Bayesian cosmological parameter inference from supernovae type la data

Marisa Cristina March

with

R. Trotta, P. Berkes, G.D. Starkman and P.M. Vaudrevange

Imperial College London

Motivations for this work

We desire a Bayesian method for cosmological parameter inference from supernovae type Ia in order to:

- 1. Be able to use the supernova data to discriminate between different cosmological models using Bayesian model selection.
- 2. Provide a statistically well motivated framework for evaluating the posterior probabilities of the cosmological parameters.
- 3. Obtain a probability density function for the unknown intrinsic dispersion of the absolute magnitudes of the SNe Ia.

Which is the best model, given the data?

Imperial College London

Which is the best model, given the data?

Imperial College London

Which is the best model, given the data?

Reminder: Bayesian model selection For a given set of known models, $\{\mathcal{M}_1 \dots \mathcal{M}_j \dots \mathcal{M}_N\};$ $p(\mathcal{M}_j|d) = \frac{p(d|\mathcal{M}_j)p(\mathcal{M}_j)}{p(d)}$

To compare models with equal priors, look at the Bayes factor:

$$B_{ab} = \frac{p(d|\mathcal{M}_a)}{p(d|\mathcal{M}_b)}$$

The relative goodness of model can be interpreted using Jeffreys' scale:

$ \ln B_{ij} $	Odds	Strength of evidence
< 1.0	$\lesssim 3:1$	Inconclusive
1.0	$\sim 3:1$	Weak evidence
2.5	$\sim 12:1$	Moderate evidence
5.0	$\sim 150:1$	Strong evidence

Imperial College London

Reminder: Bayes' theorem

Given a data set dwhat is the posterior probability of the parameters θ for a specific model \mathcal{M}_j ?

The model likelihood is also known as the Bayesian evidence posteriorlikelihood prior $p(\theta|d, \mathcal{M}_j) = \frac{p(d|\theta, \mathcal{M}_j)p(\theta|\mathcal{M}_j)}{p(d|\mathcal{M}_j)}$ evidence

evidence

$$p(d|\mathcal{M}_j) = \int p(d|\theta, \mathcal{M}_j) p(\theta|\mathcal{M}_j) d\theta$$

Bayes' theorem can be applied to problems of parameter inference and also problems of model selection.

Imperial College London

Overview

Supernovae Type Ia can be used as standard candles to infer the cosmological parameters.

- Standard candles and their use in inferring the cosmological parameters.
- How supernovae la can be made into standard candles.
- How to get from supernovae data to the cosmological parameters.
- The standard method and its shortfalls.
- Our new method.
- Numerical trials and preliminary results.

Standard Candles

Standard candles are any class of object of which all members have the same absolute magnitude, ${\cal M}$

$$\mu \equiv m_B - M$$
$$\mu = 5 \log_{10} \left(\frac{D_L(z)}{1Mpc} \right) + 25$$

The distance modulus μ is the difference between the apparent magnitude m_B and absolute magnitude M of a standard candle

Luminosity distance

$$D_L(z) = \frac{c(1+z)}{H_0\sqrt{-\Omega_\kappa}} \sin\left(\sqrt{-\Omega_\kappa} \int_0^z \frac{H_0}{H(z)} dz\right)$$

Imperial College London

The make-up of the universe

Friedmann equation relates cosmological parameters to Hubble rate:

$$H(z)^{2} = H_{0}^{2} \left(\Omega_{m}^{0} (1+z)^{3} + \Omega_{r}^{0} (1+z)^{4} + \Omega_{\kappa}^{0} (1+z)^{2} + \Omega_{DE}^{0} \exp\left[3 \int_{0}^{z} \frac{1+w(z)}{1+z} dz \right] \right)$$

w(z) is the dark energy equation of state

Imperial College London

Progenitors of Type 1a Supernovae?

Accretion

Images:NASA/CXC/M Weiss.

Merger

bimodal population?

Imperial College London

From SNe Ia to the cosmological parameters

Guy et. al. 2007

Imperial College London

Imperial College London

SNe la as standardizable candles

Supernovae type la may be made into standard candles by applying empirical corrections for stretch and colour:

$$\mu_{i} = m_{Bi}^{*} - M_{0} + \alpha x_{1,i} - \beta c_{i}$$

- Estimates for m_{Bi}^* , $x_{1,i}$, c_i come from SALT2 lightcurve fitting.
- M_0, α, β are unknown nuisance parameters.
- The corrections reduce the scatter in the absolute magnitudes of the SNe Ia.
- Even after correction, a dispersion in the absolute magnitudes remains, σ_{μ}^{int} .

