Optimizing dark

energy surveys

Andrew Liddle
March 2011

. CosmoNest code in action (Mukhecrjee, Parkinson and Liddle)







What is Bayesian inference?
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Priors!!
Bayesian inference requires that the prior probabilities be
specified, giving the state of knowledge before the data
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Bayesian inference requires that the prior probabilities be
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Priors!!
Bayesian inference requires that the prior probabilities be
specified, giving the state of knowledge before the data
was acquired to test the hypothesis.

®m Priors are to be chosen. Different people may not agree
on their choice.

™ Priors are where physical intuition comes in.

- © Inmy view, one shouldn’t seek a single “right’ prior.
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Parameter

Estimation

Model
Selection

Multi-model
Inference

I’'ve decided what the
correct model is.

Now | want to know
what values of the
parameters are
consistent with the
data.

| can do this using e.g.

Markov Chain Monte
Gailo:

Now | think about it, |
don’t actually know what
the correct model is. It
could be one of several.

Now | want to know
what the best model is.

| can do this by
computing the Bayesian
Evidence. | can then do
parameter estimation
using the best model.

Mmm, | did the model
selection thing, but there
wasn’t a single best model.

But | still want to know
now probable the
parameter values are.

| can do this by combining
the parameter likelihoods
using Bayesian Model
Averaging, adding them
together weighted by the
model probabilities.
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WMAP5, Dunkley et al
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Fig. 4.— Constraints from the five-year WMAP data on ACDM parameters (blue), showing marginalized
one-dimensional distributions and two-dimensional 68% and 95% limits. Parameters are consistent with the
three-year limits (grey) from Spergel et al. (2007), and are now better constrained.




WMAP5S alone
Q h? 0.0227 £ 0.0006
Qedmh? 0.110 + 0.006

o 0.74 + 0.03

+0.014

T 0.087 = 0.017

A% x 109 241+0.11

Parameters of the standard
cosmological model

WMAPS + BAO + SN
0.0227 = 0.0006
0.113 = 0.003
0.726 = 0.015
0.960 = 0.013
0.084 £ 0.016

2.44 4+ 0.10




Parameters of the standard
cosmological model

Baryon density
Dark matter density
Cosmological constant
Spectral index
Optical depth

Perturbation amplitude

WMAP5S alone
Q h? 0.0227 £ 0.0006
Qedmh? 0.110 + 0.006

o 0.74 + 0.03

+0.014

T 0.087 = 0.017

A% x 109 241+0.11

WMAPS + BAO + SN
0.0227 = 0.0006
0.113 = 0.003
0.726 = 0.015
0.960 = 0.013
0.084 £ 0.016

2.44 4+ 0.10




Parameters of the standard
cosmological model

Baryon density
Dark matter density
Cosmological constant
Spectral index
Optical depth

Perturbation amplitude

WMAP5S alone
Q h? 0.0227 £ 0.0006
Qedmh? 0.110 £ 0.006

o 0.74 + 0.03

+0.014

T 0.087 = 0.017

A% x 109 241+0.11

WMAPS + BAO + SN
0.0227 = 0.0006
0.113 = 0.003
0.726 = 0.015
0.960 = 0.013
0.084 £ 0.016

2.44 4+ 0.10

The currently-favoured cosmology is a ACDM mode

in a spatially-flat Universe, with initia

conditions of t

form expected from simple inflation models.
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I NTR Primordial non-gaussianity.

i Primordial tensor perturbations.

" D < < > P ~ Nt ~ L ¥ = i - s i L
el Saf W/ A U7 s ey n V' L/ ) aY AVAN 2\V/A ‘ 1 N e et TNl - TS A Y 2=l
VYV VV ., 1A -':"‘u"r"!:' o i @-;. £ ug .,,.‘_‘.",‘.;..,," ,,~..,,_,5_ e e :,n N T e vor S

l.'



