
Outline Motivation Semiclassical Transport Models Conclusions

Introduction to Quantum Transport

Thomas Konstandin, IFAE Barcelona

June 23, 2009



Outline Motivation Semiclassical Transport Models Conclusions

Outline

1 Motivation
The Basic Picture of EWBG

2 Semiclassical Transport
Thin wall / reflection picture
Prerequisites and former approaches
Quantum-transport from Kadanoff-Baym equations

3 Models
EWBG in the MSSM
EWBG in the nMSSM

4 Conclusions



Outline Motivation Semiclassical Transport Models Conclusions

The Basic Picture of EWBG

Sakharov conditions

Baryogenesis is one of the cornerstones of the Cosmological
Standard Model and tries to explain the observed baryon
asymmetry of the Universe (BAU)

η =
nB − nB̄

s
= 0.9 × 10−10.

The celebrated Sakharov conditions state the necessary ingredients
for baryogenesis:

Sakharov conditions

Baryon number violation

Charge (C) and charge parity conjugation (CP) are no
symmetries

non-equilibrium
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The Basic Picture of EWBG

C- and B-violation: The sphaleron process

In the hot universe B- and C-violation is present due to sphaleron
processes (’temperature induced instanton’).

The effective sphaleron vertex

Sphaleron bL

bL

tL

sL
sL

cL

dL

dL

uL

νe

νµ

ντ

HAll

∆B = 3, ∆L = 3, ∆NCS = 1

B − L conserving

B + L violating

Exponentially suppressed after
the phase transition (mW )

Topological effect of the
SU(2) gauge sector

EWPT is last chance of baryogenesis (φ < T ).
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The Basic Picture of EWBG

First-order electroweak phase transition

Comments on bubble nucleation

Order parameter of the phase
transition is the Higgs vev 〈h〉

During the phase transition the
particles change their masses

This is a violent process (v ∼ c)

For EWBG, the PT has to be
strong, φ & T

In the SM, there is only a
cross-over (mHiggs > 60 GeV)

Kajantie, Laine, Rummukainen, Shaposhnikov (’96)

A first-order electroweak phase transition requires BSM physics.
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The Basic Picture of EWBG

CP Violation in Mass Matrices

CP violation: Chargino masses in the MSSM and bMSSM

In the MSSM case the mass matrix of the charged higgsinos/winos
is:

m =

(

M2 g h2(x
µ)

g h1(x
µ) µc

)

with M2 and µc containing a CP-odd complex phase. The Higgs
fields are during the phase transition space-time dependent.
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The Basic Picture of EWBG

Picture of Electroweak Baryogenesis

Shaposhnikov (’87)

Higgs vev

symmetric phase broken phase

lw

vw

r

〈φ〉
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The Basic Picture of EWBG

Picture of Electroweak Baryogenesis

Shaposhnikov (’87)

Higgs vev

symmetric phase broken phase

CP-violating particle density

(charginos, quarks, leptons)

CP-violating effects
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The Basic Picture of EWBG

Picture of Electroweak Baryogenesis

Shaposhnikov (’87)

Higgs vev

symmetric phase broken phase

CP-violating particle density

sphalerons active sphalerons not active
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The Basic Picture of EWBG

Picture of Electroweak Baryogenesis

Cohen, Kaplan, Nelson (’90)

Higgs vev

symmetric phase broken phase
sphalerons active sphalerons not active

CP-violating particle density

diffusion/transport
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The Basic Picture of EWBG

Picture of Electroweak Baryogenesis

Cohen, Kaplan, Nelson (’90)

Higgs vev

symmetric phase broken phase

Higgs vev

CP-violating particle density

CP violation & transport
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Thin wall / reflection picture

Particle reflection, v = 0

Equilibrium with same temperatures is a steady-state solution.
Clasically, particles climb the wall if possible and just replace each
other, distribution functions in the wall frame depend on
uµpµ = E .

