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Motivations for this work
We desire a Bayesian method for cosmological parameter
inference from supernovae type Ia in order to:

1. Be able to use the supernova data to discriminate between
different cosmological models using Bayesian model
selection.

2. Provide a statistically well motivated framework for
evaluating the posterior probabilities of the cosmological
parameters.

3. Obtain a probability density function for the unknown
intrinsic dispersion of the absolute magnitudes of the SNe
Ia.
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Which is the best model, given the data?
Data Sets

Observations of the CMB,
WMAP and soon PLANCK

Observations of SNe Ia,
SNe Cosmology project,

High z SNe search

All observations indicate
late time acceleration

Baryon acoustic os-
cillations, SDSS, 2dF

Weak lensing
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Which is the best model, given the data?
Data Sets Possible Models Dark Energy Models

Observations of the CMB,
WMAP and soon PLANCK

Modified Gravity ΛCDM, the cosmological
constant, w = −1.0

Observations of SNe Ia,
SNe Cosmology project,

High z SNe search

Dark Energy w 6= −1.0

All observations indicate
late time acceleration

Void Models Quintessence w = w(z)

Baryon acoustic os-
cillations, SDSS, 2dF

Backreaction

Weak lensing
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Reminder: Bayesian model selection
For a given set of known models, {M1 . . .Mj . . .MN};

p(Mj|d) =
p(d|Mj)p(Mj)

p(d)

To compare models with equal priors, look at the Bayes
factor:

Bab =
p(d|Ma)

p(d|Mb)

The relative good-
ness of model can
be interpreted using
Jeffreys’ scale:

| lnBij| Odds Strength of evidence
< 1.0 ∼< 3 : 1 Inconclusive
1.0 ∼ 3 : 1 Weak evidence
2.5 ∼ 12 : 1 Moderate evidence
5.0 ∼ 150 : 1 Strong evidence
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Reminder: Bayes’ theorem

Given a data set d
what is the posterior
probability of the
parameters θ for a
specific model Mj?

The model likelihood
is also known as the
Bayesian evidence

posterior likelihood prior

p(θ|d,Mj) =
p(d|θ,Mj)p(θ|Mj)

p(d|Mj)

evidence

evidence

p(d|Mj) =
∫
p(d|θ,Mj)p(θ|Mj)dθ

Bayes’ theorem can be applied to problems of parameter inference
and also problems of model selection.
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Overview
Supernovae Type Ia can be used as standard candles to infer
the cosmological parameters.

• Standard candles and their use in inferring the cosmological
parameters.

• How supernovae Ia can be made into standard candles.

• How to get from supernovae data to the cosmological
parameters.

• The standard method and its shortfalls.

• Our new method.

• Numerical trials and preliminary results.
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Standard Candles
Standard candles are any class of ob-
ject of which all members have the
same absolute magnitude, M

µ ≡ mB −M

µ = 5 log10

(
DL(z)

1Mpc

)
+ 25

The distance modulus µ is the differ-
ence between the apparent magnitude
mB and absolute magnitude M of a
standard candle

Luminosity
distance

DL(z) =
c(1 + z)

H0

√
−Ωκ

sin

(√
−Ωκ

∫ z

0

H0

H(z)
dz

)
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The make-up of the universe

Friedmann equation relates cosmological parameters to Hubble rate:

H(z)2 = H2
0

(
Ω0
m(1 + z)3 + Ω0

r(1 + z)4 + Ω0
κ(1 + z)2 + Ω0

DE exp

[
3

∫ z

0

1 + w(z)

1 + z
dz

])
w(z) is the dark energy equation of state

Kessler 2009
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Progenitors of Type 1a Supernovae?

Images:NASA/CXC/M Weiss.

Accretion Merger

bimodal population?
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From SNe Ia to the
cosmological parameters

find SN Ia
candidates

follow up
and identify
by spectra

make obser-
vations over
a few weeks

do light curve
fitting: SALT2
m̂∗Bi, x̂1i,ĉi

cosmology
fitting: ΩM ,ΩΛ,w

Guy et. al. 2007

Imperial College
London arXiv:1102.3237

marisa.march06@imperial.ac.uk



From SNe Ia to the
cosmological parameters

Guy et. al. 2007

find SN Ia
candidates

follow up
and identify
by spectra

make obser-
vations over
a few weeks

do light curve
fitting: SALT2
m̂∗Bi, x̂1i,ĉi

our work
cosmology

fitting: ΩM ,ΩΛ,w
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SNe Ia as standardizable candles

Supernovae type Ia may be made into
standard candles by applying empirical
corrections for stretch and colour:

µi = m∗Bi−M0 +αx1,i−βci
• Estimates for m∗Bi, x1,i, ci come from

SALT2 lightcurve fitting.