Sources of systematic uncertainty σ_{μ}^{int}

Physical reasons: (our main interest)

- Variations in intrinsic colour of SN Ia.
- Variations in host galaxy reddening: spiral vs elliptical.
- Possible bimodal population: single degenerate progenitor system vs double degenerate progenitor system.
- \bullet Evolution of supernovae with redshift \rightarrow early SNe population may be different from late SNe population.

Technical reasons:

• Instrumentation, detector sensitivity, calibration of light curve fitter.

Sources of systematic uncertainty σ_{μ}^{int}

Physical reasons: (our main interest)

- Variations in intrinsic colour of SN Ia.
- Variations in host
- Possible bimodal p system vs double c
- Evolution of super population may be
- Technical reasons:
 - Instrumentation, d curve fitter.

• How do these systematics affect our ability to recover the cosmological parameters?

• What is
$$\sigma_{\mu}^{int}$$
 ?

• How can we model the systematic errors?

Imperial College London

The standard χ^2 method

- χ^2 is minimised by fitting for cosmological and supernovae parameters simultaneously
- α and β appear in both numerator and denominator
- σ_{μ}^{int} is unknown

$$\chi^2_{\mu} = \sum_{i} \frac{\left[\mu_i(\Omega_M, \Omega_\Lambda, \Omega_\kappa, w, H_0) - \mu_i^{obs}\right]^2}{\sigma^2_{\mu i}}$$

$$\mu_i^{obs} = \hat{m}_{Bi}^* - M_0 + \alpha \hat{x}_{1i} - \beta \hat{c}_i$$

$$\sigma_{\mu i}^2 = (\sigma_{\mu i}^{fit})^2 + (\sigma_{\mu i}^z)^2 + (\sigma_{\mu}^{int})^2$$

$$(\sigma_{\mu i}^{fit})^2 = \sigma_{\hat{m}_{Bi}^*}^2 + \alpha^2 \sigma_{x_1}^2 + \beta^2 \sigma_c^2$$

(uncorrelated case)

Imperial College London

The standard χ^2 method

- χ^2 is minimised by fitting for cosmological and supernovae parameters simultaneously
- α and β appear in both numerator and denominator

• σ_{μ}^{int} is unknown

- σ_{μ}^{int} is chosen such that $\chi^2/\text{dof} \sim 1$ \rightarrow assumes model is a good fit.
- Only gives single value for σ_{μ}^{int} .
- No justification for χ^2 distribution.
- Cannot apply Bayesian model selection or use with MCMC.

$$\chi^2_{\mu} = \sum_{i} \frac{\left[\mu_i(\Omega_M, \Omega_\Lambda, \Omega_\kappa, w, H_0) - \mu_i^{obs}\right]^2}{\sigma^2_{\mu i}}$$

$$\mu_i^{obs} = \hat{m}_{Bi}^* - M_0 + \alpha \hat{x}_{1i} - \beta \hat{c}_i$$

$$\sigma_{\mu i}^2 = (\sigma_{\mu i}^{fit})^2 + (\sigma_{\mu i}^z)^2 + (\sigma_{\mu}^{int})^2$$

$$(\sigma_{\mu i}^{fit})^2 = \sigma_{\hat{m}_{Bi}^*}^2 + \alpha^2 \sigma_{x_1}^2 + \beta^2 \sigma_c^2$$

(uncorrelated case)

Imperial College London

The standard χ^2 method

- χ^2 is minimised by fitting for cosmological and supernovae parameters simultaneously
- α and β appear in both numerator and denominator

• σ_{μ}^{int} is unknown

- σ_{μ}^{int} is chosen such that $\chi^2/{\rm dof} \sim 1$ \rightarrow assumes model is a good fit
- Only gives single value for σ_{μ}^{int}
- \bullet No justification for χ^2 distribution
- Cannot apply Bayesian model selection or use with MCMC.

