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Introduction

condensed matter theory: 

microscopic constituent  
vs macroscopic behavior of solids

many-body quantum mechanics:

strip down the problem: study lattice models



Lattice models

configurations: 

electrons located on the sites of an 
ionic lattice in a solid

Hamiltonian (energy operator):

typically a sum of kinetic (hopping) 
terms and short range repulsive 
interactions

typical example (tV model):
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challenge: understand strongly repelling lattice 
fermions at densities intermediate between the low-
density Fermi-liquid and a high-density Mott insulator.

Motivation

hardly any analytical tools (non-perturbative regime) 

hardly any numerical results (Fermi sign problem) 

Mott insulatorFermi liquid



Supersymmetric model for lattice fermions

allows for various analytical results: 

• quantum criticality in 1D 

(CFT description of continuum limit)

• superfrustration in 2D  

(extensive ground state entropy)

ground states sit at intermediate density:

degeneracy is due to subtle interplay between 

kinetic and potential terms.



Outline

 Supersymmetric QM
 The model
 Powerful tool: Witten index
 Superfrustration in 2D
 Quantum criticality in 1D 
 Critical egde modes



Supersymmetric QM



Supersymmetric QM: algebraic structure

Q]Q,[,0)(Q,0)(Q 22
fN

Hamiltonian defined as
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susy charges Q+, Q=(Q+)+ and fermion number Nf :

H Q ,Q

satisfies



Spectrum of supersymmetric QM

• E  0  for all states

• E > 0 states are paired into doublets of the susy algebra

• E = 0 iff a state is a singlet under the susy algebra

if E = 0 ground state exist, supersymmetry is unbroken.

| ,Q | , Q | 0

Q | Q | 0



Witten index

Independent of β:

E>0 doublets: 

have f and f+1 particles and same energy

|W| is lower bound on # of GS



The model



Basic susy lattice model

configurations: 
lattice fermions with nearest 
neighbor exclusion 
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Basic susy lattice model

configurations: 
lattice fermions with nearest 
neighbor exclusion 
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H Q ,Q H kin H pot

Hamiltonian: kinetic (hopping) plus potential terms 

nilpotent supercharges, respecting exclusion rule:
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Basic susy model in 1D

Hamiltonian:
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L=6model: Witten index 
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L=6model: Witten index 
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Nf = 0:   1  state

Nf = 1 :   6  states

Nf = 2:   9  states

Nf = 3:   2  states



L=6model: Witten index 

))1((Tr HN
eW f

Nf = 0:   1  state

Nf = 1 :   6  states

Nf = 2:   9  states

Nf = 3:   2  states

 W = 1 – 6 + 9 – 2 = 2



Spectrum for L=6 sites

superpartners grouped in doublets

zero energy ground states, singlets



Superfrustration in 2D



Triangular lattice: Witten index 

NB Lower bound to the number of 
ground states!

[H. van Eerten]



Hexagonal lattice: Witten index 

[H. van Eerten]



Hexagonal lattice: Witten index 

Superfrustration

[H. van Eerten]



Square lattice: Witten index 

[H. van Eerten]



t is the number of tilings
u and v give the 
periodicities

Square lattice: Witten index

Witten index is related to tiling configurations

Theorem [Jonsson]:



t is the number of tilings
u and v give the 
periodicities

Square lattice: cohomology

total number of GS is related to tiling configurations

Theorem [LH, Halverson, Fendley, Schoutens]:



 square lattice: # GS grows exponentially with the 
linear dimensions of the system

 zero energy ground states at intermediate filling: 

Square lattice: physics



Quantum criticality in 1D



Quantum criticality in 1D lattice models

• correlation length diverges (powerlaw decay)

• in continuum limit: there is no scale (lattice spacing 
vanishes, correlation length diverges)

• massless/gapless system

• conformal invariance (angle preserving 
transformations)

• continuum limit of 1D critical lattice model is 
described by a 1+1D CFT

• direct relation between states in the lattice model 
and states in the CFT 



Quantum criticality for SUSY model in 1D

• 2 gs for L multiple of 3, else 1 gs (periodic chain)

