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What is Bayesian inference?
Bayesian inference is a system of logical deduction which assigns 
probabilities to all quantities of interest. The probabilities are updated 
in light of new information according to a set of mathematical rules 
centred around Bayes’ theorem (published in 1764).

In 1946, Cox showed that Bayesian inference is the unique 
consistent generalization of Boolean algebra.

P(θ|D) =
P(D|θ)P(θ)

P(D) θ = parameter value
D = data

Terminology: a model is a choice of the set of parameters   
                     to be varied in a fit to a dataset.
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Priors!!
Bayesian inference requires that the prior probabilities be 
specified, giving the state of knowledge before the data 
was acquired to test the hypothesis.

Priors are to be chosen. Different people may not agree 
on their choice.

Priors are where physical intuition comes in.

In my view, one shouldn’t seek a single `right’ prior. 
Rather, one should test how robust the conclusions are 
under reasonable variation of the priors.

Eventually, sufficiently good data will overturn incorrect 
choice of prior.

If you don’t know enough to set a prior, why did you 
bother getting the data?
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Now I think about it, I 
don’t actually know what 
the correct model is. It 
could be one of several.

Now I want to know 
what the best model is.

I can do this by 
computing the Bayesian 
Evidence. I can then do 
parameter estimation 
using the best model.

Mmm, I did the model 
selection thing, but there 
wasn’t a single best model.

But I still want to know 
how probable the 
parameter values are.

I can do this by combining 
the parameter likelihoods 
using Bayesian Model 
Averaging, adding them 
together weighted by the 
model probabilities.
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Figure 1.1: This shows the preferred region in the Ωm–ΩΛ plane from the
compilation of supernovae data in Ref. 17, and also the complementary results
coming from some other observations. [Courtesy of the Supernova Cosmology
Project.]

Two major studies, the ‘Supernova Cosmology Project’ and the ‘High-z Supernova
Search Team’, found evidence for an accelerating Universe [16], interpreted as due to
a cosmological constant, or to a more general ‘dark energy’ component. Current results
from the Supernova Cosmology Project [17] are shown in Fig. 1.1 (see also Ref. 18). The
SNe Ia data alone can only constrain a combination of Ωm and ΩΛ. When combined
with the CMB data (which indicates flatness, i.e., Ωm + ΩΛ ≈ 1), the best-fit values are
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Future experiments will aim to set constraints on the cosmic
equation of state w(z). However, given the integral relation between the luminosity
distance and w(z), it is not straightforward to recover w(z) (e.g., Ref. 19).

April 14, 2007 19:43
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Fig. 4.— Constraints from the five-year WMAP data on ΛCDM parameters (blue), showing marginalized
one-dimensional distributions and two-dimensional 68% and 95% limits. Parameters are consistent with the
three-year limits (grey) from Spergel et al. (2007), and are now better constrained.

WMAP5, Dunkley et al
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Table 1.2: Parameter constraints reproduced from Dunkley et al. [2] and Komatsu
et al. [3], with some additional rounding. All columns assume the ΛCDM cosmology
with a power-law initial spectrum, no tensors, spatial flatness, and a cosmological
constant as dark energy. Above the line are the six parameter combinations actually
fit to the data; those below the line are derived from these. Two different data
combinations are shown to highlight the extent to which this choice matters. The
first column is WMAP5 alone, while the second column shows a combination
of WMAP5 with BAO and SNe data as described in Ref. 3. The perturbation
amplitude ∆2

R is specified at the scale 0.002 Mpc−1. Uncertainties are shown at
68% confidence, and caution is needed in extrapolating them to higher significance
levels due to non-Gaussian likelihoods and assumed priors.

WMAP5 alone WMAP5 + BAO + SN

Ωbh2 0.0227± 0.0006 0.0227± 0.0006

Ωcdmh2 0.110± 0.006 0.113± 0.003

ΩΛ 0.74± 0.03 0.726± 0.015

n 0.963+0.014
−0.015 0.960± 0.013

τ 0.087± 0.017 0.084± 0.016

∆2
R × 109 2.41± 0.11 2.44± 0.10

h 0.72± 0.03 0.705± 0.013

σ8 0.80± 0.04 0.81± 0.03

Ωmh2 0.133± 0.006 0.136± 0.004

1.4. Bringing observations together

Although it contains two ingredients—dark matter and dark energy—which have not
yet been verified by laboratory experiments, the ΛCDM model is almost universally
accepted by cosmologists as the best description of the present data. The basic ingredients
are given by the parameters listed in Sec. 1.1.4, with approximate values of some of
the key parameters being Ωb ≈ 0.04, Ωcdm ≈ 0.21, ΩΛ ≈ 0.74, and a Hubble constant
h ≈ 0.72. The spatial geometry is very close to flat (and usually assumed to be precisely
flat), and the initial perturbations Gaussian, adiabatic, and nearly scale-invariant.

The most powerful single experiment is WMAP5, which on its own supports all these
main tenets. Values for some parameters, as given in Dunkley et al. [2] and Komatsu
et al. [3], are reproduced in Table 1.2. These particular results presume a flat Universe.

September 28, 2009 10:47
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fNL:        Primordial non-gaussianity.

r:           Primordial tensor perturbations.

w0,wa:   Dark energy evolution.

It is easy to find over 20 such candidate parameters that 
have already been discussed in the literature.



How many cosmological parameters? 3

Table 2. Candidate parameters: those which might be relevant for cosmological observations, but for which
there is presently no convincing evidence requiring them. They are listed so as to take the value zero in the
base cosmological model. Those above the line are parameters of the background homogeneous cosmology,
and those below describe the perturbations.

