Optimizing dark energy surveys Andrew Liddle

Andrew Lidd March 2011

US

University of Sussex

Microsoft-free presentation

Talk theme: Use of Bayesian inference for design and interpretation of cosmological surveys.

Bayesian inference is a system of logical deduction which assigns probabilities to all quantities of interest. The probabilities are updated in light of new information according to a set of mathematical rules centred around Bayes' theorem (published in 1764).

Bayesian inference is a system of logical deduction which assigns probabilities to all quantities of interest. The probabilities are updated in light of new information according to a set of mathematical rules centred around Bayes' theorem (published in 1764).

 $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$

Bayesian inference is a system of logical deduction which assigns probabilities to all quantities of interest. The probabilities are updated in light of new information according to a set of mathematical rules centred around Bayes' theorem (published in 1764).

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

 θ = parameter value D = data

Bayesian inference is a system of logical deduction which assigns probabilities to all quantities of interest. The probabilities are updated in light of new information according to a set of mathematical rules centred around Bayes' theorem (published in 1764).

> **Likelihood** $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$ **Prior** $\theta = \text{parameter value}$ D = data

Bayesian inference is a system of logical deduction which assigns probabilities to all quantities of interest. The probabilities are updated in light of new information according to a set of mathematical rules centred around Bayes' theorem (published in 1764).

In 1946, Cox showed that Bayesian inference is the unique consistent generalization of Boolean algebra.

Bayesian inference is a system of logical deduction which assigns probabilities to all quantities of interest. The probabilities are updated in light of new information according to a set of mathematical rules centred around Bayes' theorem (published in 1764).

In 1946, Cox showed that Bayesian inference is the unique consistent generalization of Boolean algebra.

Terminology: a **model** is a choice of the **set** of parameters to be varied in a fit to a dataset.

Bayesian inference requires that the prior probabilities be specified, giving the state of knowledge before the data was acquired to test the hypothesis.

Priors are to be chosen. Different people may not agree on their choice.

- Priors are to be chosen. Different people may not agree on their choice.
- Priors are where physical intuition comes in.

- Priors are to be chosen. Different people may not agree on their choice.
- Priors are where physical intuition comes in.
- In my view, one shouldn't seek a single `right' prior. Rather, one should test how robust the conclusions are under reasonable variation of the priors.

- Priors are to be chosen. Different people may not agree on their choice.
- Priors are where physical intuition comes in.
- In my view, one shouldn't seek a single `right' prior. Rather, one should test how robust the conclusions are under reasonable variation of the priors.
- Eventually, sufficiently good data will overturn incorrect choice of prior.

- Priors are to be chosen. Different people may not agree on their choice.
- Priors are where physical intuition comes in.
- In my view, one shouldn't seek a single `right' prior. Rather, one should test how robust the conclusions are under reasonable variation of the priors.
- Eventually, sufficiently good data will overturn incorrect choice of prior.
- If you don't know enough to set a prior, why did you bother getting the data?

Parameter Estimation

Parameter Estimation

I've decided what the correct model is.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Now I think about it, I don't actually know what the correct model is. It could be one of several.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Now I think about it, I don't actually know what the correct model is. It could be one of several.

Now I want to know what the best model is.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Now I think about it, I don't actually know what the correct model is. It could be one of several.

Now I want to know what the best model is.

I can do this by computing the Bayesian Evidence. I can then do parameter estimation using the best model.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Now I think about it, I don't actually know what the correct model is. It could be one of several.

Now I want to know what the best model is.

I can do this by computing the Bayesian Evidence. I can then do parameter estimation using the best model.

Multi-model Inference

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Now I think about it, I don't actually know what the correct model is. It could be one of several.

Now I want to know what the best model is.

I can do this by computing the Bayesian Evidence. I can then do parameter estimation using the best model.

Multi-model Inference

Mmm, I did the model selection thing, but there wasn't a single best model.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Now I think about it, I don't actually know what the correct model is. It could be one of several.

Now I want to know what the best model is.

I can do this by computing the Bayesian Evidence. I can then do parameter estimation using the best model.

Multi-model Inference

Mmm, I did the model selection thing, but there wasn't a single best model.

But I still want to know how probable the parameter values are.

Parameter Estimation

I've decided what the correct model is.

Now I want to know what values of the parameters are consistent with the data.

I can do this using e.g. Markov Chain Monte Carlo.

Model Selection

Now I think about it, I don't actually know what the correct model is. It could be one of several.

Now I want to know what the best model is.