E ,
√

p2
z − ∆m2 E , pz

= =

=
=

=
=

m
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Thin wall / reflection picture

Particle reflection, v ≪ 1

For small velocities, a steady-state solution requires interactions
(equilibration). The particle distribution functions in equilibrium
depend an the wall frame on uµpµ = γ(E − vpz).

E ,
√

p2
z − ∆m2 E , pz

= =

m

=

=
==

equilibration?, T changes?

equilibration? 
shock front?
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Thin wall / reflection picture

Particle reflection, v ≈ 1

For large velocities, equilibration takes place behind the wall.

E ,
√

p2
z − ∆m2 E , pz

=

m exponential supressed

=
=

equilibration behind the wall
rarefaction wave

Bodeker, Moore (’09)
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Thin wall / reflection picture

Particle reflection

A moving Higgs wall drives the plasma out of equilibrium

in front of the wall due to reflections

behind the wall due to a change in the particle momenta

The picture of particle reflection is only valid for thin walls,
lw ≪ 1/g2T .
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Prerequisites and former approaches
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Prerequisites and former approaches

Challenge in EWBG

Connection between macroscopic and microscopic scales

In electroweak baryogenesis, one is rather interested in the
case of thick walls which can be hardly treated in the
pseudo-particle reflection picture due to multiple scatterings

CP violation is a microscopic/quantum effect produced by the
interaction of single quanta in the plasma with the wall.

Transport is a macroscopic/classical effect based on statistical
physics and particle densities.
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Prerequisites and former approaches

Classical Boltzmann Equations

The system is described by the particle distribution function
n(x, v, t) on classical phase space.

The Boltzmann equations are based on a particle picture. If on the
particles in the plasma acts an external force F , one obtains

n(x + vδt, v + Fδt, t + δt) − n(x, v, t) = collisions/interactions,

and thus

(∂t + v · ∇ + F · ∂v)n(x, v, t) = collisions/interactions.

How can CP violation be incorporated in this classical picture?

In which semi-classical limit can one obtain a phase-space from a
quantum theory?
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Prerequisites and former approaches

Summary of Approaches to Transport

Semi-classical force / WKB approach
Joyce, Prokopec, Turok, hep-ph/9401352, hep-ph/9408339

Joyce, Cline, Kainulainen, hep-ph/9708393

Huber, Schmidt, hep-ph/0003122

Perturbative mixing / mass insertion approach
Carena, Moreno, Quiros, Seco, Wagner, hep-ph/0011055

Carena, Quiros, Seco, Wagner, hep-ph/0208043

Cirigliano, Profumo, Ramsey-Musolf, hep-ph/0603246

Kadanoff-Baym approach
Kainulainen, Prokopec, Schmidt, Weinstock, hep-ph/0105295

Konstandin, Prokopec, Schmidt, hep-ph/0410135

Konstandin, Prokopec, Schmidt, Seco, hep-ph/0505103

Huber, Konstandin, Prokopec, Schmidt, hep-ph/0606298
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Prerequisites and former approaches

Summary of former Approaches

Approach Cline/Joyce Carena/Moreno/Quiros
Kainulainen Seco/Wagner

CP-violation dispersion relation local source term
WKB perturbation theory

basis mass eigenbasis flavour eigenbasis
quasi-particles charginos higgsinos/winos
transport classical classical

Boltzmann type diffusion
mixing not included in the source

not in the diffusion
~ order second order first order
comment momentum? basis?, finite?
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Quantum-transport from Kadanoff-Baym equations
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Quantum-transport from Kadanoff-Baym equations

Transport Theory and EWBG

Starting point of our formalism are the Kadanoff-Baym equations
that are the statistical analogue to the Schwinger-Dyson equations:

∫

d4z
(

S−1
0 (xµ, zµ) − Σ(xµ, zµ)

)

S(zµ, yµ) = 1 δ(xµ − yµ)

where the self-energy Σ and the Green function S contain an
additional 2 × 2 structure from the in-in-formalism

Σ =

(

Σt Σ>

Σ< Σt̄

)

=

(

Σ++ Σ+−

Σ−+ Σ−−

)

, S =

(

S t S>

S< S t̄

)

.