Ωk spatial curvature
Nν − 3.04 effective number of neutrino species (cmbfast definition)
mνi neutrino mass for species ‘i’

[or more complex neutrino properties]
mdm (warm) dark matter mass
w + 1 dark energy equation of state
dw/dz redshift dependence of w

[or more complex parametrization of dark energy evolution]
c2S − 1 effects of dark energy sound speed
1/rtop topological identification scale

[or more complex parametrization of non-trivial topology]
dα/dz redshift dependence of the fine structure constant
dG/dz redshift dependence of the gravitational constant

n − 1 scalar spectral index
dn/d lnk running of the scalar spectral index
r tensor-to-scalar ratio
r + 8nT violation of the inflationary consistency equation
dnT/d ln k running of the tensor spectral index
kcut large-scale cut-off in the spectrum
Afeature amplitude of spectral feature (peak, dip or step) ...
kfeature ... and its scale

[or adiabatic power spectrum amplitude parametrized in N bins]
fNL quadratic contribution to primordial non-gaussianity

[or more complex parametrization of non-gaussianity]
PS CDM isocurvature perturbation ...
nS ... and its spectral index ...
PSR ... and its correlation with adiabatic perturbations ...
nSR − nS ... and the spectral index of that correlation

[or more complicated multi-component isocurvature perturbation]
Gµ cosmic string component of perturbations

3 APPLICATION TO PRESENT
COSMOLOGICAL DATA

3.1 Choice of parameters

Most of the recent work on cosmological parameters has
chosen a particular parameter set or sets, and investigated
parameter constraints when faced with different observa-
tional datasets. However, the information criteria ask how
well different models fit the same dataset. First we need to
decide which models to consider.

A useful division of parameters is into those which are
definitely needed to give a reliable fit to the data, which
I will call the base parameter set, and those which have
proved irrelevant, or of marginal significance, in fits to the
present data. The base parameter set is actually extraordin-
arily small, and given in Table 1. At present it seems that a
scale-invariant spectrum of adiabatic gaussian density per-
turbations, requiring specification of just a single parameter
(the amplitude), is enough to give a good fit to the data.
The Universe can be taken as spatially-flat, with the dark
matter, baryon, and radiation densities requiring to be spe-
cified as independent parameters. The base model includes
a cosmological constant/dark energy, whose density is fixed
by the spatial flatness condition. To complete the parameter
set, we need the Hubble constant. Accordingly, a minimal
description of the Universe requires just five fundamental

parameters.2 Further, the radiation density Ωr is directly
measured at high accuracy from the cosmic microwave back-
ground temperature and is not normally varied in fits to
other data.

In addition to these fundamental parameters, comparis-
ons with microwave anisotropy and galaxy power spectrum
data require knowledge of the reionization optical depth τ
and the galaxy bias parameter b respectively. These are not
fundamental parameters, as they are in principle computable
from the above, but present understanding does not allow
an accurate first-principles derivation and instead typically
they are taken as additional phenomenological parameters
to be fit from the data.

Complementary to this base parameter set is what I will
call the list of candidate parameters. These are parameters
which are not convincingly measured with present data, but
some of which might be required by future data. Many of
them are available in model prediction codes such as cmb-
fast (Seljak & Zaldarriaga 1996). Cosmological observations
seek to improve the measurement of the base parameters,
and also to investigate whether better data requires the pro-
motion of any parameters from the candidate set into the

2 To be more precise, this base model assumes all the parameters
to be listed in Table 2 are zero. Analyses may use different para-
meter definitions equivalent to those given here, for instance using
the physical densities Ωh2 in place of the density parameters.

c© 0000 RAS, MNRAS 000, 000–000

From Liddle 2004
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Bayesian model selection

Choose model M1:
Set of parameters to be varied

Prior ranges for those parameters
Compute likelihood function
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Prior ranges for those parameters
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Bayes theorem again
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P(D|θ)P(θ)

P(D)

Bayesian evidence

, but conditioned on a model.
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P(D|θ,M)P(θ|M)

P(D|M)

How do we calculate it? E(M) =
Z

L(θ)Pr(θ)dθ

This can be evaluated in a number of ways: we use a 
Monte Carlo integration method called nested sampling.

What does it reward? Model predictiveness
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The top level of inference is deciding the models to be 
compared with data, i.e. what different choices of parameter 
sets are we interested in.

There is a conceptual difference between say ΛCDM and a 
varying w model where w just happens to have the value -1. 
Although for that parameter value the predictions are 
identical, overall the model predictiveness is different. Model 
selection compares models, not specific parameter values.

Computing the evidence tells us how the probability of each 
model has been modified by the data.

If only one model survives, proceed to standard parameter 
estimation.

If several models survive, use multi-model inference, e.g. 
Bayesian model averaging.
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due to recent algorithm developments. For guidance in 
interpretting the evidence, people usually appeal to the 
Jeffreys’ scale.

Interpretational scale

The most useful divisions are 2.5 (odds 
ratio of 12:1) and 5 (odds ratio of 150:1).

Jeffreys’ Scale: Δ lnE < 1 Not worth more than a bare mention
1< Δ lnE < 2.5 Substantial evidence
2.5< Δ lnE < 5 Strong to very strong evidence

5< Δ lnE Decisive evidence
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TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-

LambdaCDM

w0-wa
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the nearby SN Ia factory [30]. By using the larger intrin-
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tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
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our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
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Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-

LambdaCDM

w0-wa

Constant w{

{

Conclusion: LambdaCDM currently favoured but all models still alive



That’s where we are at present.

Now for the future!



ΛCDM:  The current baseline cosmological model.

