## Supersymmetric models for lattice fermions: critical in 1D, frustrated in 2D

Liza Huijse University of Amsterdam Nordita Seminar – Jan 16, 2009

#### **Acknowledgements & references**

K. Schoutens, UvA P. Fendley, J. Halverson, UVA

P. Fendley, K. Schoutens, J. de Boer, PRL (2003)L. Huijse, K. Schoutens, EPJ B (2008)L. Huijse, J. Halverson, P. Fendley, K. Schoutens, PRL (2008)

#### condensed matter theory:

microscopic constituent vs macroscopic behavior of solids **many-body quantum mechanics:** strip down the problem: study lattice models



V

#### **Lattice models**

#### configurations:

electrons located on the sites of an ionic lattice in a solid

#### Hamiltonian (energy operator):

typically a sum of kinetic (hopping) terms and short range repulsive interactions

typical example (tV model):

$$H_{tV} = t \sum_{\langle ij \rangle} [c_i^+ c_j^+ c_j^+ c_i^-] + V \sum_{\langle ij \rangle} n_i n_j^- \mu N_f^-$$



 $\left\{c_i^+,c_j^-\right\} = \delta_{ij}$ 

 $n_i = c_i^+ c_i$ 

 $N_f = \sum n_i$ 

#### **Motivation**

challenge: understand strongly repelling lattice fermions at densities intermediate between the lowdensity Fermi-liquid and a high-density Mott insulator.







Fermi liquid

Mott insulator

hardly any analytical tools (non-perturbative regime) hardly any numerical results (Fermi sign problem)

#### **Supersymmetric model for lattice fermions**

#### allows for various analytical results:

- quantum criticality in 1D
- (CFT description of continuum limit)
- superfrustration in 2D

(extensive ground state entropy)

#### ground states sit at intermediate density:

degeneracy is due to subtle interplay between kinetic and potential terms.

#### Outline

➤ Supersymmetric QM

- $\succ$  The model
- Powerful tool: Witten index
- Superfrustration in 2D
- $\succ$  Quantum criticality in 1D
- Critical egde modes

#### Supersymmetric QM

#### **Supersymmetric QM: algebraic structure**

susy charges  $Q^+$ ,  $Q^-=(Q^+)^+$  and fermion number  $N_f$ :

$$(\mathbf{Q}^{+})^{2} = 0, \ (\mathbf{Q}^{-})^{2} = 0, \ [N_{f}, \mathbf{Q}^{\pm}] = \pm \mathbf{Q}^{\pm}$$

Hamiltonian defined as

$$H = \left\{ \mathbf{Q}^+, \mathbf{Q}^- \right\}$$

satisfies

$$[H, Q^+] = [H, Q^-] = 0, \quad [H, N_f] = 0$$

#### **Spectrum of supersymmetric QM**

- $E \ge o$  for all states
- E > o states are paired into doublets of the susy algebra  $\{|\psi\rangle, Q^+ |\psi\rangle\}, \quad Q^- |\psi\rangle = 0$
- E = o iff a state is a singlet under the susy algebra

$$\mathbf{Q}^{+}|\psi\rangle = \mathbf{Q}^{-}|\psi\rangle = 0$$

if E = o ground state exist, supersymmetry is unbroken.

$$W = \operatorname{tr}(-1)^{N_f} e^{(-\beta H)}$$

Independent of  $\beta$ : E>0 doublets:  $\{|\psi\rangle, Q^+|\psi\rangle\}$ have f and f+1 particles and same energy

$$\rightarrow W = \operatorname{tr}(-1)^{N_f}$$

|W| is lower bound on # of GS

#### The model

configurations: lattice fermions with nearest neighbor exclusion



nilpotent supercharges, respecting exclusion rule:

$$Q^{+} = \sum_{i} c_{i}^{+} \prod_{\delta} (1 - n_{i+\delta}), \quad Q^{-} = (Q^{+})^{+} \qquad n_{i} = c_{i}^{+} c_{i}$$