Of these four entries only two are independent and S< encodes the
particle distribution function.
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Quantum-transport from Kadanoff-Baym equations

Transport Theory and EWBG

In Wigner space we have

Xµ = (xµ + zµ)/2, kµ = FT (xµ − zµ).

Then the Kadanoff-Baym equations read

e−i♦{S−1
0 − Σ, S} = 0.

with
2♦{A, B} := ∂XµA ∂kµB − ∂kµA ∂XµB

and all quantities are functions of Xµ and kµ. The super-/sub-
scripts <, >,R,A denote the additional 2× 2 structure of the in-in

formalism.

Without interaction

e−i♦{S−1
0 (z), S<} = 0, e−i♦{S−1

0 (z), SA} = 0
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Quantum-transport from Kadanoff-Baym equations

Particle densities

Using the KMS condition and the correct normalization one
obtains in equilibrium

iS< = 2π sign(k0) δ(k2 − m2) n(k0), n(k0) =
1

exp(βk0) − 1

The particle density can (also away from equilibrium) be read off
from S<

∫

k0>0

dk0

2π
2ik0 S< = n(k, t, x).

Thus the Wigner space yields in the semi-classical limit the usual
phase space (however, not necessarily positive).
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Quantum-transport from Kadanoff-Baym equations

A Simple Example

Free bosonic theory with one flavour and a constant mass:

e−i♦{S−1
0 , S<} = 0, S−1

0 = k2 − m2.

The hermitian/anti-hermitian parts are the so called
constraint/kinetic equations:

(k2 − m2)S< = 0, kµ∂XµS< = 0

which at low energies kµ = (m, mv) is of Boltzmann type

m(∂t + v · ∇)S< = 0.
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Quantum-transport from Kadanoff-Baym equations

Gradient Expansion

Consider

e−i♦{S−1
0 (z), S<} = 0, S−1

0 = k2 − m2(z)

Since the background in the MSSM is weakly varying
(lw ≈ 20/Tc) the Moyal star product can be simplified by the
semi-classical approximation

∂k∂X ≈
1

Tc lw
≈

1

20
≪ 1 → e−i♦ ≈ 1 − i♦ −

1

2
♦2 · · ·

The simplest example for a transport equation in a varying
background is for one bosonic flavour with real mass (up to first
order in ♦)

(k2 − m2)S< = 0

(kµ∂µ −
1

2
(∂zm

2) ∂kz
)S< = 0.
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Quantum-transport from Kadanoff-Baym equations

Fast walls and reflection

For fast walls, most particles in the plasma have high
pz ≫ ∆m, 1/lw and hence the Kadanoff-Baym approach should
agree with the reflection picture

Integration yields that the plasma depends behind the wall on

uµpµ − uz
∆m2

2pz
+ O(∆m4/p4

z )

what for v ≈ 1 this agrees with the former result from reflections

pz →
√

p2
z − ∆m2 ≈ pz −

∆m2

2pz
.
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Quantum-transport from Kadanoff-Baym equations

CP violation

Prokopec, Schmidt, Weinstock (’01)

Consider a fermion with complex mass term

S−1
0 = k/ − PL m(z) − PR m∗(z)

and
m(z) = |m(z)| e iθ(z).

Then the kinetic equation up to second order in ♦ reads (s denotes
the spin of the particle)

[

kµ∂µ −
1

2
(∂zm

2) ∂kz
−

s

2k0
∂z(m

2∂zθ) ∂kz

]

S<
s (kµ, z) = 0

which leads to CP-violating particle densities. This agrees with the
findings of Cline/Joyce/Kainulainen in the WKB framework.
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Quantum-transport from Kadanoff-Baym equations

Fermionic Systems

After spin projection the fermionic system of equations reads

“

2i k̃0 −

k0∂t + ~k‖ · ∇‖

k̃0

”