•M0,α,β are unknown nuisance parameters.

• The corrections reduce the scatter in the
absolute magnitudes of the SNe Ia.

• Even after correction, a dispersion in the
absolute magnitudes remains, σintµ .
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Sources of systematic uncertainty σintµ

Physical reasons: (our main interest)

• Variations in intrinsic colour of SN Ia.

• Variations in host galaxy reddening: spiral vs elliptical.

• Possible bimodal population: single degenerate progenitor
system vs double degenerate progenitor system.

• Evolution of supernovae with redshift → early SNe
population may be different from late SNe population.

Technical reasons:

• Instrumentation, detector sensitivity, calibration of light
curve fitter.
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Sources of systematic uncertainty σintµ

Physical reasons: (our main interest)

• Variations in intrinsic colour of SN Ia.

• Variations in host galaxy reddening: spiral vs elliptical.

• Possible bimodal population: single degenerate progenitor
system vs double degenerate progenitor system.

• Evolution of supernovae with redshift → early SNe
population may be different from late SNe population.

Technical reasons:

• Instrumentation, detector sensitivity, calibration of light
curve fitter.

•How do these systematics
affect our ability to recover the
cosmological parameters?

•What is σintµ ?

•How can we model the
systematic errors?
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The standard χ2 method

χ2
µ =

∑
i

[
µi(ΩM ,ΩΛ,Ωκ, w,H0)− µobsi

]2
σ2
µi

µobsi = m̂∗Bi −M0 + αx̂1i − βĉi

σ2
µi = (σfitµi )2 + (σzµi)

2 + (σintµ )2

(σfitµi )2 = σ2
m̂∗Bi

+ α2σ2
x1

+ β2σ2
c

(uncorrelated case)

• χ2 is minimised by fitting for
cosmological and supernovae
parameters simultaneously

• α and β appear in both
numerator and denominator

• σintµ is unknown
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The standard χ2 method

χ2
µ =

∑
i

[
µi(ΩM ,ΩΛ,Ωκ, w,H0)− µobsi

]2
σ2
µi

µobsi = m̂∗Bi −M0 + αx̂1i − βĉi

σ2
µi = (σfitµi )2 + (σzµi)

2 + (σintµ )2

(σfitµi )2 = σ2
m̂∗Bi

+ α2σ2
x1

+ β2σ2
c

(uncorrelated case)

• χ2 is minimised by fitting for
cosmological and supernovae
parameters simultaneously

• α and β appear in both
numerator and denominator

• σintµ is unknown

• σintµ is chosen such that χ2/dof ∼ 1
→ assumes model is a good fit.

• Only gives single value for σintµ .

• No justification for χ2 distribution.

• Cannot apply Bayesian model selection
or use with MCMC.
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The standard χ2 method

χ2
µ =

∑
i

[
µi(ΩM ,ΩΛ,Ωκ, w,H0)− µobsi

]2
σ2
µi

µobsi = m̂∗Bi −M0 + αx̂1i − βĉi

σ2
µi = (σfitµi )2 + (σzµi)

2 + (σintµ )2

(σfitµi )2 = σ2
m̂∗Bi

+ α2σ2
x1

+ β2σ2
c

(uncorrelated case)

• χ2 is minimised by fitting for
cosmological and supernovae
parameters simultaneously

• α and β appear in both
numerator and denominator

• σintµ is unknown

• σintµ is chosen such that χ2/dof ∼ 1
→ assumes model is a good fit

• Only gives single value for σintµ

• No justification for χ2 distribution

• Cannot apply Bayesian model selection
or use with MCMC. A new and better method for pa-

rameter estimation is required!

Imperial College
London arXiv:1102.3237

marisa.march06@imperial.ac.uk



Bayesian hierarchical network

zi Mi

...each supernova has a redshift zi and (an un-
observed) absolute magnitude Mi...
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M0, σ
int
µ

zi Mi

...Mi is drawn from a Gaussian distribution of
mean M0 and standard deviation σintµ ...
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C α, β M0, σ
int
µ

zi Mi

..the cosmological parameters C = {ΩM ,ΩΛ, w,H0} are unknown to us..