Hamiltonian: kinetic (hopping) plus potential terms

$$H = \left\{ \mathbf{Q}^+, \mathbf{Q}^- \right\} = H_{kin} + H_{pot}$$



#### **Basic susy model in 1***D*

supercharges

$$Q^{+} = \sum_{i} (1 - n_{i-1})c_{i}^{+}(1 - n_{i+1}), \quad Q^{-} = (Q^{+})^{+}$$

Hamiltonian:

$$H = \sum_{i} \left[ (1 - n_{i-1})c_{i}^{+}c_{i+1}(1 - n_{i+2}) + \text{h.c.} \right] + \sum_{i} n_{i-1}n_{i+1} - 2N_{f} + L$$

#### *L*=6 model: Witten index

 $W = \mathrm{Tr}((-1)^{N_f} e^{-\beta H})$ 



#### *L*=6 model: Witten index

$$W = \mathrm{Tr}((-1)^{N_f} e^{-\beta H})$$

 $N_f = 0$ : 1 state  $N_f = 1$ : 6 states  $N_f = 2$ : 9 states  $N_f = 3$ : 2 states

#### *L*=6 model: Witten index

$$W = \mathrm{Tr}((-1)^{N_f} e^{-\beta H})$$

 $N_f = 0$ : 1 state  $N_f = 1$ : 6 states  $N_f = 2$ : 9 states  $N_f = 3$ : 2 states

$$\Rightarrow W = 1 - 6 + 9 - 2 = 2$$

#### **Spectrum for** *L***=***6* **sites**



Superfrustration in 2D

#### **Triangular lattice: Witten index**

### NB Lower bound to the number of ground states!



|    | 1 | 2    | 3    | 4     | 5      | 6       | 7        | 8        | 9         | 10         |
|----|---|------|------|-------|--------|---------|----------|----------|-----------|------------|
| 1  | 1 | 1    | 1    | 1     | 1      | 1       | 1        | 1        | 1         | 1          |
| 2  | 1 | -3   | -5   | 1     | 11     | 9       | -13      | -31      | -5        | 57         |
| 3  | 1 | -5   | -2   | 7     | 1      | -14     | 1        | 31       | -2        | -65        |
| 4  | 1 | 1    | 7    | -23   | 11     | 25      | -69      | 193      | -29       | -279       |
| 5  | 1 | 11   | 1    | 11    | 36     | -49     | 211      | -349     | 811       | -1064      |
| 6  | 1 | 9    | -14  | 25    | -49    | -102    | -13      | -415     | 1462      | -4911      |
| 7  | 1 | -13  | 1    | -69   | 211    | -13     | -797     | 3403     | -7055     | 5237       |
| 8  | 1 | -31  | 31   | 193   | -349   | -415    | 3403     | 881      | -28517    | 50849      |
| 9  | 1 | -5   | -2   | -29   | 881    | 1462    | -7055    | -28517   | 31399     | 313315     |
| 10 | 1 | 57   | -65  | -279  | -1064  | -4911   | 5237     | 50849    | 313315    | 950592     |
| 11 | 1 | 67   | 1    | 859   | 1651   | 12607   | 32418    | 159083   | 499060    | 2011307    |
| 12 | 1 | -47  | 130  | -1295 | -589   | -26006  | -152697  | -535895  | -2573258  | -3973827   |
| 13 | 1 | -181 | 1    | -77   | -1949  | 67523   | 330331   | -595373  | -10989458 | -49705161  |
| 14 | 1 | -87  | -257 | 3641  | 12611  | -139935 | -235717  | 5651377  | 4765189   | -232675057 |
| 15 | 1 | 275  | -2   | -8053 | -32664 | 272486  | -1184714 | -1867189 | 134858383 | -702709340 |



