Cosmic dust and dark energy

Brice Ménard

Tokyo University Johns Hopkins University Canadian Institute for Theoretical Astrophysics

Outline

1. The opacity of the Universe

2. Probing intergalactic dust

3. Implications for constraints on dark energy

The Hubble diagram of SNe Ia

Kowalski et al. (2008)

The opacity of the Universe

 $\delta w \sim \delta m$

The opacity of the Universe

 $\delta w \sim \delta m$

absorption by hydrogen

absorption by cosmic matter

mean absorption spectrum

York et al. (2005)

Interstellar material

A grain of cosmic dust.

Credit: J. Freitag and S. Messenger

composition: C, Si, Mg, Fe, etc.

dust to gas mass ratio: ~1%

dust to metals mass ratio: ~ 25%

The "Black Cloud" B68 (VLT ANTU + FORS1)

ES+ O +

IRAS/COBE Galactic Dust

100 micron map

"Cigar" Galaxy M82 Spitzer Space Telescope • IRAC NASA / JPL-Caltech / R. Kennicutt (Cambridge, University of Arizona) and the SINGS team ssc2006-09

Lifetime of dust grains

Draine & Salpeter (1979): for $10^6 < T < 10^9 K$

$$\tau_{sput} \approx 2 \times 10^5 \, {\rm yr} \, \left(\frac{{\rm cm}^{-3}}{n_H} \right) \left(\frac{a}{0.1 \, \mu {\rm m}} \right) \label{eq:sput}$$

 τ (100 kpc) ~ 4 x 10⁹ yr

- how much dust is there outside galaxies?
- how far does it get?
- how long does it stay there?
- shape of extinction curve?

What do we know about the opacity of the Universe?

Tolman/Etherington test: $D_{\rm L} = (1+z)^2 D_{\rm A}$

If dust along the line-of-sight:

 $D_{\rm Lobs}^2(z) = D_{\rm Ltrue}^2(z) e^{\tau(z)}$

More, Bovy & Hogg 2008: DA from BAO, DL from SNe Ia

In practice:

$$\begin{aligned} \frac{D_{\rm L}(z_2)}{D_{\rm L}(z_1)} &= \frac{[1+z_2]^2}{[1+z_1]^2} \frac{D_{\rm A}(z_2)}{D_{\rm A}(z_1)}\\ D_{\rm V} &= \left[\frac{c \, z \, [1+z]^2 \, D_{\rm A}^2}{H(z)}\right]^{1/3} \end{aligned}$$

What do we know about the opacity of the Universe?

Parametrizing the cosmological model

base parameters

$\Omega_{\rm m}$	matter density
Ω_b	baryon density
Ω_r	radiation density
h	Hubble parameter
A	adiabatic density perturbation amplitude
τ	reionization optical depth
b	bias parameter (or parameters)

Liddle (2004)

$$egin{aligned} D_{
m L} &= (1+z)^2 \, D_{
m A} \ D_{
m Lobs}^{2}(z) &= D_{
m Ltrue}^{2}(z) \, {
m e}^{ au(z)} \end{aligned}$$

opacity of the Universe: tau(z)

candidate parameters

Ω_k	spatial curvature
$N_{\nu} = 3.04$	effective number of neutrino species (CMBFAST defin
m _{vi}	neutrino mass for species 'i'
	[or more complex neutrino properties]
mdm	(warm) dark matter mass
w + 1	dark energy equation of state
dw/dz	redshift dependence of w
	[or more complex parametrization of dark energy en
$c_{\rm S}^2 - 1$	effects of dark energy sound speed
$1/r_{top}$	topological identification scale
	[or more complex parametrization of non-trivial top
$d\alpha/dz$	redshift dependence of the fine structure constant
dG/dz	redshift dependence of the gravitational constant
n - 1	scalar spectral index
$dn/d \ln k$	running of the scalar spectral index
kcut	large-scale cut-off in the spectrum
Afeature	amplitude of spectral feature (peak, dip or step)
kfeature	and its scale
	[or adiabatic power spectrum amplitude parametrize
f NL	quadratic contribution to primordial non-gaussianity
	[or more complex parametrization of non-gaussiani
r	tensor-to-scalar ratio
$r + 8n_{\rm T}$	violation of the inflationary consistency equation
$dn_T/d \ln k$	running of the tensor spectral index
Ps	CDM isocurvature perturbation

base parameters

$\Omega_{\rm m}$	matter density	
Ω_{b}	baryon density	
Ω_r	radiation density	
h	Hubble parameter	
A	adiabatic density perturbation amplitude	1.0
τ	reionization optical depth	Ę
b	bias parameter (or parameters)	0.8
Lidd	ie (2004)	0.6 c ^E
Л		
D_{L}	$-(1 + x)^2 D$	0.4
	$= (1+z)^2 D_{\mathrm{A}}$	0.4 -
$D_{ m L}$	$= (1+z)^2 D_{ m A}$ ${}^2_{ m obs}(z) = D_{ m Ltrue}^2(z) { m e}^{ au(z)}$	0.4 -

Avgoustidis et al. (2010)

opacity of the Universe: tau(z)

What do we know about the opacity of the Universe?