Phenomenological dark energy models, eg CPL w = w0+(1-a) wa :

The most common candidate alternative for dark energy studies.

Fundamental physics dark energy models, eg inverse power-laws,    
Albrecht-Skordis, etc:

Many candidate models in the literature though many fail to fit current data. 
Not clear which are best motivated.

Modified gravity models:

Determination of best candidate modified gravity models required. 

Inhomogeneous Universe models:  Not clear if there are any.

Goal:  to define the key model tests to be carried out and, where possible, 
to optimize survey strategies to achieve them. First we need to figure out 
which are the interesting models.

What are we trying to achieve?
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Fig. 13.— Joint two-dimensional marginalized constraint on the
linear evolution model of dark energy equation of state, w(a) =
w0 + wa(1 − a). The contours show the 68% and 95% CL
from WMAP+H0+SN (red), WMAP+BAO+H0+SN (blue), and
WMAP+BAO+H0+D∆t+SN (black), for a flat universe.

When Ωk != 0, limits on w significantly weaken, with
a tail extending to large negative values of w, unless su-
pernova data are added.
In Figure 12, we show that WMAP+BAO+H0

allows for w ! −2, which can be excluded
by adding information on the time-delay distance.
In both cases, the spatial curvature is well con-
strained: we find Ωk = −0.0125+0.0064

−0.0067 from

WMAP+BAO+H0, and −0.0111+0.0060
−0.0063 (68% CL) from

WMAP+BAO+H0+D∆t, whose errors are comparable
to that of the WMAP+BAO+H0 limit on Ωk with w =
−1, Ωk = −0.0023+0.0054

−0.0056 (68% CL; see Section 4.3).
However, w is poorly constrained: we find w =

−1.44 ± 0.27 from WMAP+BAO+H0, and −1.40 ±
0.25 (68% CL) from WMAP+BAO+H0+D∆t.
Among the data combinations that do not use the in-

formation on the growth of structure, the most powerful
combination for constraining Ωk and w simultaneously
is a combination of the WMAP data, BAO (or D∆t),
and supernovae, as WMAP+BAO (or D∆t) primarily
constrains Ωk, and WMAP+SN primarily constrains w.
With WMAP+BAO+SN, we find w = −0.999+0.057

−0.056 and
Ωk = −0.0057+0.0066

−0.0068 (68% CL). Note that the error
in the curvature is essentially the same as that from
WMAP+BAO+H0, while the error in w is ∼ 4 times
smaller.
Vikhlinin et al. (2009b) combined their cluster abun-

dance data with the 5-year WMAP+BAO+SN to find
w = −1.03 ± 0.06 (68% CL) for a curved universe.
Reid et al. (2010a) combined their LRG power spectrum
with the 5-year WMAP data and the Union supernova
data to find w = −0.99 ± 0.11 and Ωk = −0.0109 ±
0.0088 (68% CL). These results are in good agreement
with our 7-year WMAP+BAO+SN limit.

5.3. Time-dependent Equation of State

As for a time-dependent equation of state, we shall find
constraints on the present-day value of the equation of

state and its derivative using a linear form, w(a) = w0 +
wa(1−a) (Chevallier & Polarski 2001; Linder 2003). We
assume a flat universe, Ωk = 0. (For recent limits on w(a)
with Ωk != 0, see Wang 2009, and references therein.)
While we have constrained this model using the WMAP
distance prior in the 5-year analysis (see Section 5.4.2
of Komatsu et al. 2009a), in the 7-year analysis we shall
present the full Markov Chain Monte Carlo exploration
of this model.
For a time-dependent equation of state, one must be

careful about the treatment of perturbations in dark en-
ergy when w crosses−1. We use the “parametrized post-
Friedmann” (PPF) approach, implemented in the CAMB
code following Fang et al. (2008).32

In Figure 13, we show the 7-year con-
straints on w0 and wa from WMAP+H0+SN
(red), WMAP+BAO+H0+SN (blue), and
WMAP+BAO+H0+D∆t+SN (black). The angular
diameter distances measured from BAO and D∆t help
exclude models with large negative values of wa. We find
that the current data are consistent with a cosmological
constant, even when w is allowed to depend on time.
However, a large range of values of (w0, wa) are still
allowed by the data: we find

w0 = −0.93± 0.13 and wa = −0.41+0.72
−0.71 (68% CL),

from WMAP+BAO+H0+SN. When the time-delay dis-
tance information is added, the limits improve to w0 =
−0.93± 0.12 and wa = −0.38+0.66

−0.65 (68% CL).
Vikhlinin et al. (2009b) combined their cluster abun-

dance data with the 5-year WMAP+BAO+SN to find a
limit on a linear combination of the parameters, wa +
3.64(1 + w0) = 0.05 ± 0.17 (68% CL). Our data combi-
nation is sensitive to a different linear combination: we
find wa + 5.14(1 +w0) = −0.05± 0.32 (68% CL) for the
7-year WMAP+BAO+H0+SN combination.
The current data are consistent with a flat universe

dominated by a cosmological constant.