I can do this by computing the Bayesian Evidence. I can then do parameter estimation using the best model.

Multi-model Inference

Mmm, I did the model selection thing, but there wasn't a single best model.

But I still want to know how probable the parameter values are.

I can do this by combining the parameter likelihoods using Bayesian Model Averaging, adding them together weighted by the model probabilities.

Choose model: Set of parameters to be varied Prior ranges for those parameters Choose datasets: WMAP currently the most powerful but need others for `cosmic complementarity'.

Choose model: Set of parameters to be varied Prior ranges for those parameters Choose datasets: WMAP currently the most powerful but need others for `cosmic complementarity'.

Choose model: Set of parameters to be varied Prior ranges for those parameters
Choose datasets: WMAP currently the most powerful but need others for `cosmic complementarity'.
Compute likelihood function
Obtain posterior parameter distribution

Fig. 4.— Constraints from the five-year WMAP data on ACDM parameters (blue), showing marginalized one-dimensional distributions and two-dimensional 68% and 95% limits. Parameters are consistent with the three-year limits (grey) from Spergel et al. (2007), and are now better constrained.

Parameters of the standard cosmological model

	WMAP5 alone	WMAP5 + BAO + SN
$\Omega_{ m b}h^2$	0.0227 ± 0.0006	0.0227 ± 0.0006
$\Omega_{ m cdm} h^2$	0.110 ± 0.006	0.113 ± 0.003
Ω_{Λ}	0.74 ± 0.03	0.726 ± 0.015
n	$0.963^{+0.014}_{-0.015}$	0.960 ± 0.013
au	0.087 ± 0.017	0.084 ± 0.016
$\Delta_{\mathcal{R}}^2 imes 10^9$	2.41 ± 0.11	2.44 ± 0.10

Parameters of the standard cosmological model

Baryon density Dark matter density Cosmological constant Spectral index Optical depth Perturbation amplitude

	WMAP5 alone	WMAP5 + BAO + SN
$\Omega_{\rm b}h^2$	0.0227 ± 0.0006	0.0227 ± 0.0006
$\Omega_{ m cdm} h^2$	0.110 ± 0.006	0.113 ± 0.003
Ω_{Λ}	0.74 ± 0.03	0.726 ± 0.015
n	$0.963^{+0.014}_{-0.015}$	0.960 ± 0.013
au	0.087 ± 0.017	0.084 ± 0.016
$\Delta_{\mathcal{R}}^2 imes 10^9$	2.41 ± 0.11	2.44 ± 0.10

Parameters of the standard cosmological model

		WMAP5 alone	WMAP5 + BAO + SN
Baryon density	$\Omega_{ m b}h^2$	0.0227 ± 0.0006	0.0227 ± 0.0006
Dark matter density	$\Omega_{ m cdm} h^2$	0.110 ± 0.006	0.113 ± 0.003
Cosmological constant	Ω_{Λ}	0.74 ± 0.03	0.726 ± 0.015
Spectral index	n	$0.963^{+0.014}_{-0.015}$	0.960 ± 0.013
Optical depth	au	0.087 ± 0.017	0.084 ± 0.016
Perturbation amplitude	$\Delta^2_{\mathcal{R}} imes 10^9$	2.41 ± 0.11	2.44 ± 0.10

The currently-favoured cosmology is a ACDM model, in a spatially-flat Universe, with initial conditions of the form expected from simple inflation models. The main focus for upcoming experiments is to identify additional parameters which are necessary extensions of this base parameter set.
The main focus for upcoming experiments is to identify additional parameters which are necessary extensions of this base parameter set.

*f*_{NL}: Primordial non-gaussianity.
 r: Primordial tensor perturbations.
 *w*₀, *w*_a: Dark energy evolution.

The main focus for upcoming experiments is to identify additional parameters which are necessary extensions of this base parameter set.

Wo.Wa	Dark energy evolution
<i>r</i> :	Primordial tensor perturbations
f _{NL} :	Primordial non-gaussianity.

It is easy to find over 20 such candidate parameters that have already been discussed in the literature. **Table 2.** Candidate parameters: those which might be relevant for cosmological observations, but for which there is presently no convincing evidence requiring them. They are listed so as to take the value zero in the base cosmological model. Those above the line are parameters of the background homogeneous cosmology, and those below describe the perturbations.

