### Minimal Technicolor on the lattice

Kari Rummukainen<sup>1</sup> with Ari Hietanen, Anne-Mari Mykkänen, Jarno Rantaharju, Kimmo Tuominen

<sup>1</sup>University of Helsinki & University of Oulu

Electroweak phase transition, NORDITA 2009

(3)

### Background:

#### • The Higgs field is special in the Standard Model:

- it has not been found
- it is scalar
- $\Rightarrow$  hierarchy problem, vacuum stability, unitarity bound . . .

#### • Can we do without a scalar?

• Consider the EW symmetry breaking and  $\chi$ SB in QCD:

|                            | EWSB                     | $\chi$ SB                        |
|----------------------------|--------------------------|----------------------------------|
| condensate (Breaks<br>EW): | Higgs vev <i>v</i>       | $ar{\psi}\psi$ chiral condensate |
| goldstone bosons:          | eaten by W,Z<br>(gauged) | $\pi$ -mesons                    |
| radial excitation:         | Higgs particle           | scalar meson                     |

(3)

## Technicolor

**Technicolor (TC):** Electroweak symmetry breaking  $\rightarrow$  chiral symmetry breaking of "Techni-QCD", (technigauge + techniquarks Q), with  $\Lambda_{\rm TC} \approx \Lambda_{\rm EW}$ .

- Quarks have technicolor and EW charge
- After chiral symmetry breaking:
  - $\Rightarrow$  scalar  $\overline{Q}Q$  -meson: Higgs
  - $\Rightarrow$  Pseudoscalars  $\rightarrow$  W,Z -longitudinal modes
  - ⇒ exotic technihadrons
- Works well for the Higgs-gauge sector
- $\bullet\,$  However, the Yukawa sector is messy in the SM  $\rightarrow\,$  messy solutions in Technicolor

- 4 同 6 4 日 6 4 日 6

## Yukawa couplings to SM quarks?

- ⇒ Extended technicolor (ETC): new gauge interaction coupling normal quarks and techniquarks.
  - At low energy, these give  ${\cal L}_{
    m Yukawa} \sim {1 \over \Lambda_{
    m ETC}} \langle ar Q Q 
    angle \, ar q \, q$
  - Experimental constraint:  $\Lambda_{\rm ETC} \gg \Lambda_{\rm EW} = \Lambda_{TC}$ , due to FCNC's.
  - Typically must require  $\Lambda_{ETC} \sim 100-1000 \times \Lambda_{EW}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Walking coupling

To make this work in practice, the coupling constant of the theory should evolve very slowly over a wide range of energy:

 $\beta$ -function

$$\beta = -\mu \frac{\mathrm{d}g}{\mathrm{d}\mu}$$

is almost zero at moderately strong coupling



∃ >

### Symmetric representation

- The required behaviour is difficult to satisfy using fundamental rep. quarks. (Need large  $N_f \rightarrow$  difficult to avoid FCNC's.)
- However, for SU(N) with 2-index symmetric representation quarks  $(\Box \Box) N_f \leq 5$  is sufficient to reach conformal behaviour for any  $N_c$  (at least in perturbative analysis).
- There ∃ "conformal window" with IR fixed point [Dietrich, Sannino, Tuominen; Dietrich, Sannino]

## Conformal window



EWPT 09 7 / 26

• • = • • =

## Why lattice simulations?

- $\chi$ SB is essentially non-perturbative: lattice simulations are needed to check whether the scenario works.
- Conformal point is at non-zero coupling.
- We study here  $N_c = 2$ ,  $N_f = 2$  -case; the simplest model in this class: "Minimal technicolor".
- Also studied by [ Catterall, Sannino; Del Debbio, Patella, Pica].
- $N_c = 3$ ,  $N_f = 2$  has been studied by [DeGrand, Shamir, Svetitsky].