#### Hexagonal lattice: Witten index

|    | 2  | 4  | 6    | 8     | 10    | 12     | 14      | 16       | 18        |
|----|----|----|------|-------|-------|--------|---------|----------|-----------|
| 2  | -1 | -1 | 2    | -1    | -1    | 2      | -1      | -1       | 2         |
| 4  | 3  | 7  | 18   | 47    | 123   | 322    | 843     | 2207     | 5778      |
| 6  | -1 | -1 | 32   | -73   | 44    | 356    | -1387   | 2087     | 2435      |
| 8  | 3  | 7  | 18   | 55    | 123   | 322    | 843     | 2215     | 5778      |
| 10 | -1 | -1 | 152  | -321  | -171  | 7412   | -26496  | 10079    | 393767    |
| 12 | 3  | 7  | 156  | 1511  | 6648  | 29224  | 150069  | 1039991  | 6208815   |
| 14 | -1 | -1 | 338  | 727   | -5671 | 1850   | 183560  | -279497  | -4542907  |
| 16 | 3  | 7  | 1362 | 12183 | 31803 | 379810 | 5970107 | 55449303 | 327070578 |
|    |    |    |      |       |       |        |         |          |           |

Hexagonal lattice: Witten index



#### Superfrustration

|        | 2  | 4  | 6    | 8     | 10    | 12     | 14      | 16       | 18        |
|--------|----|----|------|-------|-------|--------|---------|----------|-----------|
| $^{2}$ | -1 | -1 | 2    | -1    | -1    | 2      | -1      | -1       | 2         |
| 4      | 3  | 7  | 18   | 47    | 123   | 322    | 843     | 2207     | 5778      |
| 6      | -1 | -1 | 32   | -73   | 44    | 356    | -1387   | 2087     | 2435      |
| 8      | 3  | 7  | 18   | 55    | 123   | 322    | 843     | 2215     | 5778      |
| 10     | -1 | -1 | 152  | -321  | -171  | 7412   | -26496  | 10079    | 393767    |
| 12     | 3  | 7  | 156  | 1511  | 6648  | 29224  | 150069  | 1039991  | 6208815   |
| 14     | -1 | -1 | 338  | 727   | -5671 | 1850   | 183560  | -279497  | -4542907  |
| 16     | 3  | 7  | 1362 | 12183 | 31803 | 379810 | 5970107 | 55449303 | 327070578 |
|        | 1  |    |      |       |       |        |         | _        | _         |

#### **Square lattice: Witten index**



|    | 1 | 2  | 3 | 4 | 5  | 6  | 7   | 8  | 9  | 10 | 11 | 12  | 13  | 14  | 15  | 16  | 17 | 18  | 19 | 20       |
|----|---|----|---|---|----|----|-----|----|----|----|----|-----|-----|-----|-----|-----|----|-----|----|----------|
| 1  | 1 | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1  | 1   | 1  | 1        |
| 2  | 1 | -1 | 1 | 3 | 1  | -1 | 1   | 3  | 1  | -1 | 1  | 3   | 1   | -1  | 1   | 3   | 1  | -1  | 1  | 3        |
| 3  | 1 | 1  | 4 | 1 | 1  | 4  | 1   | 1  | 4  | 1  | 1  | 4   | 1   | 1   | 4   | 1   | 1  | 4   | 1  | 1        |
| 4  | 1 | 3  | 1 | 7 | 1  | 3  | 1   | 7  | 1  | 3  | 1  | 7   | 1   | 3   | 1   | 7   | 1  | 3   | 1  | 7        |
| 5  | 1 | 1  | 1 | 1 | -9 | 1  | 1   | 1  | 1  | 11 | 1  | 1   | 1   | 1   | -9  | 1   | 1  | 1   | 1  | 11       |
| 6  | 1 | -1 | 4 | 3 | 1  | 14 | 1   | 3  | 4  | -1 | 1  | 18  | 1   | -1  | 4   | 3   | 1  | 14  | 1  | 3        |
| 7  | 1 | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1   | 1   | -27 | 1   | 1   | 1  | 1   | 1  | 1        |
| 8  | 1 | 3  | 1 | 7 | 1  | 3  | 1   | 7  | 1  | 43 | 1  | 7   | 1   | 3   | 1   | 7   | 1  | 3   | 1  | 47       |
| 9  | 1 | 1  | 4 | 1 | 1  | 4  | 1   | 1  | 40 | 1  | 1  | 4   | 1   | 1   | 4   | 1   | 1  | 76  | 1  | 1        |
| 10 | 1 | -1 | 1 | 3 | 11 | -1 | 1   | 43 | 1  | 9  | 1  | 3   | 1   | 69  | 11  | 43  | 1  | -1  | 1  | 13       |
| 11 | 1 | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1   | 1   | 1   | 1   | 1   | 1  | 1   | 1  | 1        |
| 12 | 1 | 3  | 4 | 7 | 1  | 18 | 1   | 7  | 4  | 3  | 1  | 166 | 1   | 3   | 4   | 7   | 1  | 126 | 1  | <b>7</b> |
| 13 | 1 | 1  | 1 | 1 | 1  | 1  | 1   | 1  | 1  | 1  | 1  | 1   | -51 | 1   | 1   | 1   | 1  | 1   | 1  | 1        |
| 14 | 1 | -1 | 1 | 3 | 1  | -1 | -27 | 3  | 1  | 69 | 1  | 3   | 1   | 55  | 1   | 451 | 1  | -1  | 1  | 73       |
| 15 | 1 | 1  | 4 | 1 | -9 | 4  | 1   | 1  | 4  | 11 | 1  | 4   | 1   | 1   | 174 | 1   | 1  | 4   | 1  | 11       |
|    |   |    |   |   |    |    |     |    |    |    |    |     |     |     |     |     |    |     |    |          |