Ω_k	spatial curvature
$N_{\nu} - 3.04$	effective number of neutrino species (CMBFAST definition)
$m_{{m u}_i}$	neutrino mass for species ' <i>i</i> '
	[or more complex neutrino properties]
$m_{ m dm}$	(warm) dark matter mass
w + 1	dark energy equation of state
dw/dz	redshift dependence of w
	[or more complex parametrization of dark energy evolution]
$c_{\rm S}^2 - 1$	effects of dark energy sound speed
$1/r_{ m top}$	topological identification scale
	[or more complex parametrization of non-trivial topology]
dlpha/dz	redshift dependence of the fine structure constant
dG/dz	redshift dependence of the gravitational constant
n-1	scalar spectral index
$dn/d\ln k$	running of the scalar spectral index
r	tensor-to-scalar ratio
$r + 8n_{\mathrm{T}}$	violation of the inflationary consistency equation
$dn_{ m T}/d\ln k$	running of the tensor spectral index
$k_{ m cut}$	large-scale cut-off in the spectrum
A_{feature}	amplitude of spectral feature (peak, dip or step)
k_{feature}	and its scale
	[or adiabatic power spectrum amplitude parametrized in N bins]
$f_{ m NL}$	quadratic contribution to primordial non-gaussianity
	[or more complex parametrization of non-gaussianity]
\mathcal{P}_S	CDM isocurvature perturbation
n_S	and its spectral index
$\mathcal{P}_{S\mathcal{R}}$	and its correlation with adiabatic perturbations
$n_{S\mathcal{R}} - n_S$	and the spectral index of that correlation
	[or more complicated multi-component isocurvature perturbation]
Gu	cosmic string component of perturbations

From Liddle 2004

Choose dataset

Choose dataset

Choose model: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution

Choose dataset

Choose model M₁: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution

Choose dataset

Choose model M₁: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution Choose model M₂: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution

Choose dataset

Choose model M₁: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution Choose model M₂: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution

Choose dataset

Choose model M₁: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution

Assign model probability $P(M_1)$

Choose model M₂: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution

Assign model probability $P(M_2)$

.

Choose dataset

Choose model M₁: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution Choose model M₂: Set of parameters to be varied Prior ranges for those parameters Compute likelihood function Obtain posterior parameter distribution

Assign model probability $P(M_1)$

Assign model probability $P(M_2)$

.

Compute model likelihoods, known as the Bayesian evidence Update prior model probabilities to posterior ones [option: multi-model inference by Bayesian model averaging] Interpret

Bayes theorem again

Bayes theorem again

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$

Bayesian evidence

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Bayesian evidence $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Bayesian evidence $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Posterior model Bayesian evidence
probability! $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Posterior model Bayesian evidence probability! $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

How do we calculate it?

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Posterior model Bayesian evidence
probability! $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

How do we calculate it? $P(D|M) = \int P(D|\theta, M)P(\theta|M) d\theta$

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Posterior model Bayesian evidence probability! $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$ How do we calculate it? $E(M) = \int L(\theta)Pr(\theta) d\theta$

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Posterior model Bayesian evidence probability! $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

How do we calculate it? $E(M) = \int L(\theta) Pr(\theta) d\theta$ This can be evaluated in a number of ways: we use a Monte Carlo integration method called nested sampling.

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Posterior model Bayesian evidence probability! $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

How do we calculate it? $E(M) = \int L(\theta) Pr(\theta) d\theta$

This can be evaluated in a number of ways: we use a Monte Carlo integration method called nested sampling.

What does it reward?

Bayes theorem again, but conditioned on a model.

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \implies P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)}$ Posterior model Bayesian evidence probability! $P(M|D) = \frac{P(D|M)P(M)}{P(D)}$

How do we calculate it? $E(M) = \int L(\theta) Pr(\theta) d\theta$

This can be evaluated in a number of ways: we use a Monte Carlo integration method called nested sampling.

What does it reward? Model predictiveness

The top level of inference is deciding the models to be compared with data, i.e. what different choices of parameter sets are we interested in.

- The top level of inference is deciding the models to be compared with data, i.e. what different choices of parameter sets are we interested in.
- There is a conceptual difference between say ACDM and a varying w model where w just happens to have the value -1. Although for that parameter value the predictions are identical, overall the model predictiveness is different. Model selection compares models, not specific parameter values.

- The top level of inference is deciding the models to be compared with data, i.e. what different choices of parameter sets are we interested in.
- There is a conceptual difference between say ACDM and a varying w model where w just happens to have the value -1. Although for that parameter value the predictions are identical, overall the model predictiveness is different. Model selection compares models, not specific parameter values.
- Computing the evidence tells us how the probability of each model has been modified by the data.