5.4. WMAP Normalization Prior

The growth of cosmological density fluctuations is
a powerful probe of dark energy, modified gravity,
and massive neutrinos. The WMAP data provide a
useful normalization of the cosmological perturbation
at the decoupling epoch, z = 1090. By compar-
ing this normalization with the amplitude of matter
density fluctuations in a low redshift universe, one
may distinguish between dark energy and modi-
fied gravity (Ishak et al. 2006; Koyama & Maartens
2006; Amarzguioui et al. 2006; Doré et al. 2007;
Linder & Cahn 2007; Upadhye 2007; Zhang et al.
2007; Yamamoto et al. 2007; Chiba & Takahashi 2007;
Bean et al. 2007; Hu & Sawicki 2007; Song et al. 2007;
Starobinsky 2007; Daniel et al. 2008; Jain & Zhang
2008; Bertschinger & Zukin 2008; Amin et al. 2008; Hu
2008) and determine the mass of neutrinos (Hu et al.
1998; Lesgourgues & Pastor 2006).
In Section 5.5 of Komatsu et al. (2009a), we provided

a “WMAP normalization prior,” which is a constraint

32 Zhao et al. (2005) used a multi-scalar-field model to treat w
crossing −1. The constraints on w0 and wa have been obtained
using this model and the previous years of WMAP data (Xia et al.
2006, 2008a; Zhao et al. 2007).

WMAP7: Komatsu et al
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Fig. 13.— Joint two-dimensional marginalized constraint on the
linear evolution model of dark energy equation of state, w(a) =
w0 + wa(1 − a). The contours show the 68% and 95% CL
from WMAP+H0+SN (red), WMAP+BAO+H0+SN (blue), and
WMAP+BAO+H0+D∆t+SN (black), for a flat universe.

When Ωk != 0, limits on w significantly weaken, with
a tail extending to large negative values of w, unless su-
pernova data are added.
In Figure 12, we show that WMAP+BAO+H0

allows for w ! −2, which can be excluded
by adding information on the time-delay distance.
In both cases, the spatial curvature is well con-
strained: we find Ωk = −0.0125+0.0064

−0.0067 from

WMAP+BAO+H0, and −0.0111+0.0060
−0.0063 (68% CL) from

WMAP+BAO+H0+D∆t, whose errors are comparable
to that of the WMAP+BAO+H0 limit on Ωk with w =
−1, Ωk = −0.0023+0.0054

−0.0056 (68% CL; see Section 4.3).
However, w is poorly constrained: we find w =

−1.44 ± 0.27 from WMAP+BAO+H0, and −1.40 ±
0.25 (68% CL) from WMAP+BAO+H0+D∆t.
Among the data combinations that do not use the in-

formation on the growth of structure, the most powerful
combination for constraining Ωk and w simultaneously
is a combination of the WMAP data, BAO (or D∆t),
and supernovae, as WMAP+BAO (or D∆t) primarily
constrains Ωk, and WMAP+SN primarily constrains w.
With WMAP+BAO+SN, we find w = −0.999+0.057

−0.056 and
Ωk = −0.0057+0.0066

−0.0068 (68% CL). Note that the error
in the curvature is essentially the same as that from
WMAP+BAO+H0, while the error in w is ∼ 4 times
smaller.
Vikhlinin et al. (2009b) combined their cluster abun-

dance data with the 5-year WMAP+BAO+SN to find
w = −1.03 ± 0.06 (68% CL) for a curved universe.
Reid et al. (2010a) combined their LRG power spectrum
with the 5-year WMAP data and the Union supernova
data to find w = −0.99 ± 0.11 and Ωk = −0.0109 ±
0.0088 (68% CL). These results are in good agreement
with our 7-year WMAP+BAO+SN limit.

5.3. Time-dependent Equation of State

As for a time-dependent equation of state, we shall find
constraints on the present-day value of the equation of

state and its derivative using a linear form, w(a) = w0 +
wa(1−a) (Chevallier & Polarski 2001; Linder 2003). We
assume a flat universe, Ωk = 0. (For recent limits on w(a)
with Ωk != 0, see Wang 2009, and references therein.)
While we have constrained this model using the WMAP
distance prior in the 5-year analysis (see Section 5.4.2
of Komatsu et al. 2009a), in the 7-year analysis we shall
present the full Markov Chain Monte Carlo exploration
of this model.
For a time-dependent equation of state, one must be

careful about the treatment of perturbations in dark en-
ergy when w crosses−1. We use the “parametrized post-
Friedmann” (PPF) approach, implemented in the CAMB
code following Fang et al. (2008).32

In Figure 13, we show the 7-year con-
straints on w0 and wa from WMAP+H0+SN
(red), WMAP+BAO+H0+SN (blue), and
WMAP+BAO+H0+D∆t+SN (black). The angular
diameter distances measured from BAO and D∆t help
exclude models with large negative values of wa. We find
that the current data are consistent with a cosmological
constant, even when w is allowed to depend on time.
However, a large range of values of (w0, wa) are still
allowed by the data: we find

w0 = −0.93± 0.13 and wa = −0.41+0.72
−0.71 (68% CL),

from WMAP+BAO+H0+SN. When the time-delay dis-
tance information is added, the limits improve to w0 =
−0.93± 0.12 and wa = −0.38+0.66

−0.65 (68% CL).
Vikhlinin et al. (2009b) combined their cluster abun-

dance data with the 5-year WMAP+BAO+SN to find a
limit on a linear combination of the parameters, wa +
3.64(1 + w0) = 0.05 ± 0.17 (68% CL). Our data combi-
nation is sensitive to a different linear combination: we
find wa + 5.14(1 +w0) = −0.05± 0.32 (68% CL) for the
7-year WMAP+BAO+H0+SN combination.
The current data are consistent with a flat universe

dominated by a cosmological constant.

