Defect formation

Arttu Rajantie

Topological Defects

- Localised, topologically stable objects:
 Different vacuum in different directions
- Exist in systems with
 - spontaneously broken symmetry
 - topologically non-trivial vacuum manifold *M*:

 $\pi_0(\mathcal{M}) \neq 1$: Domain walls

- $\pi_1(\mathcal{M}) \neq 1$: Vortices/strings
- $\pi_2(\mathcal{M}) \neq 1$: Monopoles
- $\pi_3(\mathcal{M}) \neq 1$: Textures

- Continuous U(1) symmetry $\phi \rightarrow e^{i\alpha} \phi$ in
- When $m^2 < 0$, spontaneously broken: Circle of degenerate vacua $\langle \phi \rangle = v e^{i\theta}$

Strings

$$\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi - m^2\phi^*\phi - \lambda(\phi^*\phi)^2$$

- Continuous U(1) symmetry $\phi \rightarrow e^{i\alpha} \phi$ in
- When $m^2 < 0$, spontaneously broken: Circle of degenerate vacua $\langle \phi \rangle = v e^{i\theta}$
- Nielsen-Olesen string:
 - Different vacuum in different directions
 - Phase angle θ changes by 2π around the string

Cosmic Strings (Kibble 1976)

- Stable, massive, line-like objects
- Tension μ = energy/length
- Formed in the early universe?
- Predicted by many GUTs:

 $G\mu \sim (M_{\rm GUT}/M_{\rm Pl})^2 \sim 10^{-6}$

Cosmic Strings (Kibble 1976)

- Stable, massive, line-like objects
- Tension μ = energy/length
- Formed in the early universe?
- Predicted by many GUTs: $G\mu \sim (M_{\rm GUT}/M_{\rm Pl})^2 \sim 10^{-6}$
- Cosmic superstrings (Copeland et al 2004): $G\mu \sim 10^{-12} \dots 10^{-6}$

Observing Cosmic Strings?

- Observational constraints:
 - Cosmic microwave background
 - Temperature $G\mu \lesssim 10^{-6}$
 - Polarisation $\Rightarrow G\mu \lesssim 10^{-7}$? (Bevis et al 2007)

(Bevis et al 2008)

Observing Cosmic Strings?

- Observational constraints:
 - Cosmic microwave background
 - Temperature $G\mu \lesssim 10^{-6}$
 - Polarisation $\Rightarrow G\mu \lesssim 10^{-7}$? (Bevis et al 2007)
 - Gravitational waves
 - Pulsar timing $G\mu{\lesssim}10^{-6}$ (Jenet et al 2006)
 - Gravity wave experiments $\Rightarrow G\mu \lesssim 10^{-10}$? (Damour&Vilenkin 2001)

Liquid Crystal Vortex

• Orientation of molecules (Digal et al 1999)

Superfluid Vortex

• Complex phase of atom wave function (Bewley et al 2006)

BEC Vortex

• Complex phase of atom wave function (Abo-Shaeer et al 2001)

Superconductor Vortex

• Complex phase of Cooper pair wave function (Goa et al)

Kibble Mechanism in First Order Transitions (Kibble 1976)

- Spontaneous symmetry breaking: Field has to "choose" a direction
- Typical bubble size R
 - Order parameter uncorrelated between bubbles
 - Finite probability to form a string whenever three bubbles meet (Kibble 1976)
 - Number density per cross-sectional area: $n \sim R^{-2}$

Second Order Phase Transition

 $V(\phi) = m^2 \phi^* \phi + \lambda (\phi^* \phi)^2$

- Gradual change from $m^2 > 0$ to $m^2 < 0$: Transition from symmetric to broken phase
- Caused by decreasing temperature, end of inflation etc
- Choose a direction
- Uncorrelated at distances longer than the correlation length $\xi < 1/H$ \Rightarrow Kibble mechanism
- Number density:

 $n \sim \xi^{-2}$

Kibble-Zurek Mechanism (Zurek 1985)

- Correlation length grows as $\xi \sim (T T_c)^{-\nu}$
- Critical slowing down: $\tau \sim (T T_c)^{-\mu}$
- ξ freezes out to $\hat{\xi} \propto \tau_Q^{\nu/(1+\mu)}$:

Sets the string number density

Simulation Tests

• Classical field theory simulations confirm predictions

Gauge Fields: Abelian Higgs Model

$$\epsilon = \frac{1}{2}\vec{B}^{2} + |\vec{D}\phi|^{2} + m^{2}\phi^{*}\phi + \lambda(\phi^{*}\phi)^{2}$$

- $\vec{D} = \vec{\nabla} + i e \vec{A}$, $\vec{B} = \vec{\nabla} \times \vec{A}$
- Gauge symmetry $\phi(x) \to e^{i\alpha(x)}\phi(x)$, $\vec{A} \to \vec{A} (1/e)\vec{\nabla}\alpha$
 - Phase angle not θ physical observable Kibble argument?
- Higgs phase:
 - Minimize energy: $\vec{D}\phi = 0 \leftrightarrow e\vec{A} \approx \vec{\nabla}\theta$
 - Gauge field cancels gradient energy