- The top level of inference is deciding the models to be compared with data, i.e. what different choices of parameter sets are we interested in.
- There is a conceptual difference between say ACDM and a varying w model where w just happens to have the value -1. Although for that parameter value the predictions are identical, overall the model predictiveness is different. Model selection compares models, not specific parameter values.
- Computing the evidence tells us how the probability of each model has been modified by the data.
- If only one model survives, proceed to standard parameter estimation.

- The top level of inference is deciding the models to be compared with data, i.e. what different choices of parameter sets are we interested in.
- There is a conceptual difference between say ACDM and a varying w model where w just happens to have the value -1. Although for that parameter value the predictions are identical, overall the model predictiveness is different. Model selection compares models, not specific parameter values.
- Computing the evidence tells us how the probability of each model has been modified by the data.
- If only one model survives, proceed to standard parameter estimation.
- If several models survive, use multi-model inference, e.g. Bayesian model averaging.

Interpretational scale

Computing the evidence is often challenging, but feasible due to recent algorithm developments. For guidance in interpretting the evidence, people usually appeal to the Jeffreys' scale.

Interpretational scale

Computing the evidence is often challenging, but feasible due to recent algorithm developments. For guidance in interpretting the evidence, people usually appeal to the Jeffreys' scale.

Jeffreys' Scale:

- $\Delta \ln E < 1$ $1 < \Delta \ln E < 2.5$ $2.5 < \Delta \ln E < 5$ $5 < \Delta \ln E$
- Not worth more than a bare mention
 Substantial evidence
 Strong to very strong evidence
 Decisive evidence

Interpretational scale

Computing the evidence is often challenging, but feasible due to recent algorithm developments. For guidance in interpretting the evidence, people usually appeal to the Jeffreys' scale.

Jeffreys' Scale:

- $\Delta \ln E < 1$ $1 < \Delta \ln E < 2.5$ $2.5 < \Delta \ln E < 5$ $5 < \Delta \ln E$
- Not worth more than a bare mention
 Substantial evidence
 Strong to very strong evidence
 - Decisive evidence

The most useful divisions are 2.5 (odds ratio of 12:1) and 5 (odds ratio of 150:1).

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

	data used				Model
	WMAP+SDSS+	$\Delta \ln E$	Н	$\chi^2_{ m min}$	parameter constraints
					Model I: Λ
LambdaCDM	Riess04	0.0	5.7	30.5	$\Omega_{\rm m} = 0.26 \pm 0.03, \ H_0 = 65.5 \pm 1.0$
LampuaCDM	Astier05	0.0	6.5	94.5	$\Omega_{\rm m} = 0.25 \pm 0.03, \ H_0 = 70.3 \pm 1.0$
					Model II: constant w, flat prior $-1 \le w \le -0.33$
	Riess04	-0.1 ± 0.1	6.4	28.6	$\Omega_{\rm m} = 0.27 \pm 0.04, \ H_0 = 64.0 \pm 1.4, \ w < -0.81, -0.70^a$
	Astier05	-1.3 ± 0.1	8.0	93.3	$\Omega_{\rm m} = 0.24 \pm 0.03, \ H_0 = 69.8 \pm 1.0, \ w < -0.90, -0.83^a$
Constant W 🕇				I	Model III: constant w, flat prior $-2 \le w \le -0.33$
	Riess04	-1.0 ± 0.1	7.3	28.6	$\Omega_{\rm m} = 0.27 \pm 0.04, \ H_0 = 64.0 \pm 1.5, \ w = -0.87 \pm 0.1$
	Astier05	-1.8 ± 0.1	8.2	93.3	$\Omega_{\rm m} = 0.25 \pm 0.03, H_0 = 70.0 \pm 1.0, w = -0.96 \pm 0.08$
ter alle the triat			Μ	odel IV	<i>V</i> : $w_0 - w_a$, flat prior $-2 \le w_0 \le -0.33$, $-1.33 \le w_a \le 1.33$
	Riess04	-1.1 ± 0.1	7.2	28.5	$\Omega_{\rm m} = 0.27 \pm 0.04, \ H_0 = 64.1 \pm 1.5, \ w_0 = -0.83 \pm 0.20, \ w_a =^b$
	Astier05	-2.0 ± 0.1	8.2	93.3	$\Omega_{\rm m} = 0.25 \pm 0.03, \ H_0 = 70.0 \pm 1.0, \ w_0 = -0.97 \pm 0.18, \ w_a =^b$
vvu-vva					Model V: $w_0 - w_a$, $-1 \le w(a) \le 1$ for $0 \le z \le 2$
	Riess04	-2.4 ± 0.1	9.1	28.5	$\Omega_{\rm m} = 0.28 \pm 0.04, \ H_0 = 63.6 \pm 1.3, \ w_0 < -0.78, -0.60^a, \ w_a = -0.07 \pm 0.34$
	Astier05	-4.1 ± 0.1	11.1	93.3	$\Omega_{\rm m} = 0.24 \pm 0.03, \ H_0 = 69.5 \pm 1.0, \ w_0 < -0.90, -0.80^a, \ w_a = 0.12 \pm 0.22$
	Astieruo	-4.1 ± 0.1	11.1	93.3	$M_{\rm m} = 0.24 \pm 0.05, \ H_0 = 09.3 \pm 1.0, \ w_0 < -0.90, -0.80, \ w_a = 0.12 \pm 0.22$