$$\chi^2_{\mu} = \sum_{i} \frac{\left[\mu_i(\Omega_M, \Omega_\Lambda, \Omega_\kappa, w, H_0) - \mu_i^{obs}\right]^2}{\sigma^2_{\mu i}}$$

$$\mu_i^{obs} = \hat{m}_{Bi}^* - M_0 + \alpha \hat{x}_{1i} - \beta \hat{c}_i$$

$$\sigma_{\mu i}^2 = (\sigma_{\mu i}^{fit})^2 + (\sigma_{\mu i}^z)^2 + (\sigma_{\mu}^{int})^2$$

$$(\sigma_{\mu i}^{fit})^2 = \sigma_{\hat{m}_{Bi}^*}^2 + \alpha^2 \sigma_{x_1}^2 + \beta^2 \sigma_c^2$$

(uncorrelated case)

A new and better method for parameter estimation is required!

Imperial College London

Bayesian hierarchical network

...each supernova has a redshift z_i and (an unobserved) absolute magnitude M_i ...

Imperial College London

... M_i is drawn from a Gaussian distribution of mean M_0 and standard deviation σ_{μ}^{int} ...

Imperial College London

...the cosmological parameters $\mathscr{C} = \{\Omega_M, \Omega_\Lambda, w, H_0\}$ are unknown to us...the supernovae parameters α and β are also unknown...

Imperial College London

... \mathscr{C} and z_i deterministically specify the theoretical distance modulus μ_i^{th} ...

Imperial College London

...each supernova has a true stretch x_{1i} and colour c_i parameter...

Imperial College London

...each x_{1i} and c_i are drawn from their respective Gaussian distributions...

Imperial College London

 $\dots m_{Bi}^*$ is specified deterministically...

Imperial College London

...we do not observe the true values; our observations are subject to a further Gaussian noise...

Posterior:

 $p(\Theta|\hat{c}_i, \hat{x}_{1i}, \hat{m}_{Bi}^*) \propto p(\hat{c}_i, \hat{x}_{1i}, \hat{m}_{Bi}^*|\Theta) p(\Theta) \quad \text{where} \quad \Theta = \{\mathscr{C}, \alpha, \beta, M_0, \sigma_\mu^{int}\}$

Calculating the posterior pdf:

Bayes theorem:

$$p(\boldsymbol{\Theta}|\boldsymbol{d}) = \frac{p(\boldsymbol{d}|\boldsymbol{\Theta})p(\boldsymbol{\Theta})}{p(D)}$$

Where the parameters of interest are: $\Theta = \{ \mathscr{C}, \alpha, \beta, M_0, \sigma_{\mu}^{\mathsf{int}} \}$

prior:

$$p(\Theta) = p(\mathscr{C}, \alpha, \beta) p(M_0, \sigma_{\mu}^{\mathsf{int}})$$
$$= p(\mathscr{C}, \alpha, \beta) p(M_0 | \sigma_{\mu}^{\mathsf{int}}) p(\sigma_{\mu}^{\mathsf{int}})$$

Imperial College London

Expanding out the likelihood alone:

$$\begin{split} p(d|\Theta) &= p(\underline{\hat{c}}, \underline{\hat{x}}_1, \underline{\hat{m}}_B^*|\Theta) \\ &= \int \mathsf{d}\underline{c} \ \mathsf{d}\underline{x}_1 \ \mathsf{d}\underline{M} \ p(\underline{\hat{c}}, \underline{\hat{x}}_1, \underline{\hat{m}}_B^*|\underline{c}, \underline{x}_1, \underline{M}, \Theta) p(\underline{c}, \underline{x}_1, \underline{M}|\Theta) \\ &= \int \mathsf{d}\underline{c} \ \mathsf{d}\underline{x}_1 \ \mathsf{d}\underline{M} \ p(\underline{\hat{c}}, \underline{\hat{x}}_1, \underline{\hat{m}}_B^*|\underline{c}, \underline{x}_1, \underline{M}, \Theta) p(\underline{c}, \underline{x}_1|\Theta) p(\underline{M}|\Theta) \end{split}$$

where:

$$\underline{M} \sim \mathcal{N}(\underline{M}_0, \Sigma_\Delta)$$

$$\underline{c} \sim \mathcal{N}(c_\star \cdot \mathbf{1}_n, \operatorname{diag}\left(R_c^2 \cdot \mathbf{1}_n\right)) = p(\underline{c}|c_\star, R_c)$$

$$\underline{x}_1 \sim \mathcal{N}(x_\star \cdot \mathbf{1}_n, \operatorname{diag}\left(R_x^2 \cdot \mathbf{1}_n\right)) = p(\underline{x}_1|x_\star, R_x)$$