Cold Electroweak Baryogenesis

- Electroweak theory: $\pi_3(\mathcal{M}) = \mathbb{Z}$
 - \Rightarrow Textures
- Gauge field compensates: $N_{\rm CS} = N_{\rm w}$
 - Either $N_{\rm CS}$ or $N_{\rm w}$ changes, depending on texture size
 - Biased by CP violation
 - Anomaly $\Delta B = 3\Delta N_{\rm CS}$ leads to baryon asymmetry (Turok&Zadrozny 1990)
- Can take place at the end of inflation: T = 0

(Krauss&Trodden; Copeland,Lyth,AR&Trodden; Tranberg&Smit)

Cold Electroweak Baryogenesis

- Electroweak theory: $\pi_3(\mathcal{M}) = \mathbb{Z}$
 - \Rightarrow Textures
- Gauge field compensates: $N_{\rm CS} = N_{\rm w}$
 - Either $N_{\rm CS}$ or $N_{\rm w}$ changes, depending on texture size
 - Biased by CP violation
 - Anomaly $\Delta B = 3\Delta N_{\rm CS}$ leads to baryon asymmetry (Turok&Zadrozny 1990)
- Can take place at the end of inflation: T = 0

(Krauss&Trodden; Copeland,Lyth,AR&Trodden; Tranberg&Smit)

 In thermal transition dominated by gauge dynamics: Thermal sphalerons

Flux Quantisation

- Minimize energy: $\vec{D}\phi = 0 \leftrightarrow e\vec{A} \approx \vec{\nabla}\theta$
- No magnetic field in the Higgs phase: $\vec{\nabla} \times \vec{A} \approx (1/e)\vec{\nabla} \times \vec{\nabla}\theta = 0$
- Confined into strings

$$\Phi = \oint d\vec{x} \cdot \vec{A} = (1/e) \oint d\vec{x} \cdot \vec{\nabla}\theta = N_{\rm w} \Phi_0$$

• Flux quantum $\Phi_0 = 2\pi/e$ per string

First Order Phase Transition

- Bubble radius *R*
- Hole of area $\sim R^2$ between bubbles

First Order Phase Transition

- Bubble radius *R*
- Hole of area $\sim R^2$ between bubbles
- Thermal flux through hole: $\Phi \approx \sqrt{RT}$
- Conservation of flux:

Must get confined in a string with winding $N_{
m w}=\Phi/\Phi_0pprox e\sqrt{RT}$

(Donaire&AR 2006)

Simulation of a First Order Transition

Simulation of a First Order Transition

First Order Phase Transition in 2D

Phase angle

Magnetic field

Flux Trapping in a Continuous Transition

Magnetic flux is conserved

$$\frac{d}{dt}\Phi = -\oint_{\partial C} d\vec{x} \cdot \vec{E}$$

• Uniform initial field: String number density $\vec{\rho} = (e/2\pi)\vec{B}$

Flux Trapping in a Continuous Transition

Magnetic flux is conserved

$$\frac{d}{dt}\Phi = -\oint_{\partial C} d\vec{x} \cdot \vec{E}$$

• Non-uniform field: Short-wavelength $\lambda \leq \lambda_c$ modes decay

Flux Trapping in a Continuous Transition

Magnetic flux is conserved

$$\frac{d}{dt}\Phi = -\oint_{\partial C} d\vec{x} \cdot \vec{E}$$

• Long-wavelength modes survive

Flux Trapping in a Continuous Transition

Magnetic flux is conserved

$$\frac{d}{dt}\Phi = -\oint_{\partial C} d\vec{x} \cdot \vec{E}$$

• Long-wavelength modes form strings $\vec{\rho} = (e/2\pi)\vec{B}$ (Hindmarsh&AR 2000)

Flux Trapping in a Continuous Transition

Magnetic flux is conserved

$$\frac{d}{dt}\Phi = -\oint_{\partial C} d\vec{x} \cdot \vec{E}$$

- Long-wavelength modes form strings $\vec{
 ho} = (e/2\pi)\vec{B}$ (Hindmarsh&AR 2000)
- Correlator at long distances $r \gg \lambda_c$:

 $\langle \rho_i(x)\rho_j(y)\rangle = (e/2\pi)^2 \langle B_i(x)B_j(y)\rangle$

• Given by a scalar function G(k):

$$\langle \rho_i(\vec{k})\rho_j(\vec{q})\rangle = (2\pi)^3 \delta(\vec{k} + \vec{q}) \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) G(k)$$

Long-Range Correlations (AR 2009)