5.4. WMAP Normalization Prior

The growth of cosmological density fluctuations is
a powerful probe of dark energy, modified gravity,
and massive neutrinos. The WMAP data provide a
useful normalization of the cosmological perturbation
at the decoupling epoch, z = 1090. By compar-
ing this normalization with the amplitude of matter
density fluctuations in a low redshift universe, one
may distinguish between dark energy and modi-
fied gravity (Ishak et al. 2006; Koyama & Maartens
2006; Amarzguioui et al. 2006; Doré et al. 2007;
Linder & Cahn 2007; Upadhye 2007; Zhang et al.
2007; Yamamoto et al. 2007; Chiba & Takahashi 2007;
Bean et al. 2007; Hu & Sawicki 2007; Song et al. 2007;
Starobinsky 2007; Daniel et al. 2008; Jain & Zhang
2008; Bertschinger & Zukin 2008; Amin et al. 2008; Hu
2008) and determine the mass of neutrinos (Hu et al.
1998; Lesgourgues & Pastor 2006).
In Section 5.5 of Komatsu et al. (2009a), we provided

a “WMAP normalization prior,” which is a constraint

32 Zhao et al. (2005) used a multi-scalar-field model to treat w
crossing −1. The constraints on w0 and wa have been obtained
using this model and the previous years of WMAP data (Xia et al.
2006, 2008a; Zhao et al. 2007).
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This graph answers the 
following question:

If we assume that the 
w0-wa dark energy 
model is correct, how 
good are our 
constraints on those 
parameters?



Model tests

However that wasn’t the question we wanted to answer, which was:

Between the ΛCDM model and the dark energy model, which is  
the better description of the data? 
[I.e., can one of them be ruled out with respect to the other?]

This question can only be answered with a model-level analysis.



Model tests

However that wasn’t the question we wanted to answer, which was:

Between the ΛCDM model and the dark energy model, which is  
the better description of the data? 
[I.e., can one of them be ruled out with respect to the other?]

This question can only be answered with a model-level analysis.

Another way of expressing this: do you think that the prior 
probabilities of w0 = -1 and of w0 = -0.9 are equal?

I would argue that they are not just different in magnitude, 
but that the former is finite while the latter is infinitesimal.



(Almost) current dark energy data
Liddle, Mukherjee, Parkinson, and Wang,  PRD, astro-ph/0610126
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TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-

LambdaCDM

w0-wa

Constant w{

{
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TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-
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Within each of these models we also have a 
probability distribution for the parameters.
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Model tests/inference

Model-level tests

Deploy Bayesian model selection tools to compare model classes. 

Model selection forecasting

Evaluate the capability of proposed experiments to answer model 
selection questions, by defining model selection Figures of Merit (FoMs). 
Explore outcomes contingent on each model class (including ΛCDM) 
being correct.

Survey optimization

Vary survey configurations in order to optimize ability to carry out 
identified model test priorities.

Model-level inference can be used at several levels:



Forecasts for dark energy w= w0+(1−a)wa

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484



Forecasts for dark energy
Parameter estimation question: 
Suppose dark energy is described by a two-
parameter model with w0 = -1 and wa = 0. 
How tight do I expect my constraints on 
those parameters to be?

w= w0+(1−a)wa

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484



Forecasts for dark energy
Parameter estimation question: 
Suppose dark energy is described by a two-
parameter model with w0 = -1 and wa = 0. 
How tight do I expect my constraints on 
those parameters to be?

w= w0+(1−a)wa

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

Contour 
levels are 

one and two 
sigma

SNAP SN-1a

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484



Forecasts for dark energy
Parameter estimation question: 
Suppose dark energy is described by a two-
parameter model with w0 = -1 and wa = 0. 
How tight do I expect my constraints on 
those parameters to be?

w= w0+(1−a)wa

Model selection questions: 
If the dark energy model is right, will my 
experiment support it over ΛCDM?

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

Contour 
levels are 

one and two 
sigma

SNAP SN-1a

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484



Forecasts for dark energy
Parameter estimation question: 
Suppose dark energy is described by a two-
parameter model with w0 = -1 and wa = 0. 
How tight do I expect my constraints on 
those parameters to be?

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

SNAP SN−Ia
−−− with sys

w= w0+(1−a)wa

Model selection questions: 
If the dark energy model is right, will my 
experiment support it over ΛCDM?

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

Contour 
levels are 

one and two 
sigma

SNAP SN-1a

Red: Λ mildly favoured
Green/blue: indecisive

White: DE favoured

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484



Forecasts for dark energy
Parameter estimation question: 
Suppose dark energy is described by a two-
parameter model with w0 = -1 and wa = 0. 
How tight do I expect my constraints on 
those parameters to be?

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

SNAP SN−Ia
−−− with sys

w= w0+(1−a)wa

Model selection questions: 
If the dark energy model is right, will my 
experiment support it over ΛCDM?

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

Contour 
levels are 

one and two 
sigma

SNAP SN-1a

If it turns out that ΛCDM is right, is my 
experiment good enough to exclude the 
evolving dark energy model?

Red: Λ mildly favoured
Green/blue: indecisive

White: DE favoured

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484



Forecasts for dark energy
Parameter estimation question: 
Suppose dark energy is described by a two-
parameter model with w0 = -1 and wa = 0. 
How tight do I expect my constraints on 
those parameters to be?

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

SNAP SN−Ia
−−− with sys

w= w0+(1−a)wa

Model selection questions: 
If the dark energy model is right, will my 
experiment support it over ΛCDM?

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

Contour 
levels are 

one and two 
sigma

SNAP SN-1a

If it turns out that ΛCDM is right, is my 
experiment good enough to exclude the 
evolving dark energy model?

If ΛCDM is excluded, can I distinguish 
between quintessence and modified gravity 
models?