Tolman test: $D_{\rm L} = (1+z)^2 D_{\rm A}$ More, Bovy & Hogg 2008 \wedge → 0.10 Tolman test $+ \cos mo$ observer-frame Avgoustidis, Verde & Jimenez 2009 0.01 Tolman test (More et al. 09) QSO color scatter (Moertsell & Goobar 05) SNe Ia + H(z) (Avgoustidis et al. 09) dust around galaxies (Menard et al. 09) dust in MgII absorbers (Menard et al. 07) 0.5 1.5 0.0 1.0 2.0

redshift

What do we know about the opacity of the Universe?

Tolman test: $D_{\rm L} = (1+z)^2 D_{\rm A}$ More, Bovy & Hogg 2008 → 0.10 Tolman test $+ \cos mo$ observer-frame Avgoustidis, Verde & Jimenez 2009 Mean QSO colors (z) 0.01 Moertsell & Goobar 2005 Tolman test (More et al. 09) QSO color scatter (Moertsell & Goobar 05) SNe Ia + H(z) (Avgoustidis et al. 09) dust around galaxies (Menard et al. 09) dust in MgII absorbers (Menard et al. 07) 0.5 1.5 0.0 1.0 2.0

redshift

Steidel et al. (1997)

Wavelength (Angstroms)

MgII as a tracer of baryons

Mg II ($\lambda\lambda$ 2796, 2803), z > 0.4 C IV ($\lambda\lambda$ 1548, 1550), z > 1.5 Si IV ($\lambda\lambda$ 1393, 1402), z > 1.8 N V ($\lambda\lambda$ 1238, 1242), z > 2.2 O VI ($\lambda\lambda$ 1031, 1037), z > 2.8 Ca II ($\lambda\lambda$ 3933, 3968), z < 1.0 Na I D($\lambda\lambda$ 5889, 5895), z < 0.3

The SDSS sample of MgII absorbers

SDSS: ~ 20,000 MgII absorbers detected in the spectra of 100,000 QSOs

 $dN/dz \sim 0.2$

The dust content of MgII absorbers

Reddening by absorbers: Fall & Pei (1989), B.M. & Péroux (2003), Khare et al. (2004), Murphy et al. (2004), Ellison et al. (2005), B.M. et al. (2007), Vladilo & Prochaska (2007), Wild et al. (2007)

• We can measure reddening values at the 1% level!

Dust reddening by CaII absorbers

Wild et al., 2007

The dust content of MgII absorbers

 $=> E_{B-V}(z), A_V(z)$

Opacity induced by MgII absorbers: $A_V(< z) = \int_0^z dz \frac{dN}{dz} A_V(z)$

 $A_V(\langle z) = \int_0^z \mathrm{d}z \; \frac{\mathrm{dN}}{\mathrm{d}z} \; A_V(z)$

A lower limit on the opacity of the Universe

$$A_V(< z) = \int_0^z \mathrm{d} z \; rac{\mathrm{dN}}{\mathrm{d} z} \; A_V(z)$$

inferred without any assumption

What do we know about the opacity of the Universe?

Tolman test: $D_{\rm L} = (1+z)^2 D_{\rm A}$ More, Bovy & Hogg 2008 → 0.10 Tolman test $+ \cos mo$ observer-frame Avgoustidis, Verde & Jimenez 2009 Mean QSO colors (z) 0.01 Moertsell & Goobar 2005 Tolman test (More et al. 09) QSO color scatter (Moertsell & Goobar 05) SNe Ia + H(z) (Avgoustidis et al. 09) dust around galaxies (Menard et al. 09) dust in MgII absorbers (Menard et al. 07) Dust in MgII absorbers 0.5 1.5 0.0 1.0 2.0 redshift Ménard et al. 2007

The opacity of the Universe

 $\delta w \sim \delta m$

Outline

1. The opacity of the Universe

2. Probing intergalactic dust

3. Implications for constraints on dark energy

ACS Nearby Galaxy Survey Treasury (ANGST) Holwerda et al. (2008)

Quasars shining 'through' galaxies

Ostman, Goobar & Moerstell et al. (2006)

Fig.2. The two QSO-galaxy pairs that survived the cuts, SDSS J131058.13+010822.2, and SDSS J084957.97+510829.0 from the top. An arrow points out the QSO in the case where it is not clear which object it is.

Fig. 3. Confidence levels for the two low-redshift galaxies corresponding to 1σ (black line), 68% (dark blue region) and 90% (pale blue) as defined by the χ^2 test.

Statistical approach

We can constrain these effects statistically by measuring

 $\langle\,m_{\rm QSO}\,$. $n_{\rm gal}\,\rangle(\theta)$

- 20 million galaxies at $z \sim 0.3$
- 85,000 quasars at z > 1

B. M. et al. (2009)

Extinction curve

The galaxy-dust correlation function

What do we know about the opacity of the Universe?