- Initial state:
 - Thermal (T > 0):

$$G(k) = \frac{e^2}{4\pi^2} G^B(k) \approx \frac{e^2}{4\pi^2} \frac{k}{2} \coth \frac{k}{2T}$$

$$\langle \rho_i(\vec{x}) \rho_j(\vec{y}) \rangle \sim -\frac{e^2 T}{|\vec{x} - \vec{y}|^3}$$

• Vacuum (T = 0):

$$G(k) = \frac{e^2}{4\pi^2} G^B(k) \approx \frac{e^2}{4\pi^2} \frac{k}{2}$$

$$\langle \rho_i(\vec{x})\rho_j(\vec{y})\rangle \sim -\frac{e^2}{|\vec{x}-\vec{y}|^4}$$

3D Simulation

- 256x256x256 lattice, spacing $\delta x = 1$
- Thermal initial conditions with $T_{\rm ini} = 0.5$
- Radiation dominated with $H_{ini} = 0.1$: Evolve until a = 2
- Scalar coupling $\lambda = 1$,

 m^2 such that transition takes place at $a = \sqrt{2}$

$$\partial_{\tau}^{2} \tilde{\phi} = \vec{D}^{2} \tilde{\phi} + (m^{2}a^{2} + \partial_{\tau}^{2}a/a)\tilde{\phi} - 2\lambda |\tilde{\phi}|^{2} \tilde{\phi}$$
$$\partial_{\tau} \tilde{E}_{i} = \partial_{j} F_{ij} + 2e \operatorname{Im} \tilde{\phi}^{*} D_{i} \tilde{\phi},$$
$$\partial_{i} \tilde{E}_{i} = 2e \operatorname{Im} \tilde{\phi}^{*} \partial_{\tau} \tilde{\phi}$$

3D Simulation

e = 0.5

3D Simulation

• Winding number correlator:

$$\langle \rho_i(\vec{k})\rho_j(\vec{q})\rangle = (2\pi)^3 \delta(\vec{k} + \vec{q}) \left(\delta_{ij} - \frac{k_i k_j}{k^2}\right) G(k)$$

3D Simulation

• Flux trapping prediction:

$$\langle \rho_i(\vec{k})\rho_j(\vec{q})\rangle = \left(\frac{e}{2\pi}\right)^2 \langle B_i(\vec{k})B_j(\vec{q})\rangle_{\rm ini}$$

Zero-Temperature Phase Transition

- $128 \times 128 \times 32768$ lattice
- Classical field theory simulation:

Initial Gaussian fluctuations with the quantum vacuum two-point function

Short-Distance Effects

2D Simulation

Short-Distance Effects

- Clusters of equal-sign vortices:
 - $N \approx e T^{1/2} \lambda_c^{2-D/2}$ per cluster (Hindmarsh&AR, 2000)
 - Kibble mechanism: No clusters

gauge

Short-Distance Effects

- Clusters of equal-sign vortices:
 - $N \approx e T^{1/2} \lambda_c^{2-D/2}$ per cluster (Hindmarsh&AR, 2000)
 - Kibble mechanism: No clusters

global

Short-Distance Effects

- Clusters of equal-sign vortices:
 - $N \approx eT^{1/2} \lambda_c^{2-D/2}$ per cluster (Hindmarsh&AR, 2000)
 - Kibble mechanism: No clusters
- Also in 3D

(Blanco-Pillado et al 2007)

Cosmology

- Short-distance effects washed out quickly
 - Clustering probably not relevant
 - Thick strings ($N_{\rm w}>1$) can modify string evolution
- Long-range correlations potentially very important
 - Correlations on superhorizon scales:
 Strings pile up as the horizon grows
 - Thermal initial state ruled out:
 - Vacuum initial state:
 - with preferred direction
 - correlations from "nothing"
 - are classical arguments valid?

 $T_{\rm CMB}/H_0 \sim 10^{14}$ infinite strings

 $M_{\rm Pl}/g_*^{1/2}T_{\rm inf}\sim 10$ infinite strings

Superconductor Experiments

- Quench from $T > T_c$ to $T < T_c$
 - Fully quantum mechanical
 - Better test than any simulation
- Measurements of net flux (Carmi et al, Monaco et al)
- Array of rings (Kirtley et al 2003)
 - Shows clustering
- Magneto-optical imaging:
 - Experiments being planned (Golubchik 2008)
 - Individual vortices: Correlations

Superconductor Experiments

- Quench from $T > T_c$ to $T < T_c$
 - Fully quantum mechanical
 - Better test than any simulation
- Measurements of net flux (Carmi et al, Monaco et al)
- Array of rings (Kirtley et al 2003)
 - Shows clustering
- Magneto-optical imaging:
 - Experiments being planned (Golubchik 2008)
 - Individual vortices: Correlations

Conclusions

- Global symmetry: Kibble-Zurek mechanism
- Gauge symmetry: Kibble-Zurek + flux trapping
 - Thick strings from first order transitions
 - Dominant mechanism at long distances
 - Gauge field correlations survive in defect distribution: Infinite-range correlations from "nothing"?
- Can be tested in superconductor experiments