Red: Λ mildly favoured
Green/blue: indecisive

White: DE favoured

Mukherjee, Parkinson, Corasaniti, Liddle, 
Kunz, MNRAS, astro-ph/0512484



−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

ALPACA SN−Ia
−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

WFMOS BAO

−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

JEDI SN−Ia
−2 −1.5 −1 −0.5

−1

−0.5

0

0.5

1

w0

w a

SNAP SN−Ia



(Almost) current dark energy data
Liddle, Mukherjee, Parkinson, and Wang,  PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

3

TABLE I: The mean ∆ ln E relative to the ΛCDM model together with its uncertainty, the information content H , the minimum
χ2, and the parameter constraints, for each of the models considered and for each of two data combinations. Uncertainties
on H0 are statistical only, and do not include systematic uncertainties. The models differ by virtue of the number of free
parameters, here in the dark energy sector, and/or the priors on those parameters. For reference, lnE for the ΛCDM model
was found to be −20.1 ± 0.1 for the compilation with Riess04 and −52.3 ± 0.1 for that with Astier05.

data used Model

WMAP+SDSS+ ∆ ln E H χ2
min parameter constraints

Model I: Λ

Riess04 0.0 5.7 30.5 Ωm = 0.26 ± 0.03, H0 = 65.5 ± 1.0

Astier05 0.0 6.5 94.5 Ωm = 0.25 ± 0.03, H0 = 70.3 ± 1.0

Model II: constant w, flat prior −1 ≤ w ≤ −0.33

Riess04 −0.1 ± 0.1 6.4 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.4, w < −0.81,−0.70a

Astier05 −1.3 ± 0.1 8.0 93.3 Ωm = 0.24 ± 0.03, H0 = 69.8 ± 1.0, w < −0.90,−0.83a

Model III: constant w, flat prior −2 ≤ w ≤ −0.33

Riess04 −1.0 ± 0.1 7.3 28.6 Ωm = 0.27 ± 0.04, H0 = 64.0 ± 1.5, w = −0.87 ± 0.1

Astier05 −1.8 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w = −0.96 ± 0.08

Model IV: w0–wa, flat prior −2 ≤ w0 ≤ −0.33, −1.33 ≤ wa ≤ 1.33

Riess04 −1.1 ± 0.1 7.2 28.5 Ωm = 0.27 ± 0.04, H0 = 64.1 ± 1.5, w0 = −0.83 ± 0.20, wa = −−b

Astier05 −2.0 ± 0.1 8.2 93.3 Ωm = 0.25 ± 0.03, H0 = 70.0 ± 1.0, w0 = −0.97 ± 0.18, wa = −−b

Model V: w0–wa, −1 ≤ w(a) ≤ 1 for 0 ≤ z ≤ 2

Riess04 −2.4 ± 0.1 9.1 28.5 Ωm = 0.28 ± 0.04, H0 = 63.6 ± 1.3, w0 < −0.78,−0.60a, wa = −0.07 ± 0.34

Astier05 −4.1 ± 0.1 11.1 93.3 Ωm = 0.24 ± 0.03, H0 = 69.5 ± 1.0, w0 < −0.90,−0.80a, wa = 0.12 ± 0.22

bWhere constraints on w are shown as upper limits only, the values
are 68% and 95% marginalized confidence limits.
cwa is unconstrained in Model IV.

because the intrinsic dispersion in SN Ia peak brightness
should be derived from the distribution of nearby SNe
Ia, or SNe Ia from the same small redshift interval if the
distribution in the peak brightness evolves with cosmic
time. This distribution is not well known at present, but
will become better known as more SNe Ia are observed by
the nearby SN Ia factory [30]. By using the larger intrin-
sic dispersion, we allow some reasonable margin for the
uncertainties in the SN Ia peak brightness distribution.

IV. RESULTS

We calculate the Bayesian evidence as our primary
model selection statistic. We also calculate the informa-
tion content H of the datasets, the best-fit χ2 values, and
the posterior parameter distributions within each model.
Our main focus is on the evidence and the parameter dis-
tributions. All of these quantities are by-products of run-
ning CosmoNest to evaluate the evidence of a model [17].

A. Bayesian evidence E

The interpretational scale introduced by Jeffreys [31]
defines a difference in lnE of greater than 1 as significant,

greater than 2.5 as strong, and greater than 5 as decisive,
evidence in favour of the model with greater evidence.

Our results are summarized in Table I. The priors on
the equation of state parameters were given earlier and
are indicated in the table. Priors on the additional pa-
rameters are 0.1 ≤ Ωm ≤ 0.5 and 40 ≤ H0 ≤ 90. For each
model and data compilation we tabulate ∆ lnE, which
is the difference between the mean ln E of the ΛCDM
model and the model concerned, plus the error on that
difference, obtained from 8 estimates of the evidence of
each model. Thus the ΛCDM entry is zero by definition.

We find that the WMAP+SDSS(BAO)+Astier05 data
combination distinguishes amongst the models more
strongly than does WMAP+SDSS(BAO)+Riess04 data,
while showing the same general trends. Subsequently,
our discussion uses Astier05 throughout.

Overall, the ΛCDM model (Model I) is a simple model
that continues to give a good fit to the data. It is there-
fore rewarded for its predictiveness with the largest evi-
dence, and remains the favoured model as found with an
earlier dataset (of SNe alone) by Saini et al. [9]. The other
models all show smaller evidences, though none are yet
decisively ruled out. Nevertheless, there is distinct evi-
dence against the two-parameter models, especially from
the compilation including Astier05. Model V has a wider
parameter range than Model IV and fares the worst, re-

LambdaCDM

w0-wa

Constant w{

{

Conclusion: LambdaCDM currently favoured but all models still alive
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Survey optimization

Once we have defined our FoM, we can do better than just forecast 
how good our experiment will be. We can optimize our experiment 
to maximize the FoM. However ...