#### **Square lattice: Witten index**

Witten index is related to tiling configurations

Theorem [Jonsson]:





t is the number of tilings u and v give the periodicities

#### **Square lattice: cohomology**

 $\vec{u} = (m, -m)$ 

total number of GS is related to tiling configurations

Theorem [LH, Halverson, Fendley, Schoutens]:

$$# \text{ GS} = t_{even} + t_{odd} - (-1)^{(\theta_m + 1)p} \theta_{d_-} \theta_{d_+}$$
$$d_{\pm} = \gcd(u_1 \pm u_2, v_1 \pm v_2)$$
$$\theta_{3p} = 2 \quad \theta_{3p\pm 1} = -1$$
$$v_1 + v_2 = 3p$$
$$t \text{ is the number of tiling}$$

t is the number of tilings u and v give the periodicities

#### **Square lattice: physics**

- square lattice: # GS grows exponentially with the linear dimensions of the system
- zero energy ground states at intermediate filling:

$$\frac{N_f}{L} \in [1/5, 1/4] \cap \mathbb{Q}$$



#### Quantum criticality in 1D

#### **Quantum criticality in 1D lattice models**

- correlation length diverges (powerlaw decay)
- in continuum limit: there is no scale (lattice spacing vanishes, correlation length diverges)
- massless/gapless system
- conformal invariance (angle preserving transformations)
- continuum limit of 1D critical lattice model is described by a 1+1D CFT
- direct relation between states in the lattice model and states in the CFT



$$S = \frac{2}{3\pi} \int dx \, dt \, \left[ (\partial_t \Phi)^2 - (\partial_x \Phi)^2 \right]$$

#### **N=2 SCFT description for the chain**

$$S = \frac{2}{3\pi} \int dx \, dt \, \left[ (\partial_t \Phi)^2 - (\partial_x \Phi)^2 \right]$$

vertex operators:  $V_{m,n} = \exp(\imath m \Phi + \imath n \tilde{\Phi})$ 

$$\Phi = \Phi_L + \Phi_R, \ \tilde{\Phi} = \frac{2}{3}(\Phi_L - \Phi_R)$$
  
conformal dimensions:  $h_{L,R} = \frac{3}{8}(m \pm \frac{2}{3}n)^2$ 

Ramond sector:  $(-1)^{m+2n} = -1$ 

#### **N=2 SCFT description for the chain**

states in lattice model correspond to operators acting on the vacuum in the SCFT:  $V_{m,n}|0\rangle$ 

the corresponding energy is:  $(h_L + h_R - c/12)$ 

for finite size:  $E_{\text{num}} = E_{\text{CFT}} v_F / L = (h_L + h_R - c/12) v_F / L$ 

