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Background:

The Higgs field is special in the Standard Model:
◮ it has not been found
◮ it is scalar
⇒ hierarchy problem, vacuum stability, unitarity bound . . .

Can we do without a scalar?

Consider the EW symmetry breaking and χSB in QCD:

EWSB χSB

condensate (Breaks
EW):

Higgs vev v ψ̄ψ chiral condensate

goldstone bosons:
eaten by W,Z
(gauged)

π-mesons

radial excitation: Higgs particle scalar meson
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Technicolor

Technicolor (TC): Electroweak symmetry breaking −→ chiral symmetry
breaking of “Techni-QCD”, (technigauge + techniquarks Q), with
ΛTC ≈ ΛEW.

Quarks have technicolor and EW charge

After chiral symmetry breaking:

⇒ scalar Q̄Q -meson: Higgs
⇒ Pseudoscalars → W,Z -longitudinal modes
⇒ exotic technihadrons

Works well for the Higgs-gauge sector

However, the Yukawa sector is messy in the SM → messy solutions in
Technicolor
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Yukawa couplings to SM quarks?

⇒ Extended technicolor (ETC): new gauge interaction coupling
normal quarks and techniquarks.

At low energy, these give LYukawa ∼ 1
ΛETC

〈Q̄Q〉 q̄ q

Experimental constraint: ΛETC ≫ ΛEW = ΛTC , due to FCNC’s.

Typically must require ΛETC ∼ 100–1000 × ΛEW
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Walking coupling

To make this work in
practice, the coupling
constant of the theory
should evolve very
slowly over a wide
range of energy:

α
TC

ΛEW ΛETC E

β-function

β = −µ
dg

dµ

is almost zero at
moderately strong
coupling

2g

β

walking

QCD−like

IR fixed point
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Symmetric representation

The required behaviour is difficult to satisfy using fundamental rep.
quarks. (Need large Nf → difficult to avoid FCNC’s.)

However, for SU(N) with 2-index symmetric representation quarks
(��) Nf ≤ 5 is sufficient to reach conformal behaviour for any Nc (at
least in perturbative analysis).

There ∃ “conformal window” with IR fixed point
[Dietrich, Sannino, Tuominen; Dietrich, Sannino]
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Conformal window

Within the conformal window
there ∃ IR fixed point

β

2 3 4 5 6 7
N

c

1

2

3

4

5

N
f

confinement and χSB

conformal window

no asymptotic freedom

Lattice simulations have been done at Nc = 2, Nf = 2 and Nc = 3,
Nf = 2
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Why lattice simulations?

χSB is essentially non-perturbative: lattice simulations are needed to
check whether the scenario works.

Conformal point is at non-zero coupling.

We study here Nc = 2, Nf = 2 -case; the simplest model in this class:
“Minimal technicolor”.

Also studied by [ Catterall, Sannino; Del Debbio, Patella, Pica].

Nc = 3, Nf = 2 has been studied by [ DeGrand, Shamir, Svetitsky].

What is studied?

Particle spectrum: do we observe chiral symmetry breaking (QCD) or
do all modes become massless as mq → 0 (no χSB, possibly
conformal)

Measure the evolution of the coupling directly using “Schrödinger
functional” method
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Model:

SU(2) gauge action in fundamental rep.

massless fermions in symmetric (≡ adjoint for SU(2)) rep.

L =
1

4
FµνFµν + ψ̄iγµDµψ

On the lattice:
◮ gauge fields U in the fundamental rep.
◮ For the fermion action, these transformed into adjoint rep

V ab = 2Tr[U†λaUλb]

a, b = 1, 2, 3.
◮ We use standard Wilson action
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Lattice phase diagram

Lattice parameters:

β =
4

g2
κ =

1

8 + 2mq,bare

We determine physical quark
mass from the axial Ward
identity

mq = lim
t→∞

1

2

∂tVPS(t)

VPP(t)

mq(β, κ) = 0 determines the
critical line κc(β) 1 1.5 2 2.5

β

0.1

0.15

0.2

0.25

κ

β = 0

β = infinity

Aoki phase

m
q
 > 0

m
q
 = 0
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Lattice phase diagram

More precisely: at β<∼2 there
appears an unphysical 1st order
phase transition at mq > 0,
preventing us to go to zero mq

At β>∼2 no sign of a transition,
mq → 0 limit possible. This is
the relevant region for us.