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

	data used				Model
	WMAP+SDSS+	$\Delta \ln E$	Η	$\chi^2_{ m min}$	parameter constraints
a second seco					Model I: Λ
LambdaCDM	Riess04	0.0	5.7	30.5	$\Omega_{\rm m} = 0.26 \pm 0.03, \ H_0 = 65.5 \pm 1.0$
LampuaCDM	Astier05	0.0	6.5	94.5	$\Omega_{\rm m} = 0.25 \pm 0.03, \ H_0 = 70.3 \pm 1.0$
					Model II: constant w, flat prior $-1 \le w \le -0.33$
	Riess04	-0.1 ± 0.1	6.4	28.6	$\Omega_{\rm m} = 0.27 \pm 0.04, \ H_0 = 64.0 \pm 1.4, \ w < -0.81, -0.70^a$
	Astier05	-1.3 ± 0.1	8.0	93.3	$\Omega_{\rm m} = 0.24 \pm 0.03, \ H_0 = 69.8 \pm 1.0, \ w < -0.90, -0.83^a$
Constant W 🕇				1	Model III: constant w, flat prior $-2 \le w \le -0.33$
	Riess04	-1.0 ± 0.1	7.3	28.6	$\Omega_{\rm m} = 0.27 \pm 0.04, \ H_0 = 64.0 \pm 1.5, \ w = -0.87 \pm 0.1$
	Astier05	-1.8 ± 0.1	8.2	93.3	$\Omega_{\rm m} = 0.25 \pm 0.03, H_0 = 70.0 \pm 1.0, w = -0.96 \pm 0.08$
ter de la tradición de la companya d			М	odel IV	<i>V</i> : $w_0 - w_a$, flat prior $-2 \le w_0 \le -0.33, -1.33 \le w_a \le 1.33$
	Riess04	-1.1 ± 0.1	7.2	28.5	$\Omega_{\rm m} = 0.27 \pm 0.04, \ H_0 = 64.1 \pm 1.5, \ w_0 = -0.83 \pm 0.20, \ w_a =^b$
	Astier05	-2.0 ± 0.1	8.2	93.3	$\Omega_{\rm m} = 0.25 \pm 0.03, H_0 = 70.0 \pm 1.0, w_0 = -0.97 \pm 0.18, w_a =^b$
vv0-vva					Model V: $w_0 - w_a$, $-1 \le w(a) \le 1$ for $0 \le z \le 2$
	Riess04	-2.4 ± 0.1	9.1	28.5	$\Omega_{\rm m} = 0.28 \pm 0.04, \ H_0 = 63.6 \pm 1.3, \ w_0 < -0.78, -0.60^a, \ w_a = -0.07 \pm 0.34$
	Astier05	-4.1 ± 0.1	11.1	93.3	$\Omega_{\rm m} = 0.24 \pm 0.03, \ H_0 = 69.5 \pm 1.0, \ w_0 < -0.90, -0.80^a, \ w_a = 0.12 \pm 0.22$

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126.

CMB shift+BAO(SDSS)+SN

	data used	
	WMAP+SDSS+	$\Delta \ln E$
LambdaCDM	Astier05	0.0
ſ	Astier05	-1.3 ± 0.1
Constant W		
	Astier05	-1.8 ± 0.1
Wo-Wa	Astier05	-2.0 ± 0.1
	Astier05	-4.1 ± 0.1
(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

	data used	
	WMAP+SDSS+	$\Delta \ln E$
LambdaCDM		
LampuaCDM	Astier05	0.0
	Astier05	-1.3 ± 0.1
Constant W		
	Astier05	-1.8 ± 0.1
tites and stated of the		
	Astier05	-2.0 ± 0.1
W0-Wa		
	Astier05	-4.1 ± 0.1

Conclusion: LambdaCDM currently favoured but all models still alive

That's where we are at present.