#### **N=2 SCFT description for the chain**

states in lattice model correspond to operators<br/>acting on the vacuum in the SCFT: $V_{m,n}|0\rangle$ 

the corresponding energy is:  $(h_L + h_R - c/12)$ 

for finite size:  $E_{\text{num}} = E_{\text{CFT}} v_F / L = (h_L + h_R - c/12) v_F / L$ 

U(1) charges (Kac-Moody algebra):  $q_{L,R} = n/3 \pm m/2$ 

fermion number:  $N_f - N_{f_{GS}} = q_L - q_R = m$ 

momentum:  $P = (Q_0 \pi + 2\pi (h_L - h_R)/L) \mod 2\pi$  $Q_0 = q_L + q_R = 2n/3$ 

$$L_{-k,L}L_{-l,R}|h_L,h_R\rangle = |h_L+k,h_R+l\rangle$$

$$\begin{split} L_{-k,L}L_{-l,R}|h_L,h_R\rangle &= |h_L+k,h_R+l\rangle\\ &\rightarrow E = h_L+k+h_R+l-c/12\\ P &= (Q_0\pi+2\pi(h_L+k-h_R-l)/L) \mod 2\pi \end{split}$$



$$L_{-k,L}L_{-l,R}|h_L,h_R\rangle = |h_L+k,h_R+l\rangle$$
  

$$\rightarrow E = h_L+k+h_R+l-c/12$$
  

$$P = (Q_0\pi + 2\pi(h_L+k-h_R-l)/L) \mod 2\pi$$



$$L_{-k,L}L_{-l,R}|h_L,h_R\rangle = |h_L+k,h_R+l\rangle$$
  

$$\rightarrow E = h_L+k+h_R+l-c/12$$
  

$$P = (Q_0\pi + 2\pi(h_L+k-h_R-l)/L) \mod 2\pi$$



$$L_{-k,L}L_{-l,R}|h_L,h_R\rangle = |h_L+k,h_R+l\rangle$$
  

$$\rightarrow E = h_L+k+h_R+l-c/12$$
  

$$P = (Q_0\pi + 2\pi(h_L+k-h_R-l)/L) \mod 2\pi$$



$$L_{-k,L}L_{-l,R}|h_L,h_R\rangle = |h_L+k,h_R+l\rangle$$
  

$$\rightarrow E = h_L+k+h_R+l-c/12$$
  

$$P = (Q_0\pi + 2\pi(h_L+k-h_R-l)/L) \mod 2\pi$$



$$L_{-k,L}L_{-l,R}|h_L,h_R\rangle = |h_L + k,h_R + l\rangle$$
  
 $\to E = h_L + k + h_R + l - c/12$   
 $P = (Q_0\pi + 2\pi(h_L + k - h_R - l)/L) \mod 2\pi$ 



Spectrum for 1D chain, L=27, N<sub>f</sub>=9



Spectral flow

wave function picks up a phase  $exp(2\pi i\alpha)$  as a particle hops over a "boundary"

twist: 
$$\alpha: o \Leftrightarrow 1/2$$
  
"pbc  $\Leftrightarrow$  apbc" = "R  $\Leftrightarrow$  NS sector"

in SCFT: twist operator:  $V_{o,a}$  $\rightarrow$  energy is parabolic function of twist parameter

$$E_{\alpha} = E_0 - Q_0 \alpha + \alpha^2 c/3$$
$$R \leftrightarrow \alpha = 0, NS \leftrightarrow \alpha = 1/2$$

#### Spectral flow for 1D chain, L=27, $N_f$ =9

Energy \* L



#### Spectral flow for 1D chain, L=27, $N_f=9$

Energy \* L



# Spectral flow for 1D chain, L=27, N<sub>f</sub>=9 Energy \* L What can we learn from spectral flow?

What can we learn from these fits?



