Constraining Models of Cosmic Acceleration with Galaxy Cluster Surveys Jochen Weller University Observatory Ludwig-Maximilians University **Excellence Cluster Universe** Max-Planck-Institute for Extraterrestrial Physics

Galaxy Clusters as a Probe of Structure Formation in the Universe

- If linear density perturbation exceeds threshold density the region will collapse and form a cluster
- Mass function; density of clusters at a given mass and redshift
- Mass function sensitive to amplitude of perturbations (σ_8) and mass contents of the Universe (Ω_m) ; but also other cosmological parameters (w) !

The Distribution of Dark Matter Haloes

- Simple: assume Gaussian distributed density fluctuations
- calculate probability that region with overdensity δ larger than some critical density $\delta_{\rm c}$ is found
- Normalize to account for total mass-density in the Universe: fudge factor 2
- Press-Schechter mass function (Press, Schechter 1974)
- Suffers from cloud-in-cloud problem; can be properly addressed by excursion sets (Bond, Cole, Efstathiou and Kaiser; 1990): Get automatically factor of 2

The Calculation of the Threshold

- Assume local overdensity
- spherical collapse of overdense region
- linearize dynamics
- calculate overdensity at collapse
 - In flat matter dominated Universe: $\delta_c = 1.686$
- can be calculated for other cosmologies
 - mild cosmology dependence
- Feed into mass function of haloes
- Extension to ellipsoidal collapse (Sheth & Tormen 2002)

Overcoming Analytical Uncertainties: Counting Halos in Simulations !

- Count halos in N-body simulations
- Measure "universal" mass function - density of cold dark matter halos of given

Universality of the Mass Function - I

- Claims of universal parameterization in terms of linear fluctuation σ (M)
- Tinker et al. 2008 find additional redshift dependence (strongest effect in amplitude, but also shape)
- This effect can be included in parameterization

Universality of the Mass Function - II

Bhattacharya et al. 2010 find about 10% variation in 'universal' mass function (analysis of 37 wCDM cosmologies)

 $1/\sigma(M)$

Return of de Sitter - Stockholm - March 2011

One Simulation to Fit them All ?

- In order to do measure cosmological parameters, require fast way to do calculate mass function for a lot of cosmological models
- Idea: Scale original simulation (masses, length, velocities)
 - possible drawback, only works close to simulated model
- Alternative: Simulate a few models and then interpolate between them or a neural network approach – emulate: Heitman et al. 2009

Angulo & White 2009

Cosmology Dependence of the Mass Function

$$\frac{dn}{dM}(z,M) = -0.316 \frac{\rho_{m,0}}{M} \frac{d\sigma_M}{dM} \frac{1}{\sigma_M} \exp\left\{-\left|0.67 - \log\left[D(z\sigma_M)\right]\right|^{3.82}\right\}$$

- mass density
- power law dependence on fluctuation amplitude
- strong power law dependence on growth factor

Predicting Cluster Number Counts

 $\Delta N(z) = \Delta \Omega \int_{z-\Delta z/2}^{z+\Delta z/2} dz \frac{d^2 V}{d\Omega dz} \int_{M_{\rm lim}}^{\infty} \frac{dn}{dM} dM$ Survey sky coverage **Redshift** bins Volume element Limiting mass of survey (redshift dependent) Cosmology dependence driven by volume element and mass function

Cosmology Dependence of Number Counts

Observation of Galaxy Clusters

- x-ray signature of intra-cluster gas
- Sunyaev-Zel'dovich decrement in effective temperature of cosmic microwave background photons
- weak and strong lensing
- Member galaxies
 - counting
 - spectroscopy

Number counts from x-ray observations

37 Chandra clusters at high redshift 49 low redshift clusters with ROSAT Vikhlinin et al. 2009

Return of de Sitter - Stockholm - March 2011

10¹⁵

Cosmological Constraints with Chandra

Example: maxBCG Catalog of the SDSS

- Koester et al. 2007
 - $^{\circ}$ over 13,000 clusters with σ > 400 km/s
 - redshift range 0.1<z<0.3
- maxBCG exploits three features of clusters
 - I/r decrease of spatial clustering in clusters (2D projection)
 - most luminous galaxies in clusters occupy tight sequence (E/S0 ridgeline) in color-magnitude diagram
 - Brightest Cluster Galaxy resides in ridgeline (≈at center of cluster)
 - maxBCG provides redshift estimate (photometric of the cluster center) and a scaled richness N_{gals}^{r200}
- For N_{gals}>20 better than 90% completeness