• exactly solvable via Bethe Ansatz

→ continuum limit:

N=2 SCFT with central charge c=1

• mapping to XXZ chain with ∆=1/2

• free boson:



N=2 SCFT description for the chain

vertex operators:

conformal dimensions:

Ramond sector:



N=2 SCFT description for the chain

states in lattice model correspond to operators 
acting on the vacuum in the SCFT:

the corresponding energy is:

for finite size:



N=2 SCFT description for the chain

states in lattice model correspond to operators 
acting on the vacuum in the SCFT:

the corresponding energy is:

for finite size:

U(1) charges (Kac-Moody algebra):

fermion number:

momentum:



Virasoro algebra: descendents 
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Virasoro algebra: descendents 
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Virasoro algebra: descendents 
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Spectrum for 1D chain, L=27, Nf=9

V0,1/2 V0,-1/2

V0,+/-3/2

V0,5/2 V0,-5/2
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Spectrum for 1D chain, L=27, Nf=9
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Spectrum for 1D chain, L=27, Nf=9
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Spectral flow



Boundary twist: spectral flow

wave function picks up a phase exp(2πια)
as a particle hops over a “boundary”

twist: α: 0 1/2
“pbc        apbc”   =  “R       NS sector”

in SCFT: twist operator: V0,α

energy is parabolic function of twist parameter



Spectral flow for 1D chain, L=27 , Nf=9

α: 0, …, 1/2

ππππ Momentum



α: 0, …, 1/2

ππππ Momentum

red curve is theoretical prediction, with vF fitted

Spectral flow for 1D chain, L=27 , Nf=9



ππππ Momentum

What can we learn from these fits?

What can we learn from spectral flow?

Spectral flow for 1D chain, L=27 , Nf=9

α: 0, …, 1/2



What can we learn from spectral flow?

• 3 fit parameters

• 4 unknowns:

• → ratios

• for 1D chain we extract: 

E

πππ P

V0,1/2 V0,-1/2

V0,0

V0,-1

sector E/c Q0/c c*vF

R 0 -0.334 3.92

NS -0.083 0 3.92

R 0 0.342 3.89

NS 0.254 0.675 3.89

state E Q0

V0,1/2 0 -1/3

V0,0 -1/12 0

V0,-1/2 0 1/3

V0,-1 1/4 2/3

numerics SCFT



sector E/c Q0/c c*vF

R 0 -0.334 3.92

NS -0.083 0 3.92

R 0 0.342 3.89

NS 0.254 0.675 3.89

state E Q0

V0,1/2 0 -1/3

V0,0 -1/12 0

V0,-1/2 0 1/3

V0,-1 1/4 2/3

numerics SCFT

→ very accurate, also for very small system sizes: 
L=6: NS: (E/c,Q0/c)=(-0.085,0) and R: (0,-0.337)!

NB: no extrapolation for L to infinity necessary!

What can we learn from spectral flow?



Square lattice: critical edge modes



Spectral flow for the square lattice

in combination with tiling correspondence we argue that 
the square lattice on the cylinder has critical edge modes



Edge modes (heuristic argument)

• plane: #gs = 1

• cylinder: #gs ~ 2M

• torus : #gs ~ 2M+N

M

M

N



• square ladder

(2,0)x(0,L)

• zigzag ladder

(2,1)x(0,L)

GS for

• (3,3)x(0,L)

fermions can hop 
past each other

L

L

(0,L)

(3,3)

Spectral flow for the square lattice

file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber


Spectral flow results (3,3)x(0,11), Nf=8



Spectral flow results



Spectral flow results

minimal models in SCFT:



 DMRG → c=3/2

 #gs fits c=3/2

 Spectra do not fit:

 For closed bc there is an avoided crossing as a 
function of the twist. Does it persist in 
continuum limit?

DMRG results for open bc also do not fit 
c=3/2

 Extremely slow convergence??

Square ladder – the mystery



Square ladder – avoided crossing



Conclusions

supersymmetric lattice model exhibits novel features at 
intermediate densities:

• superfrustration
• quantum critical modes

exploited tools: 
Witten index, cohomology, spectral flow



Thank you