Imperial College London

Expanding out the likelihood alone:

Priors on \underline{x}_1 and \underline{c} :

$$\begin{split} p(\underline{c}, \underline{x}_{1} | \Theta) &= \int \mathsf{d}R_{c} \; \mathsf{d}R_{x} \; \mathsf{d}c_{\star} \; \mathsf{d}x_{\star} \; p(\underline{c} | c_{\star}, R_{c}) p(\underline{x}_{1} | x_{\star}, R_{x}) p(R_{c}) p(R_{x}) p(c_{\star}) p(x_{\star}). \\ \mathbf{The expression for the likelihood becomes:} \\ p(\underline{\hat{c}}, \underline{\hat{s}}, \underline{\hat{m}}_{B}^{*} | \Theta) &= \int \mathsf{d}\underline{c} \; \mathsf{d}\underline{x}_{1} \; \mathsf{d}\underline{M} \; p(\underline{\hat{c}}, \underline{\hat{x}}_{1} | \underline{c}, \underline{x}_{1}) p(\underline{\hat{m}}_{B}^{*} | \underline{c}, \underline{x}_{1}, \underline{M}, \Theta) p(\underline{M} | \Theta) \\ & \times \int \mathsf{d}R_{c} \; \mathsf{d}R_{x} \; \mathsf{d}c_{\star} \; \mathsf{d}x_{\star} \; p(\underline{c} | c_{\star}, R_{c}) p(\underline{x}_{1} | x_{\star}, R_{x}) p(R_{c}) p(R_{x}) p(c_{\star}) p(x_{\star}). \end{split}$$

Final expression for the effective likelihood is:

$$p(\underline{\hat{c}}, \underline{\hat{s}}, \underline{\hat{m}}_{B}^{*} | \Theta) = \int \mathsf{d} \log R_{c} \, \mathsf{d} \log R_{x} \, |2\pi(\Sigma_{m} + \Sigma_{\Delta})|^{-\frac{1}{2}} |2\pi\Sigma_{R}|^{-\frac{1}{2}} |2\pi\Sigma_{0}|^{-\frac{1}{2}} |2\piY|^{\frac{1}{2}} |2\pi\Sigma_{b}|^{\frac{1}{2}} |2\pi\Sigma_{b}|^{\frac{1}{2}}$$

Imperial College London

- Size of the error bars on \hat{x}_{1i} and \hat{c}_i is comparable with range of \hat{x}_{1i} and \hat{c}_i .
- If not properly accounted for, this leads to a bias in the recovery of the supernovae parameters α and $\beta.$
- Solution is to put a prior on the range of the latent x_1i and c_i . [Gull, 1989].

Overview of new method

- 1. Introduce latent variables \underline{c} , \underline{x}_1 and \underline{M} .
- 2. Apply prior to \underline{c} , \underline{x}_1 and \underline{M} .
- 3. Marginalize over \underline{M} analytically.
- 4. Marginalize over c_{\star} and x_{\star} analytically.
- 5. Marginalize over \underline{c} and \underline{x}_1 analytically.
- 6. Marginalize over other nuisance parameters numerically.

Posterior pdf: $p(\Theta|\hat{c}_i, \hat{x}_{1i}, \hat{m}^*_{Bi}) = \frac{1}{Z} p(\hat{c}_i, \hat{x}_{1i}, \hat{m}^*_{Bi}|\Theta) p(\Theta)$

A fully Bayesian method which can be used in problems of Bayesian model selection, and can be used with MCMC methods.

Imperial College London

Numerical trials with simulated data

- Simulated data (red) compared with real data (blue);[Kessler,2009]
- True parameters in simulated data are: $\Omega_M = 0.3$ $\Omega_\Lambda = 0.7$ $\Omega_\kappa = 0.0$ w = -1.0 $H_0 = 70$ km/s/Mpc $M_0 = -19.3$ mag i.e. flat Λ CDM

Imperial College London

Posterior plots: simulated data

- Contours delimit 95% and 68% regions. Blue is new Bayesian method, red is chisquare method.
- Yellow star indicates true value of parameters.
- H_0 prior is: $H_0 = 70 \pm 8 \text{ km/s/Mpc}$

- Bayesian method places tighter constraints on parameters.
- Value of parameter recovered by Bayesian method is closer to true value in 60-70 % of trials, compared with chisquare method. (100 trials)

Imperial College London

Comparison over 100 trials

- Comparison of size of errorbars on each parameter from each method.
- A value < 0 indicates smaller error bars from our method.

