experimental results PbWQO, : Directionality
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Experimental results PoWQO,: Time structure of the signals

The importance of time resolution for the PbWQO, signals
(0.4 ns sampling oscilloscope)

20_""|""|""|""|""|""
[ -~ '9=3OOO
[ aii v 9=-30
o I £ 30°-(30°)
SO , | 0
2 30| I
= | v | & -10}
E _40_ iy ‘v _Ng
0| . . ] 5 -20f
56 [ v 1 .80 :
-50 . 192
[ k4 y‘ ] -30'
60 | . ‘vv ] [
[ W -40
70 ¢ ]
C P P P ST S [T S CRCRS N ST (RCRS] [ SRLRY T SRR Sl _50 PR
10 20 30 40 50 60 0 10

Time (ns) Time (ns)

Figure 12: Average time structure of the signals measured with the PMT reading out one end (L) of a PbWO,
crystal traversed by 10 GeV electrons, for two different orientations of the crystal, and the difference between these
two time distributions. At & = —30°, Cerenkov light contributes to the signals, at = 30°, it does not [14, 15].
When the crystal was read out from the other side, the prompt excess signal was detected for # = 30°, and was
absent for § = —30° [15].
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A new crystal: BGO!!

Disadvantage compared to PbWO,:
A much brighter scintillator, C/S factor 100 smaller

Advantages:
- Scintillation spectrum peaks at 480 nm — use filters

- Decay time scintillaton 300 ns (very different from prompt)

—> More (and better) options to isolate Cerenkov signal



The Cerenkov component in BGO signals
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Cerenkov and Scintillator information from one signal !
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Figure 14: The time structure of a typical shower signal measured in the BGO em calorimeter equipped with a
UV filter. These signals were measured with a sampling oscilloscope, which took a sample every 0.8 ns. The UV
BGO signals were used to measure the relative contributions of scintillation light (gate 2) and Cerenkov light (gate
1) [15].



lest setup hybrid calorimeter system (BGO + fibers)

ECAL _
3]
beam %
2 4

Figure 15: The calorimeter during installation in the H4 test beam, which runs from the bottom left corner to the
top right corner in this picture. The 100-crystal BGO matrix is located upstream of the fiber calorimeter, and is read
out by 4 PMTs on the left (small end face) side.
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Figure 16: Schematic of the experimental setup in the beam line in which the hybrid calorimeter system was tested
(see text for details). Also shown is the occurrence and development of a multi-particle event (“jet”) originating in
the upstream target [17].
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Figure 17: The Cerenkov signal distribution for 200 GeV “jet” events detected in the BGO + fiber calorimeter
system (a) together with the distributions for subsets of events selected on the basis of the ratio of the total Cerenkov
and scintillation signals in this detector combination () [17].



First results of new, dedicated DREAM crystals
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Figure 3: Unraveling of the signals from a Mo-doped PbWOy crystal into Cerenkov and scintillation components.
The experimental setup is shown in diagram a. The two sides of the crystal were equipped with a UV filter (side
R) and a yellow filter (side L), respectively. The signals from 50 GeV electrons traversing the crystal are shown
in diagram b, and the angular dependence of the ratio of these two signals is shown in diagram c [6].



How to improve DREAM performance

e Build a larger detector — reduce effects side leakage

o Increase Cerenkov light yield
DREAM: 8 p.e./GeV — fluctuations contribute 35%/VE
No reason why DREAM principle 1s limited to fiber calorimeters
Homogeneous detector ?/
—> Need to separate the light into its C, S components

e For ultimate hadron calorimetry (15%/\/E): Measure Ey;, (neutrons)
Is correlated to nuclear binding energy loss (invisible energy)

Can be inferred from the time structure of the signals



Neutron contribution to calorimeter signals
What to expect?