....the supernovae parameters α and β are also unknown...
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C α, β M0, σ
int
µ

zi µthi Mi

...C and zi deterministically specify the theoret-
ical distance modulus µthi ...
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C α, β M0, σ
int
µ

x1i zi µthi Mi ci

...each supernova has a true stretch x1i and
colour ci parameter...
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x?, Rx C α, β M0, σ
int
µ c?, Rc

x1i zi µthi Mi ci

...each x1i and ci are drawn from their respec-
tive Gaussian distributions...
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x?, Rx C α, β M0, σ
int
µ c?, Rc

x1i zi µthi Mi ci

m∗Bi

...m∗Bi is specified deterministically...
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x?, Rx C α, β M0, σ
int
µ c?, Rc

x1i zi µthi Mi ci

m∗Bi

x̂1i ẑi m̂∗Bi ĉi

...we do not observe the true values; our obser-
vations are subject to a further Gaussian noise...
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x?, Rx C α, β M0, σ
int
µ c?, Rc

x1i zi µthi Mi ci

m∗Bi

x̂1i ẑi m̂∗Bi ĉi
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x?, Rx C α, β M0, σ
int
µ c?, Rc

x1i zi µthi Mi ci

m∗Bi

x̂1i ẑi m̂∗Bi ĉi

Posterior:

p(Θ|ĉi, x̂1i, m̂
∗
Bi) ∝ p(ĉi, x̂1i, m̂

∗
Bi|Θ)p(Θ) where Θ = {C , α, β,M0, σ

int
µ }
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Calculating the posterior pdf:
Bayes theorem:

p(Θ|d) =
p(d|Θ)p(Θ)

p(D)

Where the parameters of interest are: Θ = {C , α, β,M0, σ
int
µ }

prior:

p(Θ) = p(C , α, β)p(M0, σ
int
µ )

= p(C , α, β)p(M0|σint
µ )p(σint

µ )
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Expanding out the likelihood alone:

p(d|Θ) = p(ĉ, x̂1, m̂
∗
B|Θ)

=
∫

dc dx1 dM p(ĉ, x̂1, m̂
∗
B|c, x1,M,Θ)p(c, x1,M |Θ)

=
∫

dc dx1 dM p(ĉ, x̂1, m̂
∗
B|c, x1,M,Θ)p(c, x1|Θ)p(M |Θ)

where:

M ∼ N (M 0,Σ∆)

c ∼ N (c? · 1n, diag
(
R2
c · 1n

)
) = p(c|c?, Rc)

x1 ∼ N (x? · 1n, diag
(
R2
x · 1n

)
) = p(x1|x?, Rx)
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Expanding out the likelihood alone:
Priors on x1 and c:

p(c, x1|Θ) =

∫
dRc dRx dc? dx? p(c|c?, Rc)p(x1|x?, Rx)p(Rc)p(Rx)p(c?)p(x?).

The expression for the likelihood becomes:

p(ĉ, ŝ, m̂∗B|Θ) =

∫
dc dx1 dM p(ĉ, x̂1|c, x1)p(m̂∗B|c, x1,M,Θ)p(M |Θ)

×
∫

dRc dRx dc? dx? p(c|c?, Rc)p(x1|x?, Rx)p(Rc)p(Rx)p(c?)p(x?).

Final expression for the effective likelihood is:

p(ĉ, ŝ, m̂∗B|Θ) =

∫
d logRc d logRx |2π(Σm + Σ∆)|−

1
2|2πΣR|−

1
2|2πΣ0|−

1
2|2πY |

1
2|2πΣb|

1
2|2π(Σg + Σb)|−

1
2

× |2πΣh|−1/2|2πW |
1
2|2πΣh|

1
2 exp

[
−1

2

(
ĝT (Σg + Σb)

−1ĝ + hT0 Σ−1
h h0 + δT0 ∆δ0 − uTW−1u

)]
,
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Why priors on the latent ci, x1i?

−0.4 −0.2 0 0.2 0.4 0.6
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c
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i|R
c,c

*)

R
c

c
*

• Size of the error bars on x̂1i and ĉi is comparable with range of x̂1i and ĉi.

• If not properly accounted for, this leads to a bias in the recovery of the
supernovae parameters α and β.