Analysis of actual data

Forecasting

Optimization

Requires repetition over representative 
samples of the expected `true’ Universe.

Requires repetition over possible surveys and 
representative samples of the expected `true’ Universe.



Optimization of the WFMOS BAO survey
Parkinson et al.,  arXiv:0905.3410

Example: optimizing the survey 
parameters of the (now-defunct)
proposed WFMOS BAO survey.

Here we use the parameter 
estimation DETF FoM. Although 
we varied several survey 
parameters, only the upper 
redshift limit proved important.
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Figure 4. The 68% error ellipse on the w0 and wa parameters,
with marginalization over curvature, for the standard WFMOS
survey (grey), and the optimized one (red). Also shown (yellow)
is the error ellipse were the survey optimized for a flat Universe
(but the errors have been computed here marginalizing over cur-
vature). The difference between the largest ellipse and the two
smaller ones shows the improvement due to optimizing the sur-
vey for measuring the dark energy parameters, while the differ-
ence between the smaller ellipses is due to different cosmological
models (flat or non-flat) used for the optimization. These con-
straints are calculated including prior information from Planck
and SDSS.

Having established the importance of optimization,
what considerations determine the optimal survey strategy?
The principal uncertainty here is the form of the true cos-
mological model. This is what we are trying to determine,
and there must clearly be competing possibilities for the ex-
periment to be interesting. As the optimal strategy depends
on the (unknown) true cosmological model, there will in-
evitably be choices to be made which have both costs and
benefits. In the context of the models considered in this pa-
per, the decision is whether to assume a flat Universe or to
allow for curvature; there will be a cost if the assumption
made in optimization turns out to be inappropriate once the
data are obtained and analyzed.

For the models we have considered here, the basic sur-
vey decisions are independent of the assumed cosmological
model. The first is that high-redshift observations are un-
necessary — all survey time should be spent at low redshift
(z < 1.6). The second is that the exposures should be as
short as possible, as this is already sufficient to obtain the
desired redshifts, and hence achieves maximal survey area.
Finally, the low-redshift limit can be taken as starting at
some suitably low value such as 0.1.

The remaining decision to be made is the upper limit
of the low-redshift bin. As we have already seen, the upper
redshift limit is different depending whether we assume flat-
ness or not. Table 5 gives the survey parameters for each
case.

Table 6 shows the FoMs, now with the extra informa-
tion of the FoM that is returned if the true cosmology does
not match the assumption made in optimizing. Naturally,
for a given survey configuration, we get more accurate con-

Table 6. Optimal survey Figure of Merit calculated in flat and
curved cases, where the optimization has been undertaken under
two different assumptions, either that Ωk is left out or included
as a nuisance parameter. The FoM in computed including prior
information from Planck and SDSS.

Survey optimization without Ωk with Ωk

FoM (Ωk set to zero) 57 48
FoM (Ωk allowed to vary) 15 32
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Figure 5. The FoM as a function of the upper redshift limit of
the survey, for both the flat case and for the case including cur-
vature. All surveys use zmin = 0.1 and a minimal exposure time
of 15 minutes, as discussed in the text. Measuring the curvature
requires targeting a larger redshift range.

straints if we assume a flat Universe than if we allow for
curvature, as the extra parameter in the Fisher matrix di-
lutes the constraining power on dark energy. However, we
can now see the losses due to non-optimality. For example,
if the Universe really is flat, but we optimized to allow for
curvature, our FoM is degraded from 57 to 48. If we end up
needing to allow for curvature, having not optimized for it,
the degradation is from 32 to 15 (the corresponding error
ellipses for this case are shown in Figure 4).

Figure 5 shows the FoMs as a function of the upper
redshift limit of the survey (reproduced from Figures 2 and
3), showing the peaks at zmax ∼ 0.7 in the flat case and
zmax ∼ 1.35 in the curved one. There is no optimal way
to deal with this tension, as one’s opinions as to how likely
the model assumptions are governs whether the benefits of
a particular choice are likely to outweigh the costs. In this
particular case existing evidence tends to support a flat Uni-
verse (Vardanyan, Trotta & Silk 2009) suggesting that the
potential loss of accuracy in the flat case outweighs the abil-
ity to measure curvature. If we were considering different
dark energy models/parameterizations, the choice may be
less clear cut.
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made in optimization turns out to be inappropriate once the
data are obtained and analyzed.

For the models we have considered here, the basic sur-
vey decisions are independent of the assumed cosmological
model. The first is that high-redshift observations are un-
necessary — all survey time should be spent at low redshift
(z < 1.6). The second is that the exposures should be as
short as possible, as this is already sufficient to obtain the
desired redshifts, and hence achieves maximal survey area.
Finally, the low-redshift limit can be taken as starting at
some suitably low value such as 0.1.

The remaining decision to be made is the upper limit
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redshift limit is different depending whether we assume flat-
ness or not. Table 5 gives the survey parameters for each
case.
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straints if we assume a flat Universe than if we allow for
curvature, as the extra parameter in the Fisher matrix di-
lutes the constraining power on dark energy. However, we
can now see the losses due to non-optimality. For example,
if the Universe really is flat, but we optimized to allow for
curvature, our FoM is degraded from 57 to 48. If we end up
needing to allow for curvature, having not optimized for it,
the degradation is from 32 to 15 (the corresponding error
ellipses for this case are shown in Figure 4).
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to deal with this tension, as one’s opinions as to how likely
the model assumptions are governs whether the benefits of
a particular choice are likely to outweigh the costs. In this
particular case existing evidence tends to support a flat Uni-
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Having established the importance of optimization,
what considerations determine the optimal survey strategy?
The principal uncertainty here is the form of the true cos-
mological model. This is what we are trying to determine,
and there must clearly be competing possibilities for the ex-
periment to be interesting. As the optimal strategy depends
on the (unknown) true cosmological model, there will in-
evitably be choices to be made which have both costs and
benefits. In the context of the models considered in this pa-
per, the decision is whether to assume a flat Universe or to
allow for curvature; there will be a cost if the assumption
made in optimization turns out to be inappropriate once the
data are obtained and analyzed.