1 1.5 2 2.5
β

L

0.1

0.15

0.2

0.25

κ

β = 0

β = infinity 

Aoki phase

m
q
 > 0

m
q
 = 0

1st order
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1st order transition

The 1st order transition is cleary visible in the plaquette (∝ F 2
µν)

expectation value (on small volumes)
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Quark mass
Techniquark mass is determined through the axial Ward identity

mQ = lim
t→∞

1

2

∂tVAP(t)

VPP(t)
,

where VAP is axial-pseudoscalar and VPP is pseudoscalar-pseudoscalar
current
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I Particle spectrum

SU(2) + fundamental quarks:

2-quark and quark-antiquark states q̄q, qq (degenerate except in
isoscalar channel)

glueballs

SU(2) + adjoint quarks:

Q̄Q, QQ “mesons” – π, ρ . . .

QQQ “baryons” – “proton”

Qg quark-gluon state

glueballs
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What to expect for the spectrum:

If QCD-like χSB: as mQa → 0,

◮ mπ ∝ m
1/2
Q

◮ other states have finite mass.

If IR fixed conformal point: mQa → 0, all states become massless.

If walking behaviour: at high energy ∼ conformal, at small χSB.

On the lattice extrapolation mQa → 0 is required. Too large mQ or
too small V can lead to misleading results.
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Results

Pseudoscalar (“π”) and vector (“ρ”) masses
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At small β, looks like χSB. However, we cannot go to mq → 0 because of
the 1st order transition.
At large β masses → 0?
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Results

3-quark state (“proton”) mass
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Results

Mass ratios mπ/mρ and mProton/mρ
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At large β looks like ∼ massless, possibly conformal.
However, . . .
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Compare with fundamental rep.
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Fundamental rep looks also ∼ massless at large β!
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What does this imply?

In fundamental rep we know what happens:

There is χSB, observed at small β = 4/g2

At large β lattice spacing is small, and lattice size
L ≪ 1/Λ ∼ hadron size. Thus, system looks like ∼ conformal.

This is a finite resolution issue; at large enough volume and high
enough numerical accuracy χSB is again observed at any β

In adjoint rep:

Theory compatible with conformal at large β (small coupling), but
could be also finite volume/resolution issue as in fundamental rep.

Mass spectrum not sufficient to tell the difference!

Direct evaluation of β-function required!
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II Evolution of the coupling

Schrödinger functional: Generate a background chromoelectric field
using non-trivial boundary conditions, parametrised by angle η

At the classical level, we have

dSclass.

dη
=

A

g2

where A(η) is a known constant.
At the quantum level, we measure the
coupling through

1

g2
=

1

A

dS

dη

= const. × 〈(boundary plaq.)〉

t=0t=0

t=T

E
special fixed
boundaries

Evaluates 1/g2 at length scale L, the lattice size

This has been used very succesfully in QCD by Alpha collaboration
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Evolution of the coupling

Measure g2 at different βL (lattice spacing a) and lattice sizes

Testing with fundamental
representation:

L/a grows, k ∼ a/L
decreases, g2(L) increases:
asymptotic freedom, OK!

Large βL → small lattice
spacing → small volume

Continuous line: coupling
evaluated from 2-loop
perturbative β-function (fixed
to measurement at L/a = 16) 0 5 10 15 20
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Evolution of the coupling
Measure g2 at different βL (lattice spacing) and lattice sizes

In adjoint representation:

At large βL: g2(L) is small
and increases with L

(asymptotic freedom)

At small βL: g2(L) large and
decreases as L increases
⇒ β-function positive here!

As L/a → ∞, in all cases
g2(L) apparently flows
towards a fixed point,
g2
∗
≈ 2 . . . 3.

⇒ conformal behaviour!

Continuous line: coupling
evaluated with fitted
β-function ansatz (later)
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β-function

We can describe β-function with
an ansatz

β = −L
dg

dL
= −b1g

3−b2g
5−b3g

δ

where b1, b2 are perturbative
constants and b3 and δ are fit
parameters:
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1-loop
2-loop
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Coupling constant

Integrating the β-function we
obtain the coupling:
Asymptotically free branch at
g2 < g2

∗
, non-free branch at

g2 > g2
∗
. These are

disconnected!
Large error bands (not shown)
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Conclusions

SU(2)+2 adjoint fermions appears to have an IR fixed point.

No χSB, no “walking”.

Can we deform this to walking? Yes, for example by giving small mass
to techniquarks:
– when µ≫ mq, we are flowing towards the IR fixed point
– when µ<∼mq, quarks decouple and pure SU(2) gauge theory
dominates: confinement, (χSB?)

Quark mass term against the spirit of technicolor – coupling to
Standard Model fields?

Work to be done: use improved fermions (clover), walking (with mq),
finite T , different groups and reps . . .

Predictions obtainable from this TC model:
◮ Measure 〈Q̄Q〉, set to vHiggs

◮ Measure QQ scalar mass → Higgs mass
◮ Exotic particle spectrum (ρ: lightest exotic particle)
◮ Modified by ETC corrections
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