I NTR Primordial non-gaussianity.

i Primordial tensor perturbations.
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Table 2. Candidate parameters: those which might be relevant for cosmological observations, but for which
there is presently no convincing evidence requiring them. They are listed so as to take the value zero in the
base cosmological model. Those above the line are parameters of the background homogeneous cosmology,
and those below describe the perturbations.

Qp
Ny - 3.04

spatial curvature

effective number of neutrino species (CMBFAST definition)
neutrino mass for species ‘¢’

[or more complex neutrino properties]

(warm) dark matter mass

dark energy equation of state

redshift dependence of w

[or more complex parametrization of dark energy evolution]
effects of dark energy sound speed

topological identification scale

[or more complex parametrization of non-trivial topology]
redshift dependence of the fine structure constant
redshift dependence of the gravitational constant

dn/dInk

r

r 4+ 8nr
dnt/dInk
kcut
Afeature
kfeature

scalar spectral index

running of the scalar spectral index

tensor-to-scalar ratio

violation of the inflationary consistency equation

running of the tensor spectral index

large-scale cut-off in the spectrum

amplitude of spectral feature (peak, dip or step) ...

... and its scale

[or adiabatic power spectrum amplitude parametrized in N bins]
quadratic contribution to primordial non-gaussianity

[or more complex parametrization of non-gaussianity]

CDM isocurvature perturbation ...

... and its spectral index ...

... and its correlation with adiabatic perturbations ...

.. and the spectral index of that correlation

[or more complicated multi-component isocurvature perturbation]
cosmic string component of perturbations

From Liddle 2004
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Bayesian model selection

Choose dataset

Choose model M;:
Set of parameters to be varied
Prior ranges for those parameters
- Compute likelihood function
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Bayesian model selection

Choose dataset

Choose model M: Choose model M;:
Set of parameters to be varied Set of parameters to be varied
Prior ranges for those parameters Prior ranges for those parameters ...
Compute likelihood functlon Compute likelihood function
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The Bayesian evidence

Bayes theorem again, but conditioned on a model.
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The Bayesian evidence

Bayes theorem again, but conditioned on a model.
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Bayes theorem again, but conditioned on a model.
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®m The top level of inference is deciding the models to be
compared with data, i.e. what different choices of parameter
sets are we interested in.
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Although for that parameter value the predictions are
identical, overall the model predictiveness is different. Model
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Multi-model inference: philosophy

®m The top level of inference is deciding the models to be
compared with data, i.e. what different choices of parameter
sets are we interested in.

® There is a conceptual difference between say ACDM and a
varying w model where w just happens to have the value -1.
Although for that parameter value the predictions are
identical, overall the model predictiveness is different. Model
selection compares models, not specific parameter values.
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Interpretational scale

Computing the evidence is often challenging, but feasible
due to recent algorithm developments. For guidance in
interpretting the evidence, people usually appeal to the
Jeffreys’ scale.
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(Almost) current dark energy data

Liddle, Mukherjee, Parkinson, and Wang, PRD, astro-ph/0610126

CMB shift+BAO(SDSS)+SN

WMAP-+SDSS+ Aln E H X2 parameter constraints
R Model I A

Riess04 5.7 30.5 Qm =0.26 £0.03, Hp =65.5+1.0
Astier05 . 6.5 94.5 Qm =0.25£0.03, Ho =703+ 1.0