S
s
0 − (2iskz + s∂z ) S

s
3 − 2imhe

i
2

↼
∂z

⇀
∂kz S

s
1 − 2imae

i
2

↼
∂z

⇀
∂kz S

s
2 = 0

“

2i k̃0 −

k0∂t + ~k‖ · ∇‖

k̃0

”

S
s
1 − (2skz − is∂z ) S

s
2 − 2imhe

i
2

↼
∂z

⇀
∂kz S

s
0 + 2mae

i
2

↼
∂z

⇀
∂kz S

s
3 = 0

“

2i k̃0 −

k0∂t + ~k‖ · ∇‖

k̃0

”

S
s
2 + (2skz − is∂z ) S

s
1 − 2mhe

i
2

↼
∂z

⇀
∂kz S

s
3 − 2imae

i
2

↼
∂z

⇀
∂kz S

s
0 = 0

“

2i k̃0 −

k0∂t + ~k‖ · ∇‖

k̃0

”

S
s
3 − (2iskz + s∂z ) S

s
0 + 2mhe

i
2

↼
∂z

⇀
∂kz S

s
2 − 2mae

i
2

↼
∂z

⇀
∂kz S

s
1 = 0 ,

where S0 . . .S3 are 2 × 2 matrices in flavour space and s denotes
the spin.
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Quantum-transport from Kadanoff-Baym equations

Transport in the Chargino sector

Konstandin, Prokopec, Schmidt (’04)

The chargino transport equations for the left/right handed
densities are of the form

kµ∂µS< +
i

2

[

m2, S<
]

+ sources/forces = collisions

Comments

S< is a 2 × 2 flavor matrix

The term i
2

[

m2, S<
]

will lead to an oscillatory behaviour of
the off-diagonal particle densities, similar to neutrino
oscillations with frequency ∼ (m2

1 − m2
2)/kz .

The source contains first order contributions that correspond
to the sources in the approach of Carena et al.

The source contains second order contributions that
correspond to the sources in the approach of Cline et al.
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Quantum-transport from Kadanoff-Baym equations

Sources for EWBG

This approach resembles two mechanisms of EWBG from former
approaches Joyce, Prokopec, Turok (’96) Cline, Joyce,

Kainulainen (’97,’00) Fromme, Huber (’06)

The dispersion shift source from the WKB approach:

S(2) ∼
{

m†′′m − m†m′′, ∂kz
S<

}

.

Carena, Moreno, Quiros, Seco, Wagner (’00)

Carena, Quiros, Seco, Wagner (’02)

Cirigliano, Profumo, Ramsey-Musolf (’06)

Cirigliano, Ramsey-Musolf, Tulin, Lee (’06)

Sources from flavor mixing effects, e.g.

S(1) ∼
[

m†′m − m†m′, ∂kz
S<

]

.

CP violation from mixing appears only on the off-diagonal in the
mass eigenbasis.
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Quantum-transport from Kadanoff-Baym equations

Determination of the BAU

Huet, Nelson (’95)

The missing parts to determine the baryon asymmetry of the
universe are:

h
~

q
~

q

Y and Sphaleron bL

bL

tL

sL
sL

cL

dL

dL

uL

νe

νµ

ντ
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Quantum-transport from Kadanoff-Baym equations

Diffusion and the Sphaleron

The originally used system of diffusion equations is of the form (for
a recent treatment see Chung, Garbrecht, Tulin (’08))

vw n′Q = Dq n′′Q − ΓY

[

nQ

kQ

−
nT

kT

−
nH + nh

kH

]

− Γm

[

nQ

kQ

−
nT

kT

]

−6 Γss

[

2
nQ

kQ

−
nT

kT

+ 9
nQ + nT

kB

]

+ Sources

· · ·

where nQ , nT , nH , nh denote particle densities, Γss , Γm, ΓY

interaction rates, kQ , kT , kH statistical factors and Dq a diffusion
constant.