Now for the future!

What are we trying to achieve?

Goal: to define the key model tests to be carried out and, where possible, to optimize survey strategies to achieve them. First we need to figure out which are the interesting models.

- ACDM: The current baseline cosmological model.
- Phenomenological dark energy models, eg CPL $w = w_0 + (1-a) w_a$:

The most common candidate alternative for dark energy studies.

Fundamental physics dark energy models, eg inverse power-laws, Albrecht-Skordis, etc:

Many candidate models in the literature though many fail to fit current data. Not clear which are best motivated.

Modified gravity models:

Determination of best candidate modified gravity models required.

Inhomogeneous Universe models: Not clear if there are any.

Parameter estimation tests

Parameter estimation tests

This graph answers the following question:

If we assume that the w_0 - w_a dark energy model is correct, how good are our constraints on those parameters?

Model tests

However that wasn't the question we wanted to answer, which was:

Between the ACDM model and the dark energy model, which is the better description of the data? [I.e., can one of them be ruled out with respect to the other?]

This question can only be answered with a model-level analysis.

Model tests

However that wasn't the question we wanted to answer, which was:

Between the ACDM model and the dark energy model, which is the better description of the data? [I.e., can one of them be ruled out with respect to the other?]

This question can only be answered with a model-level analysis.

Another way of expressing this: do you think that the **prior** probabilities of $w_0 = -1$ and of $w_0 = -0.9$ are equal?

I would argue that they are not just different in magnitude, but that the former is finite while the latter is infinitesimal.

(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

	data used	
	WMAP+SDSS+	$\Delta \ln E$
LambdaCDM	Astier05	0.0
ſ	Astier05	-1.3 ± 0.1
Constant W		
	Astier05	-1.8 ± 0.1
Wo-Wa	Astier05	-2.0 ± 0.1
	Astier05	-4.1 ± 0.1

(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

	data used	
	WMAP+SDSS+	$\Delta \ln E$
alian tenangulating		
LambdaCDM	Astior05	0.0
	Asticios	0.0
	Astier05	-1.3 ± 0.1
Constant W		
	Astier05	-1.8 ± 0.1
and the second second		1.0 ± 0.1
	Astier05	-2.0 ± 0.1
	Action 05	41 ± 01
	Astieruo	-4.1 ± 0.1

Within each of these models we also have a probability distribution for the parameters.

Likelihood of w₀ given all models

Likelihood of *w*⁰ given all models

Likelihood of *w*⁰ given all models

Model tests/inference

Model-level inference can be used at several levels:

Model-level tests

Deploy Bayesian model selection tools to compare model classes.

Model selection forecasting

Evaluate the capability of proposed experiments to answer model selection questions, by defining model selection Figures of Merit (FoMs). Explore outcomes contingent on each model class (including ACDM) being correct.

Survey optimization

Vary survey configurations in order to optimize ability to carry out identified model test priorities.

Mukherjee, Parkinson, Corasaniti, Liddle, Kunz, MNRAS, astro-ph/0512484

 $w = w_0 + (1 - a)w_a$

Mukherjee, Parkinson, Corasaniti, Liddle, Kunz, MNRAS, astro-ph/0512484

$$w = w_0 + (1 - a)w_a$$

Parameter estimation question:

Suppose dark energy is described by a twoparameter model with $w_0 = -1$ and $w_a = 0$. How tight do I expect my constraints on those parameters to be?

Parameter estimation question:

Suppose dark energy is described by a twoparameter model with $w_0 = -1$ and $w_a = 0$. How tight do I expect my constraints on those parameters to be?

Mukherjee, Parkinson, Corasaniti, Liddle, Kunz, MNRAS, astro-ph/0512484

$$w = w_0 + (1 - a)w_a$$

Parameter estimation question:

Suppose dark energy is described by a twoparameter model with $w_0 = -1$ and $w_a = 0$. How tight do I expect my constraints on those parameters to be?

Model selection questions:

If the dark energy model is right, will my experiment support it over ΛCDM?

 $\mathbf{r}^{\text{T}} = \mathbf{r}^{\text{T}} =$

Mukherjee, Parkinson, Corasaniti, Liddle,

Kunz, MNRAS, astro-ph/0512484

 $w = w_0 + (1 - a)w_a$

Parameter estimation question:

Suppose dark energy is described by a twoparameter model with $w_0 = -1$ and $w_a = 0$. How tight do I expect my constraints on those parameters to be?