LambdaCDM

| ModelM:constantw, flatprior -1 <w< 08
Riess04 —0.1+0.1 64 286 Qm = 0.27 +0.04, Hy = 64.0 + 1.4, w < —0.81, —0.70"
Astier05 ~13+0.1 80 93.3 O = 0.24 +0.03, Hy = 69.8 + 1.0, w < —0.90, —0.83"
OIBERMYRY | 0| 20 ModelIlcomstantw flatprio 2<w< 033 |
Riess04 ~1.0+£0.1 7.3 286 Qm = 0.27 +0.04, Ho = 64.0 + 1.5, w = —0.87 £ 0.1
Astier05 ~1.8+0.1 82 933 Qm = 0.25 + 0.03, Ho = 70.0 + 1.0, w = —0.96 & 0.08
] Model TV: wo—wa, flat prior —2 < wo < —0.33, —1.33 < w, < 1.33
Riess04 11401 7.2 285  Qn=027+004, Hy = 64.1+ 1.5, wo = —0.83 + 0.20, w, = ——"
W0-Wa Astier05 —20+0.1 82 933  ,=025+003, Hy=70.0+ 1.0, wo = —0.97 + 0.18, w, = ——"
_ Model V: wo—wq, —1 < w(a) <1 for 0 < 2 <2

Riess04 —244+01 91 285 Qn=0.28=+0.04, Hy = 63.6 + 1.3, wo < —0.78, —0.60%, we = —0.07 = 0.34
Astier05 —41+01 11.1 93.3 Qum =0.24 +0.03, Ho = 69.5 % 1.0, wo < —0.90, —0.80%, wq = 0.12 =& 0.22
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Conclusion: LambdaCDM currently favoured but all models still alive






What are we trying to achieve?

Goal: to define the key model tests to be carried out and, where possible,

to optimize survey strategies to achieve them. First we need to figure out
which are the interesting models.

® ACDM: The current baseline cosmological model.
B Phenomenological dark energy models, eg CPL w = wo+(1-a) w,:

The most common candidate alternative for dark energy studies.

N
"

Bl 78 = b s

- @ Fundamental physics dark energy models, eg inverse power-laws,

ey



Parameter estimation tests

WMAP7: Komatsu et al

B WMAP+BAOi+H,+SN
[ ] WMAP+BAO:i+H+D,+SN




Parameter estimation tests

WMAP7: Komatsu et al

B WMAP+BAOi+H,+SN
[ ] WMAP+BAO:i+H+D,+SN

This graph answers the
following question:

If we assume that the
Wo-W, dark energy
model is correct, how
good are our
constraints on those
parameters¢



Model tests

However that wasn’t the question we wanted to answer, which was:

Between the ACDM model and the dark energy model, which is
the better description of the data?
[l.e., can one of them be ruled out with respect to the other?]

» n
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- This question can only be answered with a model-level analysis.
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Within each of these models we also have a
probability distribution for the parameters.
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Model tests/inference

Model-level inference can be used at several levels:

B Model-level tests

Deploy Bayesian model selection tools to compare model classes.

m Model selection forecasting

Evaluate the capability of proposed experiments to answer model
St selectlon questlons by deflnlng model selectlo.n Flgures of Merit (Fofv\s)_, k
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If the dark energy model is right, will my
experiment support it over ACDM?
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Mukherjee, Parkinson, Corasaniti, Liddle,

Kunz, MNRAS, astro-ph/0512484
Forecasts for dark energy .
w=wo+ (1 —a)w,

Contour

Suppose dark energy is described by a two- levels are

- one and two
parameter model with wo= -1 and w, = 0. sigma
How tight do | expect my constraints on

those parameters to be? SNAP SN-1a

If the dark energy model is right, will my
experiment support it over ACDM?

If it turns out that ACDM is right, is my
experiment good enough to exclude the

SNAP SN-la
evolving dark energy model? - with sys
If ACDM is excluded, can I distinguish
between quintessence and modified gravity Red: A mildly favoured

Green/blue: indecisive

models? White: DE favoured
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Conclusion: LambdaCDM currently favoured but all models still alive
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ny: continua
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= Use current probabilities to forecast future experiment outcomes
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®m If LambdaCDM is right, are upcoming
experiments (eg DES, WFMQOS, SNAP)

[ ) (] (]
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Future forecasts informed by current data

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Bayesian philosophy: continual updating of probabilities
as new data comes in.
= Use current probabilities to forecast future experiment outcomes

®m If LambdaCDM is right, are upcoming
experiments (eg DES, WFMQOS, SNAP)
good enough to favour it decisively?
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Future forecasts informed by current data

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Under particular prior assumptions we made (the effect of
whose variation is readily tested), the answers are ...