However, these equations are classical and back-reactions on the
charginos cannot be taken into account in our approach.
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Quantum-transport from Kadanoff-Baym equations

Advantages and Disadvantages

No ambiguities
No divergences

WKB and mixing effects
Flavor oscillations
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Quantum-transport from Kadanoff-Baym equations

Advantages and Disadvantages

No ambiguities
No divergences

WKB and mixing effects
Flavor oscillations

No quantum transport in quark sector
No quantum back-reactions on the charginos
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EWBG in the MSSM

EWBG in the MSSM

CP violation: Chargino masses in the MSSM

In the MSSM case the mass matrix of the charged higgsinos/winos
is:

m =

(

M2 g h2(x
µ)

g h1(x
µ) µc

)

with M2 and µc containing a CP-odd complex phase. The Higgs
fields are during the phase transition space-time dependent.

Phase transition in the MSSM

In the MSSM the strength of the phase transition depends mostly
on the loop effects of the bosons. A strong phase transition
fulfilling the current mass bounds on the Higgs is possible if the
stops are relatively light, mtop ∼ mstop.
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EWBG in the MSSM

Numerical Results
Konstandin, Prokopec, Schmidt, Seco (’05)

Parameters chosen: vw = 0.05, lw = 20/Tc , CP-phase maximal.

100 200 300 400
M2

100

200

300

400
µ
c

mA=200

Due to the flavor oscillations, EWBG requires in the MSSM
quasi-degenerate chargino masses.
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EWBG in the MSSM

Conclusions in the MSSM

CP violation in the MSSM is based on mixing between different
flavors (charginos).

MSSM electroweak baryogenesis is a constrained scenario

A light stop to acquire a strong first-order phase transition

The condition µc ≈ M2 . 400 GeV of the a priori unrelated
parameters M2 and µc

A large CP-violating phase that is testable by next generation
EDM experiments
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EWBG in the nMSSM

Why is the nMSSM interesting?

Panagiotakopoulos, Pilaftsis (’02)

The nearly Minimal Supersymmetric Standard Model has the
following effective superpotential

WnMSSM = λŜĤ1 · Ĥ2 −
m2

12

λ
Ŝ + WMSSM ,

and has the virtues to solve the µ-problem of the MSSM by
introducing a dynamical µ-term

µ = −λ 〈S〉 .

In this model singlet self-couplings are forbidden by a R’-symmetry.
The resulting model has neither problems with the stability of the
hierarchy nor with domain walls (but λ might develop a Landau
pole).
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EWBG in the nMSSM

CP violation: Chargino masses in the nMSSM

Huber, Konstandin, Prokopec, Schmidt (’06)

In the nMSSM the µ term contains a z-dependent complex phase

µ(z) = −λ 〈S〉 = −λφs(z) e iqs(z)

In the nMSSM second order sources dominate

The dynamical parameter µ = λ 〈S〉 leads to a dominating
sources of WKB type

Charginos are generically non-degenerate (M2 & µ)

Thin wall profiles
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EWBG in the nMSSM

Numerical Results

A numerical analysis of the BAU leads to the following result (sets
passed LEP constraints and have a first order phase transition)

 0

 50

 100
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 200

 250

 300
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 0  2  4  6  8  10

#

η10

# of models
# of models

 0

 50

 100

 150

 200

 0  2  4  6  8  10

#

η10

# of models
# of models

The left (right) plot shows the generated BAU for M2 = 1 TeV
(M2 = 200 GeV). 50% (63%) of the models are in accordance with
observation. The lower models fulfill the the EDM bounds with 1
TeV sfermion masses, 4.8 % (6.2 %).
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EWBG in the nMSSM

Conclusions in the nMSSM

CP violation in the nMSSM is based on mixing between different
chiralities.

EWBG in the nMSSM is very promising

Strong first order phase transition due to tree-level dynamics

η10 & 1 for most of the parameter space

EDMs eventually small due to small Arg(M2µc)

two loop EDMs relatively small due to tan(β) ∼ O(1)
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Final Remarks on EWBG

The Kadanoff-Baym equations provide a first principle approach to
quantum transport.

They unite semi-sclassical force and mixing effects in one
framework.

Electroweak baryogenesis is the main application of quantum
transport equations so far.

Flavored leptogenesis?
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