Model selection questions:

If the dark energy model is right, will my experiment support it over ΛCDM?

Mukherjee, Parkinson, Corasaniti, Liddle, Kunz, MNRAS, astro-ph/0512484

$$w = w_0 + (1 - a)w_a$$

Red: A mildly favoured Green/blue: indecisive White: DE favoured

Parameter estimation question:

Suppose dark energy is described by a twoparameter model with $w_0 = -1$ and $w_a = 0$. How tight do I expect my constraints on those parameters to be?

Model selection questions:

If the dark energy model is right, will my experiment support it over ACDM? If it turns out that ACDM is right, is my experiment good enough to exclude the evolving dark energy model?

Mukherjee, Parkinson, Corasaniti, Liddle, Kunz, MNRAS, astro-ph/0512484

$$w = w_0 + (1 - a)w_a$$

Red: A mildly favoured Green/blue: indecisive White: DE favoured

Parameter estimation question:

Suppose dark energy is described by a twoparameter model with $w_0 = -1$ and $w_a = 0$. How tight do I expect my constraints on those parameters to be?

Model selection questions:

If the dark energy model is right, will my experiment support it over ACDM? If it turns out that ACDM is right, is my experiment good enough to exclude the evolving dark energy model? If ACDM is excluded, can I distinguish between quintessence and modified gravity models?

Mukherjee, Parkinson, Corasaniti, Liddle, Kunz, MNRAS, astro-ph/0512484

$$w = w_0 + (1 - a)w_a$$

Red: A mildly favoured Green/blue: indecisive White: DE favoured

(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

	data used	
	WMAP+SDSS+	$\Delta \ln E$
LambdaCDM		
LampuaCDM	Astier05	0.0
	Astier05	-1.3 ± 0.1
Constant W		
	Astier05	-1.8 ± 0.1
tites and stated of the		
	Astier05	-2.0 ± 0.1
W0-Wa		
	Astier05	-4.1 ± 0.1

Conclusion: LambdaCDM currently favoured but all models still alive

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Bayesian philosophy: continual updating of probabilities as new data comes in.

⇒ Use current probabilities to forecast future experiment outcomes

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Bayesian philosophy: continual updating of probabilities as new data comes in.

⇒ Use current probabilities to forecast future experiment outcomes

If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Bayesian philosophy: continual updating of probabilities as new data comes in.

⇒ Use current probabilities to forecast future experiment outcomes

If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?

What is the probability that upcoming experiments will robustly detect dark energy evolution?

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Bayesian philosophy: continual updating of probabilities as new data comes in.

⇒ Use current probabilities to forecast future experiment outcomes

If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?

What is the probability that upcoming experiments will robustly detect dark energy evolution?

If future experiments are still inconclusive, how tight will be the limits they can impose on dark energy properties?

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

- If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?
- What is the probability that upcoming experiments will robustly detect dark energy evolution?
- If future experiments are still inconclusive, how tight will be the limits they can impose on dark energy properties?

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Under particular prior assumptions we made (the effect of whose variation is readily tested), the answers are ...

- If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?
- What is the probability that upcoming experiments will robustly detect dark energy evolution?
- If future experiments are still inconclusive, how tight will be the limits they can impose on dark energy properties?

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Under particular prior assumptions we made (the effect of whose variation is readily tested), the answers are ...

YES

- If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?
- What is the probability that upcoming experiments will robustly detect dark energy evolution?
 - If future experiments are still inconclusive, how tight will be the limits they can impose on dark energy properties?

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Under particular prior assumptions we made (the effect of whose variation is readily tested), the answers are ...

- If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?
- What is the probability that upcoming experiments will robustly detect dark energy evolution?

About 25%

YES

If future experiments are still inconclusive, how tight will be the limits they can impose on dark energy properties?

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Under particular prior assumptions we made (the effect of whose variation is readily tested), the answers are ...

- If LambdaCDM is right, are upcoming experiments (eg DES, WFMOS, SNAP) good enough to favour it decisively?
- What is the probability that upcoming experiments will robustly detect dark energy evolution?

About 25%

YES

If future experiments are still inconclusive, how tight will be the limits they can impose on dark energy properties?

Tighter than you expect!

Once we have defined our FoM, we can do better than just forecast how good our experiment will be. We can optimize our experiment to maximize the FoM. However ...