®m If LambdaCDM is right, are upcoming
experiments (eg DES, WFMQOS, SNAP)
good enough to favour it decisively?
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Future forecasts informed by current data

Trotta, astro-ph/0504022; Liddle, Mukherjee, Parkinson, and Wang, astro-ph/0610126

Under particular prior assumptions we made (the effect of
whose variation is readily tested), the answers are ...

®m If LambdaCDM is right, are upcoming VES
experiments (eg DES, WFMQOS, SNAP)
good enough to favour it decisively?
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Under particular prior assumptions we made (the effect of
whose variation is readily tested), the answers are ...

®m If LambdaCDM is right, are upcoming VES
experiments (eg DES, WFMQOS, SNAP)
good enough to favour it decisively?
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Survey optimization

Once we have defined our FoM, we can do better than just forecast
how good our experiment will be. We can optimize our experiment
to maximize the FoM. However ...
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Survey optimization

Once we have defined our FoM, we can do better than just forecast
how good our experiment will be. We can optimize our experiment
to maximize the FoM. However ...
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Optimization of the WFMQOS BAO survey

Parkinson et al., arXiv:0905.3410

Fxample: optimizing the survey
narameters of the (now-defunct)
oroposed WFEMQOS BAO survey.

Here we use the parameter
estimation DETF FoM. Althou
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Optimization of the WFMOS BAO survey

Fxample: optimizing the survey
narameters of the (now-defunct)
oroposed WFEMQOS BAO survey.

Here we use the parameter
estimation DETF FoM. Although
we varied several survey
parameters, only the upper
redshift limit proved important.

Parkinson et al., arXiv:0905.3410

- = = curved

Figure 5. The FoM as a function of the upper redshift limit of
the survey, for both the flat case and for the case including cur-
vature. All surveys use zp,in = 0.1 and a minimal exposure time
of 15 minutes, as discussed in the text. Measuring the curvature

requires targeting a larger redshift range.
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Figure 5. The FoM as a function of the upper redshift limit of
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vature. All surveys use zp,in = 0.1 and a minimal exposure time
of 15 minutes, as discussed in the text. Measuring the curvature

requires targeting a larger redshift range.




Model selection optimization

If you believed what | told you in the first part of this talk, we
shouldn’t be optimizing with respect to the DETF FoM, but rather
with respect to some model selection FoM. Candidates:
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If you believed what | told you in the first part of this talk, we
shouldn’t be optimizing with respect to the DETF FoM, but rather
with respect to some model selection FoM. Candidates:

B Bayes factor at the ACDM point (Mukherjee et al. 2005).

Measures how strongly ACDM will be supported if it is correct.

B Area W|th|n Bayes factor threshold ¢ (Mukherjee et al. 2005).
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Model selection optimization

If you believed what | told you in the first part of this talk, we
shouldn’t be optimizing with respect to the DETF FoM, but rather
with respect to some model selection FoM. Candidates:

B Bayes factor at the ACDM point (Mukherjee et al. 2005).
Measures how strongly ACDM will be supported if it is correct.

m Area within Bayes factor threshold ( MukherJee et al. . 2005).
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Model selection optimization

If you believed what | told you in the first part of this talk, we
shouldn’t be optimizing with respect to the DETF FoM, but rather
with respect to some model selection FoM. Candidates:

B Bayes factor at the ACDM point (Mukherjee et al. 2005).
Measures how strongly ACDM will be supported if it is correct.

B Area within Bayes factor threshold (Mukherjee et al. 2005).
- Measures the volume of parameter space in which ACDM cannot




A model selection FoM in action

Trotta, Kunz & Liddle, MNRAS, arXiv:1012.3195
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Decisiveness (computed in a Gaussian approximation) compared
with the DETF FoM for the experiments described in the DETF report.
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