The Algorithm

- Using the likelihood function, each object in an input galaxy catalog is tested at an array of redshifts for the likelihood that it is a cluster center.
- 2. Each object is assigned the redshift which maximizes this likelihood function.
- 3. The objects are ranked by these maximum likelihoods.
- 4. The object with the highest likelihood in the list becomes the first cluster center. All other objects within $z = \pm 0.02$ (the typical σz on a red galaxy), a scaled radius r200, and lower maximum likelihood are removed from the list of potential centers.
- 5. The next object in the list is handled similarly, and the process is continued, flagging other potential cluster centers within that object's neighborhood which have lower likeli- hoods.
- 6. All unflagged objects at the end of this percolation are kept, and are taken as BCGs identifying clusters in the final cluster list.

The SDSS maxBCG Catalog

Koester et al. 2007

From Richness to Mass

- Estimate mass with weak lensing (Sheldon et al. 2007, Johnston et al. 2007)
 - stacked over richness bins

ABUNDANCE OF MAXBCG CLUSTERS MEAN MASS OF MAXBCG CLUSTERS

Uncertainty in Mass Limit

- Mean mass observable relation
 - scaling laws dependent on method not entirely determined: redshift and mass dependence
 - different methods can be used for cross calibration
- individual scatter in mass observable relation
 - how behave the tails
 - high redshift, low mass, high mass, etc.
 - degenerate with cosmology
 - can also be estimated by surveys
 - Rozo et al.: optical, x-ray and weak lensing find 0.45±0.20

General Form for Scaling and Scatter

 assign likelihood for observed mass for a true mass p (M_{obs} | M) with a bias and a scatter included; allow to differ in redshift and mass bins

$$p(M_{obs}|M) = \frac{1}{\sqrt{2\pi}\sigma_{\ln M}^2} \exp\left[-x^2(M_{obs})\right]$$
$$x(M_{obs}) = \frac{\ln M_{obs} - \ln M - \ln M_{bias}}{\sigma_{\ln M}}$$

- completely free form does not allow cosmology fit (Lima & Hu)
- In $M_{bias} = A + n \ln(1 + z)$
 - better form for particular selections possible
- $\sigma_{\ln M}^2 = A + Bz + Cz^2 + \dots$
 - so far this is ad hoc

Self-Calibration

$$n_i = \int_{M_{obs}^i}^{M_{obs}^{i+1}} \frac{dM_{obs}}{M_{obs}} \int \frac{dM}{M} \frac{dn}{d\ln M} p(M_{obs}|M)$$

- Exploit shape of mass function to calibrate for bias and scatter in constant mass bins
- Further use clustering of clusters (crosscorrelated to other probes ? Not used here!)
- Result: scatter in mass-observable relation is not the problem: Increases number of clusters, hence better statistics
- Uncertainty in scatter is PROBLEM

Return of de Sitter - Stockholm - March 2011

Impact of Uncertainty in Scatter on Cosmological Parameter Estimation

- However: UNCERTAINTY IN SCATTER is problem
- Problem mass observable nuissance parameters are degenerate with cosmology (not included in the Lima & Hu free form fit)
- Prior on uncertainty in scatter required !

Lima & Hu 2004

Application to 'Richness' selected clusters

- assume p(N₂₀₀|M) is log-normal distribution
- mean is linear in mass: 2 parameters
- one fixed scatter (prior range 0.1 ... 1.5)
- include purity and completeness of sample (95%); errors added in quadrature
- allow for bias of weak lensing mass estimates

Cosmology from SDSS maxBCG catalog

Rozo et al. 2009

Accelerated Expansion from Modified Gravity Model – Example: DGP

Dvali, Gabadadze, Porrati 2000

- Brane-world inspired scenario
- large extra dimension
- Standard model confined to the brane
- Gravity can leak of the brane into 5th dimension - cross over scale r_c
- Modification of Friedman equations
- has maybe intrinsic problems
- is ruled out by data (at least flat case)
- Better models see Appleby talk

Modified Friedman Equation in DGP 1odel

For flat Universe, condition:

2011

$$\frac{1}{H_0 r_c} = 1 - \Omega_{\rm m}$$

modified equation

$$H^2-\frac{H}{r_c}=\frac{8\pi G}{3}\rho_m$$

 accelerated branch as a solution

Effective Equation of State of DGP Model

w

 \underline{p}

 Comparison to dark energy component

$$egin{aligned} w(a) &= -1 + rac{\Omega_{
m m} a^{-3}}{\left[(r_c H_0)^{-1} + 2\eta
ight]\eta} \ \eta &= \sqrt{\Omega_{
m m} a^{-3} + 1/(2r_c H_0)^2} \end{aligned}$$

- From 5D
 perturbations
 (Maartens & Koyama
 2006)
- For $\beta \rightarrow \infty$: std gravity mimic DE model
- significant difference

Cluster Counts in DGP Model

significant difference between mimic DE and DGP: >1 σ

- DGP number counts for $\sigma_8 = 0.75$, n=1, M_{lim}=1.7×10¹⁴h⁻¹M_{\odot}(from 'SPT')
- mock data assuming Poisson errors
- mimic DE model
- different r_c
- Error's from Supernovae observations with 2000 SNe $\delta w_0 = 0.05; \delta w_a = 0.2;$ $\delta \Omega_m = 0.03; \quad \delta \sigma_8 = 0.03$ (WMAP3+SDSS)
- $\delta\sigma_8$ =0.01 (Planck+LSS)
- ΛCDM
- w=-0.8

But: Be careful, things could go wrong – need to start from scratch

- What is mass function in DGP model ?
- Need either new analytical approach (spherical collapse, excursion sets, ...)
- or better: Numerical Simulation, universality test, scaling, ...
- performed 1st time for a modified gravity model: Oyaizu 2008

Oyaziu et al. 2008

The Mass Function in Modified f(R) Gravity

Schmidt et al. 2009

- shaded region: adapted spherical collapse and Sheth and Tormen for large and small field limit
- Large field: enhanced gravitational forces inside the halo enhance the abundance of these objects

The Mass Function in the DGP Model

Schmidt et al. 2010

Constraints on f(R) from X-ray Data

Parameters	f(R)		f(R) (with gISW)		$f(R)$ (with E_G)	
$100\Omega_b h^2$	2.223 ± 0.053	2.206	2.225 ± 0.054	2.253	2.224 ± 0.054	2.206
$\Omega_c h^2$	0.1123 ± 0.0036	0.1109	0.1117 ± 0.0036	0.1133	0.1125 ± 0.0036	0.1131
θ	1.0403 ± 0.0027	1.0392	1.0403 ± 0.0027	1.0416	1.0403 ± 0.0027	1.0394
au	0.083 ± 0.016	0.082	0.084 ± 0.016	0.090	0.083 ± 0.016	0.083
n_s	0.954 ± 0.012	0.950	0.954 ± 0.012	0.965	0.954 ± 0.013	0.952
$\ln[10^{10}A_s]$	3.212 ± 0.040	3.215	3.209 ± 0.039	3.200	3.213 ± 0.039	3.221
$100B_{0}$	< 315	28	< 43.2	0.0	< 319	30
Ω_m	0.272 ± 0.016	0.268	0.269 ± 0.016	0.272	0.273 ± 0.016	0.279
H_0	70.4 ± 1.4	70.4	70.7 ± 1.3	70.7	70.3 ± 1.3	69.6
$10^{3} f_{R0} $	< 350	46	< 69.4	0.0	< 353	51
$-2\Delta \ln L$	-1.104		1.506		-0.696	

SNe, BAO, Hubble CMB, WL, galaxy flows Cluster Abundance: -galaxy-galaxy lensing of MaxBCG clusters and groups: three mass bins and two redshift bins

Cluster Abundance: -galaxy-galaxy lensing TABLE III: Same as Tab. I, but for f(R) gravity. $-2\Delta \ln L$ is quoted with respect to the corresponding maximum likelihood flat Λ CDM model. Limits on B_0 and $|f_{R0}|$ indicate the one-sided 1D marginalized upper 95% C.L. Note that as $B_0 \rightarrow 0$ reproduces Λ CDM predictions, the slightly poorer fits of f(R) gravity should be attributed to sampling error in the MCMC