For the models we have considered here, the basic sur-
vey decisions are independent of the assumed cosmological
model. The first is that high-redshift observations are un-
necessary — all survey time should be spent at low redshift
(z < 1.6). The second is that the exposures should be as
short as possible, as this is already sufficient to obtain the
desired redshifts, and hence achieves maximal survey area.
Finally, the low-redshift limit can be taken as starting at
some suitably low value such as 0.1.

The remaining decision to be made is the upper limit
of the low-redshift bin. As we have already seen, the upper
redshift limit is different depending whether we assume flat-
ness or not. Table 5 gives the survey parameters for each
case.

Table 6 shows the FoMs, now with the extra informa-
tion of the FoM that is returned if the true cosmology does
not match the assumption made in optimizing. Naturally,
for a given survey configuration, we get more accurate con-

Table 6. Optimal survey Figure of Merit calculated in flat and
curved cases, where the optimization has been undertaken under
two different assumptions, either that Ωk is left out or included
as a nuisance parameter. The FoM in computed including prior
information from Planck and SDSS.

Survey optimization without Ωk with Ωk

FoM (Ωk set to zero) 57 48
FoM (Ωk allowed to vary) 15 32
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Figure 5. The FoM as a function of the upper redshift limit of
the survey, for both the flat case and for the case including cur-
vature. All surveys use zmin = 0.1 and a minimal exposure time
of 15 minutes, as discussed in the text. Measuring the curvature
requires targeting a larger redshift range.

straints if we assume a flat Universe than if we allow for
curvature, as the extra parameter in the Fisher matrix di-
lutes the constraining power on dark energy. However, we
can now see the losses due to non-optimality. For example,
if the Universe really is flat, but we optimized to allow for
curvature, our FoM is degraded from 57 to 48. If we end up
needing to allow for curvature, having not optimized for it,
the degradation is from 32 to 15 (the corresponding error
ellipses for this case are shown in Figure 4).

Figure 5 shows the FoMs as a function of the upper
redshift limit of the survey (reproduced from Figures 2 and
3), showing the peaks at zmax ∼ 0.7 in the flat case and
zmax ∼ 1.35 in the curved one. There is no optimal way
to deal with this tension, as one’s opinions as to how likely
the model assumptions are governs whether the benefits of
a particular choice are likely to outweigh the costs. In this
particular case existing evidence tends to support a flat Uni-
verse (Vardanyan, Trotta & Silk 2009) suggesting that the
potential loss of accuracy in the flat case outweighs the abil-
ity to measure curvature. If we were considering different
dark energy models/parameterizations, the choice may be
less clear cut.

Example: optimizing the survey 
parameters of the (now-defunct)
proposed WFMOS BAO survey.

Here we use the parameter 
estimation DETF FoM. Although 
we varied several survey 
parameters, only the upper 
redshift limit proved important.
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Area within Bayes factor threshold (Mukherjee et al. 2005).     
Measures the volume of parameter space in which ΛCDM cannot 
be ruled out if it is wrong.

Decisiveness (Trotta et al. 2010). Measures the probability of 
decisively favouring the correct model, given present knowledge.

Expected strength of evidence (Trotta et al. 2010). Measures the 
average Bayes factor expected, given present knowledge.
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Figure 1. Comparison of our model selection FoMs to the DETF FoM (left panels) and the ranking of dark energy probes derived from
them (right panels).

Some of the dark energy probes can achieve a very
strong model selection in favour of an evolving dark en-
ergy model in parts of the parameter space, often obtain-
ing lnB01 ! −100. This would correspond to a detection of
a non-constant equation of state at many sigma confidence
level. However, we do not expect our Gaussian approxima-
tion to the likelihood to hold true so far into the tails of the
distribution. Therefore, in order to be conservative, we im-
pose a floor at lnB01 = −20 when computing the expected

strength of evidence from Eq. (9): any value of lnB01 below
this floor is remapped to the floor value.

4.2 Results

The results for the future probes are presented in Table 2
and plotted in Fig. 1, where we compare the DETF FoM
with our new model selection FoMs. We notice that the deci-
siveness FoM separates the sample into two distinct groups,
those with D ! 0.1 (single probes up to level III and several
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Some of the dark energy probes can achieve a very
strong model selection in favour of an evolving dark en-
ergy model in parts of the parameter space, often obtain-
ing lnB01 ! −100. This would correspond to a detection of
a non-constant equation of state at many sigma confidence
level. However, we do not expect our Gaussian approxima-
tion to the likelihood to hold true so far into the tails of the
distribution. Therefore, in order to be conservative, we im-
pose a floor at lnB01 = −20 when computing the expected

strength of evidence from Eq. (9): any value of lnB01 below
this floor is remapped to the floor value.

4.2 Results

The results for the future probes are presented in Table 2
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with our new model selection FoMs. We notice that the deci-
siveness FoM separates the sample into two distinct groups,
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A rigorous approach to defining and extending the Standard 
Cosmological Model requires Model Selection techniques. 

Such techniques can positively support simpler models, and 
set more stringent conditions for inclusion of new parameters.

Model selection forecasting is a powerful tool for experimental 
design and comparison, and is readily applied to dark energy 
and other experiments.

Conclusions