• Solution is to put a prior on the range of the latent x1i and ci. [Gull, 1989].
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Overview of new method
1. Introduce latent variables c, x1

and M .

2. Apply prior to c, x1 and M .

3. Marginalize over M analytically.

4. Marginalize over c? and x?
analytically.

5. Marginalize over c and x1
analytically.

6. Marginalize over other nuisance
parameters numerically.

Posterior pdf:

p(Θ|ĉi, x̂1i, m̂
∗
Bi) =

1

Z
p(ĉi, x̂1i, m̂

∗
Bi|Θ)p(Θ)

A fully Bayesian method which can be used in problems of
Bayesian model selection, and can be used with MCMC meth-
ods.
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Numerical trials with simulated data
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• Simulated data (red)
compared with real
data
(blue);[Kessler,2009]

• True parameters in
simulated data are:
ΩM = 0.3
ΩΛ = 0.7
Ωκ = 0.0
w = −1.0
H0 = 70 km/s/Mpc
M0 = −19.3 mag
i.e. flat ΛCDM
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Posterior plots: simulated data
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flat universe
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• Contours delimit 95% and 68%
regions. Blue is new Bayesian method,
red is chisquare method.

• Yellow star indicates true value of
parameters.

• H0 prior is: H0 = 70± 8 km/s/Mpc

• Bayesian method places tighter
constraints on parameters.

• Value of parameter recovered by
Bayesian method is closer to true
value in 60-70 % of trials, compared
with chisquare method. (100 trials)
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• Comparison of size of errorbars on
each parameter from each method.

• A value < 0 indicates smaller error
bars from our method.

• Our method generally delivers smaller
errors on the cosmological parameters
(top row), but larger errors on the
SALT II correction parameters (lower
row)
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• A predominantly negative value of the
test statistics means that our method
gives a parameter reconstruction that
is closer to the true value than the
usual chisquare method.

• For the cosmological parameters (top
row), our method outperforms χ2

about 2 times out of 3.
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• Our method (blue) and chisquare
method (red)

• For 68% intervals (solid) and 95 %
intervals (dashed)

• Both methods show significant
undercoverage - to be investigated
further.

• To what extent should Bayesians care
about coverage?
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• Plots adapted from [Kessler,2009]
arXiv:0908.4274 288 Supernovae
(Nearby+SDSS+ESSE+SNLS+HST)

• Contours: Red/yellow is Kessler 2009,
blue is new Bayesian method.

• Yellow star is mean value of posterior.

• Bayesian method: σint
µ = 0.12± 0.01

• Caveat: currently σmBx1
and σmBc not

fully treated in new Bayesian method.
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• Data adapted from [Kessler,2009]
arXiv:0908.4274 288 Supernovae
(Nearby+SDSS+ESSE+SNLS+HST)

• Contours: Shaded = Combined; Blue
= SNe; Red = CMB; Green = BAO.

• Yellow star is mean value of posterior.

• Caveat: currently σmBx1
and σmBc not

fully treated in new Bayesian method.
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Preliminary results: real data
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• Outperforms chisquare method for
parameter inference:

– More accurate in 60-70 % of
trials.

– Tighter constraints on
parameters

• Gives a distribution for σintµ .

• Provides a framework for modeling
for the systematic errors.

• Fully Bayesian → can be used with other Bayesian
techniques: Bayesian model selection.

• All parameters treated in the same way → can sample
posterior using MCMC / nested sampling methods.
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Applications:

• Bayesian model selection: can now validly use SNIa data to
discriminate between ΛCDM, wCDM, flat models, curved
models, w0, wa models, void models....

• Do SNIa evolve with redshift? Extend parameter space to
test for different σintµ (z) and different β(z).

• Are there different SNIa populations? Differentiate by host
galaxy type and recover parameters.

•What is the effect of outliers on the ability to recover the
cosmological parameters? Can we detect outliers through
their effect on the pdf of σintµ ?

• Extract systematic error for each survey: σintµ (survey)
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Work in progress

• Currently testing our method with ΛCDM and flat wCDM
models with HST prior on H0, and with flat prior on H0.

• Testing with real data, including full treatment of
correlations.

• Further testing with more realistic SNANA data.
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Coverage plot
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• Results from 100
realizations of
simulated data.

• Blue shows our results;
red shows results from
chisquare method.

• Our method recovers
true parameter as well
as chisquare method.

• H0 prior is:
H0 = 70± 8 km/s/Mpc
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