#### What is studied?

- Particle spectrum: do we observe chiral symmetry breaking (QCD) or do all modes become massless as  $m_q \rightarrow 0$  (no  $\chi$ SB, possibly conformal)
- Measure the evolution of the coupling directly using "Schrödinger functional" method

イロト イポト イヨト イヨト

## Model:

- SU(2) gauge action in fundamental rep.
- massless fermions in symmetric ( $\equiv$  adjoint for SU(2)) rep.

$$\mathcal{L}=rac{1}{4}F_{\mu
u}F_{\mu
u}+ar{\psi}i\gamma_{\mu}D_{\mu}\psi$$

• On the lattice:

- gauge fields U in the fundamental rep.
- For the fermion action, these transformed into adjoint rep

$$V^{ab} = 2 \operatorname{Tr}[U^{\dagger} \lambda^{a} U \lambda^{b}]$$

*a*, *b* = 1, 2, 3.

We use standard Wilson action

(3)

# Lattice phase diagram

Lattice parameters:

$$\beta = \frac{4}{g^2} \quad \kappa = \frac{1}{8 + 2m_{q,\text{bare}}}$$

We determine physical quark mass from the axial Ward identity

$$m_q = \lim_{t o \infty} rac{1}{2} rac{\partial_t V_{
m PS}(t)}{V_{
m PP}(t)} \; .$$

 $m_q(\beta,\kappa) = 0$  determines the critical line  $\kappa_c(\beta)$ 



EWPT 09 10 / 26

E ▶.

### Lattice phase diagram

More precisely: at  $\beta \lesssim 2$  there appears an unphysical 1st order phase transition at  $m_q > 0$ , preventing us to go to zero  $m_q$ 

At  $\beta \gtrsim 2$  no sign of a transition,  $m_q \rightarrow 0$  limit possible. This is the relevant region for us.



EWPT 09 11 / 26

### 1st order transition

The 1st order transition is cleary visible in the plaquette ( $\propto F_{\mu\nu}^2$ ) expectation value (on small volumes)



EWPT 09 12 / 26

### Quark mass

Techniquark mass is determined through the axial Ward identity

$$m_{\mathrm{Q}} = \lim_{t \to \infty} rac{1}{2} rac{\partial_t V_{\mathrm{AP}}(t)}{V_{\mathrm{PP}}(t)},$$

where  $V_{\rm AP}$  is axial-pseudoscalar and  $V_{\rm PP}$  is pseudoscalar-pseudoscalar current



# I Particle spectrum

### SU(2) + fundamental quarks:

- 2-quark and quark-antiquark states  $\bar{q}q$ , qq (degenerate except in isoscalar channel)
- glueballs

### SU(2) + adjoint quarks:

- $\overline{Q}Q$ , QQ "mesons"  $\pi$ ,  $\rho$  . . .
- QQQ "baryons" "proton"
- Qg quark-gluon state
- glueballs

< 3 > < 3

### What to expect for the spectrum:

- If QCD-like  $\chi$ SB: as  $m_Q a \rightarrow 0$ ,
  - $m_\pi \propto m_Q^{1/2}$
  - other states have finite mass.
- If IR fixed conformal point:  $m_Q a \rightarrow 0$ , all states become massless.
- If walking behaviour: at high energy  $\sim$  conformal, at small  $\chi {\rm SB}.$
- On the lattice extrapolation  $m_Q a \rightarrow 0$  is required. Too large  $m_Q$  or too small V can lead to misleading results.

### Results

### Pseudoscalar ( " $\pi$ " ) and vector ( " $\rho$ " ) masses



At small  $\beta$ , looks like  $\chi$ SB. However, we cannot go to  $m_q \rightarrow 0$  because of the 1st order transition. At large  $\beta$  masses  $\rightarrow 0$ ? Results



EWPT 09 17 / 26

Results



At large  $\beta$  looks like  $\sim$  massless, possibly conformal. However,  $\ldots$ 

EWPT 09 18 / 26

## Compare with fundamental rep.



Fundamental rep looks also  $\sim$  massless at large  $\beta$ !