Tolman test: $D_{\rm L} = (1+z)^2 D_{\rm A}$ More, Bovy & Hogg 2008

Tolman test + cosmo Avgoustidis, Verde & Jimenez 2009

Mean QSO colors (z) Moertsell & Goobar 2005

Dust in MgII absorbers Ménard et al. 2007

Dust around galaxies Ménard et al. 2010

Dust in numerical simulations

Zu, Weinberg et al. (2011)

What do we know about the opacity of the Universe?

Tolman test: $D_{\rm L} = (1+z)^2 D_{\rm A}$ More, Bovy & Hogg 2008

Tolman test + cosmo Avgoustidis, Verde & Jimenez 2009

Mean QSO colors (z) Moertsell & Goobar 2005

Dust in MgII absorbers Ménard et al. 2007

Dust around galaxies (o) Ménard et al. 2010

Dust in simulations (x) Zu et al. 2011

Outline

1. The opacity of the Universe

2. Probing intergalactic dust

3. Implications for constraints on dark energy

The opacity of the Universe

$$\tau_{obs}(\lambda, z) = \int_0^z \sigma n_0 \bar{\tau} \left(\frac{\lambda}{1+z}\right) \frac{(1+z)^2}{H(z)} dz$$

Extracting cosmological parameters from supernova magnitudes

1: Correct for dust extinction due to our Galaxy

2: The distance modulus is described with an unknown stretch factor and an unknown extinction

$$\mu_i = m_{\text{obs},i} - M + \alpha(s_i - 1) - \beta c_i$$

Assumption: α and β are redshift *in*dependent

3: A chi-square is performed to extract the cosmology and the best stretch and extinction coefficients

Extracting cosmological parameters from supernova magnitudes

$$\mu_i = m_{\text{obs},i} - M + \alpha(s_i - 1) - \beta c_i$$

The observed color excess c_i has several contributions:

$$c_i = \sum_k c_{i,k}$$

Each of them should be corrected with the appropriate β or R_B:

$$\delta m_i = \sum_k eta_{i,k} c_{i,k}$$

If not, a bias is introduced in the distance modulus estimate:

$$\delta m_{\mathrm{bias},i} = \left(eta_d - eta_0
ight) c_d(z_i)$$

Effects on cosmological parameters

BM, Kilbinger & Scranton (2010)

$$\mu_B = m_B^* - M + \alpha(s-1) - \beta c$$

Effects on cosmological parameters

BM, Kilbinger & Scranton (2010)

$$\mu_B = m_B^* - M + \alpha(s-1) - \beta c$$

	No Correction	$\begin{array}{l} \text{High } A_B \\ \beta_{\rm d} = 4.9 \end{array}$	$\begin{array}{l} \text{High } A_B \\ \beta_{\rm d} = 4.9 \pm 2.6 \end{array}$	$\begin{array}{l} \text{Low } A_B \\ \beta_{\rm d} = 4.9 \end{array}$
Parameter				
ACDM: $\Omega_{\rm M}$	$0.291\substack{+0.032\\-0.030}$	$0.308^{+0.034}_{-0.031}~(0.55\sigma)$	$0.308^{+0.039}_{-0.035}~(0.55\sigma)$	$0.304^{+0.033}_{-0.031}~(0.42\sigma)$
wCDM: $\Omega_{\rm b}$	$0.0457\substack{+0.002\\-0.002}$	$0.046^{+0.002}_{-0.002}~(0.35\sigma)$	$0.045^{+0.003}_{-0.002}~(0.25\sigma)$	$0.045^{+0.002}_{-0.002} \ (0.25\sigma)$
h	$0.695\substack{+0.018\\-0.017}$	$0.687^{+0.018}_{-0.017}~(0.45\sigma)$	$0.688^{+0.020}_{-0.019}~(0.40\sigma)$	$0.688^{+0.018}_{-0.017}$ (0.40 σ)
$\Omega_{ m M}$	$0.273\substack{+0.017\\-0.016}$	$0.279^{+0.017}_{-0.016}~(0.36\sigma)$	$0.278^{+0.018}_{-0.017}~(0.30\sigma)$	$0.278^{+0.017}_{-0.016}~(0.30\sigma)$
-w	$0.968\substack{+0.068\\-0.061}$	$0.940^{+0.067}_{-0.061}~(0.43\sigma)$	$0.944^{+0.072}_{-0.067}(0.37\sigma)$	$0.944^{+0.062}_{-0.066}(0.37\sigma)$

Parameter	all models
M	-19.31 ± 0.03
α	1.37 ± 0.13
β	2.45 ± 0.12

a wrong dust redshift dependence would lead to a non-zero w(a)

for the past 10 years there has been some confidence that observers are on the right track because there is a reference model.

Next, there will be no guidance telling us if we are doing things right **Departures from** *w***=-1: Microphysics, High Energy Physics, Gravity.**

(as described in Eric Linder's talk)

Trotta, Kunz & Liddle (2011)

SUMMARY

• A number of probes reveal a substantial amount of dust outside galaxies

- We start to have *some* idea of the opacity of the Universe at low redshift.
- Cosmic dust might affect current w constraints at the ~2-3% level.

How to handle this:

- observing in the infrared
- detect cosmic extinction from the SNe themselves