e > 95% of neutrons produced in nuclear deexcitation: <Ep> ~ 3 MeV
* These neutrons lose their energy predominantly through elastic scattering

e Energy loss in elastic scattering ~ Al > free protons dominate this process

e Density of free protons in DREAM (plastic fibers): 8- 10! p/cm?
e Cross section for elastic n-p scattering: 2.2 b (3 MeV) —> 12 b (0.1 MeV)

e Me¢an free path between elastic n-p scattering events: 56 cm —> 10 cm

e Average time between subsequent #n-p scattering events: 23 ns
(independent of E,, —» expect exponential tail in time structure signals)
* Neutrons lose on average 50% of their kinetic energy in elastic n-p scattering

—> FE;, (n) reduced to e~! in 33 ns  if other processes are negligible

e Other processes through which neutrons may lose energy:
Elastic scattering off C,Si,Cu, inelastic scattering —» expect T, ~ 25 ns



Time structure of the DREAM signals: the neutron tail
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The em and neutron signal fractions are anti-correlated
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Figure 4: Scatter plot of the fraction of the scintillation light contained in the (20 ns)
exponentional tail versus the Cerenkov/scintillation signal ratio measured
in these events [9].



Probing the total signal distribution with the neutron fraction
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Figure 18: Distribution of the total Cerenkov signal for 200 GeV “jets” and the distributions for three subsets of
events selected on the basis of the fractional contribution of neutrons to the scintillator signal [9].



Neutron information can be used to improve the response function
and the energy resolution
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Figure 19: Distribution of the total Cerenkov signal for 200 GeV “jets” before (a) and after (b) applying the
correction based on the measured value of f,,, described in the text. Relative width of the Cerenkov signal distri-
bution for “jets” as a function of energy, before and after a correction that was applied on the basis of the relative
contribution of neutrons to the scintillator signals (c) [9].



Neutron information is complementary to f,
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Plans for the Future

DREAM road map:

Eliminate the dominating sources of fluctuations one after the other

e Fluctuations in the em shower fraction \/

e Fluctuations in Cerenkov light yield |
> Develop dedicated crystal(s)

e Sampling fluctuations in progress

 Fluctuations in invisible energy \/

Then build a full-scale prototype calorimeter
Proposals to funding agencies submitted



Conclusions (R&D)

e The DREAM approach combines the advantages of compensating
calorimetry with a reasonable amount of design flexibility

e The dominating factors that limited the hadronic resolution of
compensating calorimeters (ZEUS, SPACAL) to 30 - 35%/\/E can be
eliminated

e The theoretical resolution limit for hadron calorimeters (15%/\/E)
seems within reach

* The DREAM project holds the promise of high-quality calorimetry for
all types of particles, with an mmstrument that can be calibrated with

electrons



How about Compensating Calorimeters?

e ¢/h = 1.0 can be achieved by design.
e Use hydrogenous readout, to boost response to shower neutrons

e Has been demonstrated for U/plastic and Pb/plastic calorimeters
Energy resolution 30-35 %NE



Pros & Cons of Compensating Calorimeters

Pros
® Same energy scale for electrons, hadrons and jets. No ifs, ands or buts.

® Calibrate with electrons and you are done.
® Excellent hadronic energy resolution (SPACAL: 30%/\E).
® Linearity, Gaussian response function and all that good stuff.

® Compensation fully understood.
We know how to build these things, even though GEANT doesn t

Cons

® Small sampling fraction (2.4% in Pb/plastic)
—> em energy resolution limited to 10-15%/\E

® Compensation relies on detecting neutrons
—> Large integration volume
—> Long integration time (~50 ns)



Benchmark data for hadronic Monte Carlo
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FIG. 8.27. Calorimeter benchmark data for testing the correct implementation of 7° produc-
tion in Monte Carlo simulations of hadronic shower development. Experimental data from a
copper/quartz-fiber calorimeter, showing the 7 /e signal ratio as a function of energy (), the

response to protons and pions, as well as the ratio of these responses, as a function of energy
(b), the response functions to 300 GeV pions (¢) and protons (d), and the energy resolutions
for pions and protons as a function of energy (e) [Akc 97].



Benchmark data for hadronic Monte Carlo

Test of description neutron effects
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Figure 25: Calorimeter benchmark data
for testing the correct implementation of
neutron scatteving data in Monte Carlo
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