EWPT 09 19 / 26

## What does this imply?

In fundamental rep we know what happens:

- There is  $\chi SB$ , observed at small  $\beta = 4/g^2$
- At large  $\beta$  lattice spacing is small, and lattice size  $L \ll 1/\Lambda \sim$  hadron size. Thus, system looks like  $\sim$  conformal.
- This is a finite resolution issue; at large enough volume and high enough numerical accuracy  $\chi {\rm SB}$  is again observed at any  $\beta$

In adjoint rep:

- Theory compatible with conformal at large  $\beta$  (small coupling), but could be also finite volume/resolution issue as in fundamental rep.
- Mass spectrum not sufficient to tell the difference!
- Direct evaluation of  $\beta$ -function required!

• • = • • =

# II Evolution of the coupling

**Schrödinger functional**: Generate a *background* chromoelectric field using non-trivial boundary conditions, parametrised by angle  $\eta$  At the classical level, we have

$$\frac{dS_{\rm class.}}{d\eta} = \frac{A}{g^2}$$

where  $A(\eta)$  is a known constant. At the quantum level, we measure the coupling through



$$\frac{1}{2} = \frac{1}{2} \frac{dS}{dS}$$

$$g^2 - A d\eta$$

 $= \text{ const.} \times \langle (\text{boundary plaq.}) \rangle$ 

- Evaluates  $1/g^2$  at length scale L, the lattice size
- This has been used very succesfully in QCD by Alpha collaboration

## Evolution of the coupling

Measure  $g^2$  at different  $\beta_L$  (lattice spacing *a*) and lattice sizes

Testing with **fundamental representation**:

- L/a grows, k ~ a/L decreases, g<sup>2</sup>(L) increases: asymptotic freedom, OK!
- Large  $\beta_L \rightarrow$  small lattice spacing  $\rightarrow$  small volume
- Continuous line: coupling evaluated from 2-loop perturbative β-function (fixed to measurement at L/a = 16)



EWPT 09 22 / 26

→ Ξ →

# Evolution of the coupling

Measure  $g^2$  at different  $\beta_L$  (lattice spacing) and lattice sizes

### In adjoint representation:

- At large β<sub>L</sub>: g<sup>2</sup>(L) is small and increases with L (asymptotic freedom)
- At small β<sub>L</sub>: g<sup>2</sup>(L) large and decreases as L increases
   ⇒ β-function positive here!
- As L/a → ∞, in all cases g<sup>2</sup>(L) apparently flows towards a fixed point, g<sup>2</sup><sub>\*</sub> ≈ 2...3.
   ⇒ conformal behaviour!
- Continuous line: coupling evaluated with fitted β-function ansatz (later)



EWPT 09 23 / 26

### $\beta$ -function



EWPT 09 24 / 26

★ ∃ ►

# Coupling constant

- Integrating the  $\beta$ -function we obtain the coupling:
- Asymptotically free branch at  $g^2 < g_*^2$ , non-free branch at  $g^2 > g_*^2$ . These are disconnected!

Large error bands (not shown)



## Conclusions

- SU(2)+2 adjoint fermions appears to have an IR fixed point.
- No  $\chi$ SB, no "walking".
- Can we deform this to walking? Yes, for example by giving small mass to techniquarks:
  - when  $\mu \gg m_q$ , we are flowing towards the IR fixed point
  - when  $\mu{\lesssim}m_q,$  quarks decouple and pure SU(2) gauge theory dominates: confinement, ( $\chi {\rm SB?})$
- Quark mass term against the spirit of technicolor coupling to Standard Model fields?
- Work to be done: use improved fermions (clover), walking (with  $m_q$ ), finite T, different groups and reps ...
- Predictions obtainable from this TC model:
  - Measure  $\langle \bar{Q}Q \rangle$ , set to  $v_{\rm Higgs}$
  - Measure QQ scalar mass  $\rightarrow$  Higgs mass
  - Exotic particle spectrum (ρ: lightest exotic particle)
  - Modified by ETC corrections