Once we have defined our FoM, we can do better than just forecast how good our experiment will be. We can optimize our experiment to maximize the FoM. However ...

Analysis of actual data

Once we have defined our FoM, we can do better than just forecast how good our experiment will be. We can optimize our experiment to maximize the FoM. However ...

Analysis of actual data

Requires repetition over representative samples of the expected `true' Universe.

Forecasting

Once we have defined our FoM, we can do better than just forecast how good our experiment will be. We can optimize our experiment to maximize the FoM. However ...

Analysis of actual data

Requires repetition over representative samples of the expected `true' Universe.

Forecasting

Requires repetition over possible surveys *and* representative samples of the expected `true' Universe.

Optimization

Optimization of the WFMOS BAO survey

Parkinson et al., arXiv:0905.3410

Example: optimizing the survey parameters of the (now-defunct) proposed WFMOS BAO survey.

Here we use the parameter estimation DETF FoM. Although we varied several survey parameters, only the upper redshift limit proved important.

Here we use the parameter estimation DETF FoM. Although we varied several survey parameters, only the upper redshift limit proved important.

of the WFMOS BAO survey

Parkinson et al., arXiv:0905.3410

Figure 5. The FoM as a function of the upper redshift limit of the survey, for both the flat case and for the case including curvature. All surveys use $z_{\min} = 0.1$ and a minimal exposure time of 15 minutes, as discussed in the text. Measuring the curvature requires targeting a larger redshift range.

Here we use the parameter estimation DETF FoM. Although we varied several survey parameters, only the upper redshift limit proved important.

Survey optimization	without Ω_k	with Ω_k
FoM (Ω_k set to zero)	57	48
FoM (Ω_k allowed to vary)	15	32

of the WFMOS BAO survey

Parkinson et al., arXiv:0905.3410

Figure 5. The FoM as a function of the upper redshift limit of the survey, for both the flat case and for the case including curvature. All surveys use $z_{\min} = 0.1$ and a minimal exposure time of 15 minutes, as discussed in the text. Measuring the curvature requires targeting a larger redshift range.

If you believed what I told you in the first part of this talk, we shouldn't be optimizing with respect to the DETF FoM, but rather with respect to some model selection FoM. Candidates:

Bayes factor at the ACDM point (Mukherjee et al. 2005). Measures how strongly ACDM will be supported if it is correct.

- Bayes factor at the ACDM point (Mukherjee et al. 2005). Measures how strongly ACDM will be supported if it is correct.
- Area within Bayes factor threshold (Mukherjee et al. 2005). Measures the volume of parameter space in which ΛCDM cannot be ruled out if it is wrong.

- Bayes factor at the ACDM point (Mukherjee et al. 2005). Measures how strongly ACDM will be supported if it is correct.
- Area within Bayes factor threshold (Mukherjee et al. 2005). Measures the volume of parameter space in which ΛCDM cannot be ruled out if it is wrong.
- Decisiveness (Trotta et al. 2010). Measures the probability of decisively favouring the correct model, given present knowledge.

- Bayes factor at the ACDM point (Mukherjee et al. 2005). Measures how strongly ACDM will be supported if it is correct.
- Area within Bayes factor threshold (Mukherjee et al. 2005). Measures the volume of parameter space in which ACDM cannot be ruled out if it is wrong.
- Decisiveness (Trotta et al. 2010). Measures the probability of decisively favouring the correct model, given present knowledge.
- Expected strength of evidence (Trotta et al. 2010). Measures the average Bayes factor expected, given present knowledge.

A model selection FoM in action

Trotta, Kunz & Liddle, MNRAS, arXiv:1012.3195

Decisiveness (computed in a Gaussian approximation) compared with the DETF FoM for the experiments described in the DETF report.

A model selection FoM in action

Trotta, Kunz & Liddle, MNRAS, arXiv:1012.3195

Decisiveness (computed in a Gaussian approximation) compared with the DETF FoM for the experiments described in the DETF report.

A rigorous approach to defining and extending the Standard Cosmological Model requires Model Selection techniques.

- A rigorous approach to defining and extending the Standard Cosmological Model requires Model Selection techniques.
- Such techniques can positively support simpler models, and set more stringent conditions for inclusion of new parameters.

- A rigorous approach to defining and extending the Standard Cosmological Model requires Model Selection techniques.
- Such techniques can positively support simpler models, and set more stringent conditions for inclusion of new parameters.
- Model selection forecasting is a powerful tool for experimental design and comparison, and is readily applied to dark energy and other experiments.