#### What can we learn from spectral flow?

- 3 fit parameters
- 4 unknowns:  $E, Q_0, c \text{ and } v_F$
- $\rightarrow$  ratios
- for 1D chain we extract:

#### numerics

| sector | E/c    | Q <sub>0</sub> /c | C*V <sub>F</sub> |
|--------|--------|-------------------|------------------|
| R      | 0      | -0.334            | 3.92             |
| NS     | -0.083 | 0                 | 3.92             |
| R      | 0      | 0.342             | 3.89             |
| NS     | 0.254  | 0.675             | 3.89             |



SCFT

| state               | E     | Q <sub>0</sub> |
|---------------------|-------|----------------|
| V <sub>0,1/2</sub>  | 0     | -1/3           |
| V <sub>0,0</sub>    | -1/12 | 0              |
| V <sub>0,-1/2</sub> | 0     | 1/3            |
| V <sub>0,-1</sub>   | 1/4   | 2/3            |

#### What can we learn from spectral flow?

→ very accurate, also for very small system sizes: L=6: NS:  $(E/c,Q_o/c)=(-0.085,0)$  and R: (0,-0.337)!NB: no extrapolation for L to infinity necessary!

#### numerics

| sector | E/c    | Q <sub>0</sub> /c | C*V <sub>F</sub> |
|--------|--------|-------------------|------------------|
| R      | 0      | -0.334            | 3.92             |
| NS     | -0.083 | 0                 | 3.92             |
| R      | 0      | 0.342             | 3.89             |
| NS     | 0.254  | 0.675             | 3.89             |

SCFT

| state               | E     | Q <sub>0</sub> |
|---------------------|-------|----------------|
| V <sub>0,1/2</sub>  | 0     | -1/3           |
| V <sub>0,0</sub>    | -1/12 | 0              |
| V <sub>0,-1/2</sub> | 0     | 1/3            |
| V <sub>0,-1</sub>   | 1/4   | 2/3            |

#### Square lattice: critical edge modes

#### **Spectral flow for the square lattice**

in combination with tiling correspondence we argue that the square lattice on the cylinder has critical edge modes

#### Edge modes (heuristic argument)

- plane: #gs = 1
- cylinder: #gs ~  $2^{M}$
- torus : #gs ~  $2^{M+N}$





#### **Spectral flow for the square lattice**

- square ladder
  (2,0)x(0,L)
- zigzag ladder
   (2,1)x(0,L)
   GS for v ∈ [1/5,1/4]
- (3,3)x(0,L)
   fermions can hop past each other



#### Spectral flow results (3,3)x(0,11), N<sub>f</sub>=8



#### **Spectral flow results**

|    | $(2,0) \times (3)$ | , 3)    |        | (I  | $(1,0) \times (1)$ | , 2)    |        | $(L,0)\times(0,2)$ |   |         |        |  |
|----|--------------------|---------|--------|-----|--------------------|---------|--------|--------------------|---|---------|--------|--|
| N  | f                  | E/c     | Q/c    | N   | f                  | E/c     | Q/c    | N                  | f | E/c     | Q/c    |  |
| 18 | 4                  | -0.0851 | 0.004  | - 9 | 2                  | -0.0858 | -0.005 | 16                 | 4 | -0.0897 | -0.014 |  |
| 36 | 8                  | -0.0841 | -0.002 | 18  | 4                  | -0.0842 | -0.002 | 24                 | 6 | -0.0889 | -0.012 |  |
| 15 | 4                  | 0.0898  | 0.349  | 27  | 6                  | -0.0839 | -0.001 | 32                 | 8 | -0.0885 | -0.011 |  |
| 21 | 4                  | 0.0850  | 0.337  | 17  | 4                  | 0.0844  | 0.336  | 12                 | 3 | 0.0911  | 0.350  |  |
| 24 | 5                  | 0.0850  | 0.337  | 26  | 6                  | 0.0840  | 0.335  | 20                 | 5 | 0.0900  | 0.348  |  |
| 30 | 7                  | 0.0853  | 0.338  | 35  | 8                  | 0.0839  | 0.335  | 28                 | 7 | 0.0894  | 0.347  |  |
| 33 | 8                  | 0.0855  | 0.338  | 14  | 3                  | 0.2666  | 0.701  | 14                 | 4 | 0.0855  | 0.338  |  |
|    |                    |         |        | 23  | 5                  | 0.2458  | 0.657  | 22                 | 6 | 0.0849  | 0.337  |  |
|    |                    |         |        | 32  | 7                  | 0.2432  | 0.652  | 30                 | 8 | 0.0847  | 0.336  |  |