 Our method generally delivers smaller errors on the cosmological parameters (top row), but larger errors on the SALT II correction parameters (lower row)

Imperial College London

Comparison over 100 trials

• A predominantly negative value of the test statistics means that our method gives a parameter reconstruction that is closer to the true value than the usual chisquare method.

wCDM 67% < 067% < 0 68% < 030 40 20 30 15 fuency 10 20 20 10 10 Ω 0.5 -0.4 -0.2 0 0.2 0.4 -0.5 0 -0.5 0 0.5 Test statistics for Ω_{M} Test statistics for Ω_{1} Test statistics for w 61% < 0 54% < 0 72% < 0 60 30 60 40 20 20 40 10 20 -0.2 0 0.2 -0.05 n 0.05 -0.2 0 0.2 Test statistics for a Test statistics for B Test statistics for Ln o^{int}

• For the cosmological parameters (top row), our method outperforms χ^2 about 2 times out of 3.

marisa.march06@imperial.ac.uk arXiv:1102.3237

Imperial College London

Coverage over 100 trials

- Our method (blue) and chisquare method (red)
- For 68% intervals (solid) and 95 % intervals (dashed)

- Both methods show significant undercoverage - to be investigated further.
- To what extent should Bayesians care about coverage?

Imperial College London

Preliminary results: real data

- Plots adapted from [Kessler,2009] arXiv:0908.4274 288 Supernovae (Nearby+SDSS+ESSE+SNLS+HST)
- Contours: Red/yellow is Kessler 2009, blue is new Bayesian method.

- Yellow star is mean value of posterior.
- Bayesian method: $\sigma_{\mu}^{\text{int}} = 0.12 \pm 0.01$
- Caveat: currently $\sigma_{m_B x_1}$ and $\sigma_{m_B c}$ not fully treated in new Bayesian method.

Imperial College London

Preliminary results: real data

- Data adapted from [Kessler,2009] arXiv:0908.4274 288 Supernovae (Nearby+SDSS+ESSE+SNLS+HST)
- Contours: Shaded = Combined; Blue = SNe; Red = CMB; Green = BAO.

- Yellow star is mean value of posterior.
- Caveat: currently $\sigma_{m_B x_1}$ and $\sigma_{m_B c}$ not fully treated in new Bayesian method.

Imperial College London

Preliminary results: real data

- Outperforms chisquare method for parameter inference:
 - More accurate in 60-70 % of trials.
 - Tighter constraints on parameters
- Gives a distribution for σ_{μ}^{int} .
- Provides a framework for modeling for the systematic errors.

 \bullet All parameters treated in the same way \rightarrow can sample posterior using MCMC / nested sampling methods.

Applications:

- Bayesian model selection: can now validly use SNIa data to discriminate between Λ CDM, wCDM, flat models, curved models, w_0, w_a models, void models....
- Do SNIa evolve with redshift? Extend parameter space to test for different $\sigma_{\mu}^{int}(z)$ and different $\beta(z)$.
- Are there different SNIa populations? Differentiate by host galaxy type and recover parameters.
- What is the effect of outliers on the ability to recover the cosmological parameters? Can we detect outliers through their effect on the pdf of σ_{μ}^{int} ?
- Extract systematic error for each survey: $\sigma_{\mu}^{int}(survey)$

Work in progress

- Currently testing our method with Λ CDM and flat wCDM models with HST prior on H_0 , and with flat prior on H_0 .
- Testing with real data, including full treatment of correlations.
- Further testing with more realistic SNANA data.

Imperial College London

Coverage plot

- Results from 100 realizations of simulated data.
- Blue shows our results; red shows results from chisquare method.
- Our method recovers true parameter as well as chisquare method.
- H_0 prior is: $H_0 = 70 \pm 8 \text{ km/s/Mpc}$

Imperial College London

Imperial College London

Imperial College London