Parameters	f(R) (with CA)		$f(R)$ (with $E_G\&CA$)		f(R) (all)	
$100\Omega_b h^2$	2.209 ± 0.054	2.204	2.213 ± 0.054	2.235	2.216 ± 0.054	2.210
$\Omega_c h^2$	0.1064 ± 0.0032	0.1112	0.1073 ± 0.0029	0.1108	0.1076 ± 0.0028	0.1104
θ	1.0390 ± 0.0027	1.0398	1.0392 ± 0.0027	1.0413	1.0394 ± 0.0027	1.0398
τ	0.077 ± 0.016	0.080	0.077 ± 0.015	0.084	0.079 ± 0.015	0.075
n_s	0.953 ± 0.012	0.951	0.954 ± 0.012	0.956	0.954 ± 0.012	0.951
$\ln[10^{10}A_s]$	3.175 ± 0.0038	3.209	3.179 ± 0.037	3.203	3.182 ± 0.0037	3.193
$100B_0$	< 0.333	0.000	< 0.152	0.000	< 0.112	0.001
Ω_m	0.247 ± 0.014	0.268	0.251 ± 0.012	0.261	0.252 ± 0.012	0.264
H_0	$.2.2 \pm 1.4$	70.5	71.9 ± 1.3	71.4	71.9 ± 1.2	70.8
$10^{3} f_{R0} $	< 0.484	0.001	< 0.263	0.000	< 0.194	0.002
$-2\Delta \ln L$	0.802		0.264		0.926	

Lombriser, Slosar, Seljak & Hu 2010

TABLE IV: Same as Tab. II, but for f(R) gravity. See also Tab. III.

Uses SDSS maxBCG catalog

Application to Future Surveys

PanStarrs, DES(+SPT), Planck, EUCLID

Panstarrs

Dark Energy Survey

Planck CMB Satellitt

eesa

EUCLID

EUCLID an ESA Cosmic Vision Proposal

- 20,000 deg
- Weak Lensing
 - Diffraction limited galaxy shape measurements in one broad visible R/I/Z band.
 - Redshift determination by Photo-z measurements in 3 YJH NIR bands to H(AB)=24 mag
- BAO
 - Spectroscopic redshifts (NIR) for 33% of all galaxies brighter than H(AB)=22 mag, σ_z<0.001
- Constraints
 - Aperture: max 1.2 m diameter
 - Limited numbers of NIR detectors
 - Mission duration: max ~5 years

Selection Clusters with Euclid

- Weak lensing: e.g. peak statistics
- Galaxy overdensities
 - maxBCG
 - Voronoi Tesselation
 - Matched filters
 - Counts in Cells
 - Percolation Algorithms (FoF)
 - smoothing kernels
 - surface brightness enhancements
 - •••

Strong Lensing

maxBCG Selection SDSS: A Lesson for Euclid ?

Johnston et al. 2007

- Mass Richness relation
 - calibrated with statistical weak lensing measurements (for 130,000 groups)
 - Johnston et al. 2007
- Good purity and completeness to about: $M \sim 10^{13.5} h^{-1} M_{\odot}$
- however for SDSS only to: z ~ 0.3
- depth of Y, J and H filters
 - should be able to find ridgeline galaxies out to z=1.3-2.0
 - how far out do we find robust red sequence ?
- calibration with internal and external spectroscopy in EUCLID !
- Need mock catalogs, to study this question: in process

Cluster Numbers for Euclid

Constraints from Euclid Cluster Counts (no spectroscopy included) $\frac{d\ln(\delta/a)}{d\ln a} = \Omega_m^{\gamma} - 1$

Including 5 cluster nuissance parameters; prior on scatter: 25%

Cosmology and Priors on the Mass – Observable Relation

How can Euclid help Planck-SZ Clusters – Very Preliminary !

NO SCATTER, see also Cunha et al., Wechsler et al. But also vice versa: Improvement of FoM could be 50% from WL and x-ray

Conclusions

- Clusters are extremely sensitive to the growth of structures
- Astrophysical uncertainties can be controlled by self- and cross-calibrating the uncertainties and detailed follow up of selected clusters (x-ray, SZ, WL, spectroscopy)
- 'Richness' methods now at a stage to give meaningful cosmological constraints
- SDSS maxBCG sample is currently providing the tightest cosmological constraints on f(R) models

 might this also be true for future galaxy cluster counts vs. weak lensing, BAO, etc ???