#### **Spectral flow results**

|    | (L | $(0,0) \times (3)$ | , 3)   |     | $(L,0)\times(1,2)$ |         |        |   |    |   | $(L,0)\times(0,2)$ |        |  |  |  |
|----|----|--------------------|--------|-----|--------------------|---------|--------|---|----|---|--------------------|--------|--|--|--|
| N  | f  | E/c                | Q/c    | N   | f                  | E/c     | Q/c    | Ι | Ι. | f | E/c                | Q/c    |  |  |  |
| 18 | 4  | -0.0851            | 0.004  | - 9 | 2                  | -0.0858 | -0.005 | 1 | 6  | 4 | -0.0897            | -0.014 |  |  |  |
| 36 | 8  | -0.0841            | -0.002 | 18  | 4                  | -0.0842 | -0.002 | 2 | 4  | 6 | -0.0889            | -0.012 |  |  |  |
| 15 | 4  | 0.0898             | 0.349  | 27  | 6                  | -0.0839 | -0.001 | 3 | 2  | 8 | -0.0885            | -0.011 |  |  |  |
| 21 | 4  | 0.0850             | 0.337  | 17  | 4                  | 0.0844  | 0.336  | 1 | 2  | 3 | 0.0911             | 0.350  |  |  |  |
| 24 | 5  | 0.0850             | 0.337  | 26  | 6                  | 0.0840  | 0.335  | 2 | D. | 5 | 0.0900             | 0.348  |  |  |  |
| 30 | 7  | 0.0853             | 0.338  | 35  | 8                  | 0.0839  | 0.335  | 2 | 8  | 7 | 0.0894             | 0.347  |  |  |  |
| 33 | 8  | 0.0855             | 0.338  | 14  | 3                  | 0.2666  | 0.701  | 1 | 4  | 4 | 0.0855             | 0.338  |  |  |  |
|    |    |                    |        | 23  | 5                  | 0.2458  | 0.657  | 2 | 2  | 6 | 0.0849             | 0.337  |  |  |  |
|    |    |                    |        | 32  | $\overline{7}$     | 0.2432  | 0.652  | 3 | D  | 8 | 0.0847             | 0.336  |  |  |  |

minimal models in SCFT:  $c = \frac{3k}{k+2}$ 

$$E/c = \frac{4l-k}{12k} \text{ and } Q_0/c = \frac{2l}{3k}$$
  
$$l = 0: \ (-1/12,0), \ l = k/2: \ (1/12,1/3), \ l = k: \ (1/4,2/3)$$

#### **Square ladder – the mystery**

- DMRG  $\rightarrow$  c=3/2
- #gs fits c=3/2
- Spectra do not fit:
  - For closed bc there is an avoided crossing as a function of the twist. Does it persist in continuum limit?
  - DMRG results for open bc also do not fit c=3/2
- Extremely slow convergence??

#### **Square ladder – avoided crossing**



supersymmetric lattice model exhibits novel features at intermediate densities:

- superfrustration
- quantum critical modes

exploited tools: Witten index, cohomology, spectral flow Thank you