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Aim: To describe dynamics of nonlinear localized modes in two-dimensional 
periodic structures, where each individual waveguide mode has a dipolar 
structure (“p-band modes”). 

⇒ 2 orthogonal degenerate individual modes for uncoupled waveguides:

What kinds of discrete (“gap”) solitons may exist in different lattice types??

 

square ↔ triangular
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Outline: 

● Coupled-mode-approach → discrete equations for two coupled fields 
          describing degenerate waveguide modes of dipolar character.

       ● Key feature: anisotropic dispersion yields solutions which break lattice 
                 rotational symmetry.

       ● Use standard machinery for discrete equations to obtain strongly 
          localized solutions, and analyze their stability and mobility.

       ● Relate to recent experiments on “reduced-symmetry gap solitons”  and 
                “second-band vortex lattice solitons”  in square and triangular lattices.

● Obtain conditions for directional mobility of dipole modes and predict 
   oscillatory instabilities for vortex modes.

● Introduce concept of “rotational Peierls-Nabarro barrier”, defining the 
   minimum energy needed for rotation of stable dipole modes.  

cf. also a similar, very recent approach to describe quantum states of p-band bosons in 
optical lattices, in a mean-field model describing superfluid regime:
A. Collin, J. Larson, J.-P. Martikainen, PRA 81, 023605 (2010)
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Experimental motivations:
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Earlier theoretical predictions: 

Based on approximation of slowly varying envelopes → justified only close to 
linear band, weak discreteness.

 

More recent work: 

Shi/Yang, PRE 75, 056602 (2007):
Numerical continuation of small-amplitude solutions from 
band edges into different families of solitary waves. 

Dohnal, Pelinovsky, Schneider, J. Nonlinear Sci. 19, 95 (2009):
Rigorous proof of persistence of localized gap solitons 
beyond small-amplitude limit, for separable potentials.
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Strongly discrete system: coupled-mode equations 

Consider single 2D waveguide with two orthogonal modes              and            with 
same propagation constant k:

 
Lattice of coupled waveguides: 

Express total field as sum of individual waveguide modes: 

Assume weakly overlapping modes  → general set of coupled-mode equations:

Parameters γ, σ determined by geometry of the waveguides.

Coupling constants C determined by geometry of the lattice:

Assume symmetric waveguides: 
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Single waveguide:  all coupling parameters C ≡ 0  (“anticontinuous limit”)

Wish to describe solutions associated with 2nd dispersion band → 

assume modes with dipolar structure with nodelines through waveguide center:

 ψ
a 
:horizontal dipole              , ψ

b
 vertical dipole 

There are three fundamental types of stationary solutions, and their stability is 

determined by ratio        (e.g. Kivshar/Agrawal, Optical Solitons, and references therein):

I. “Single-mode” (horizontal/vertical) dipoles: 

                                                                                                       :   stable for  0 < σ/γ ≤ 1/3

II. “Mixed-mode” (diagonal) dipoles: A =         =                                  : stable for 1/3 ≤ σ/γ < 1

III. Vortices:                                                                stable for all 0 < σ/γ < 1

Limit case of marginal stability σ/γ = 1/3 corresponds to circularly symmetric waveguide.

+-
+

-
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Weakly coupled waveguides (“continuation from anticontinuous limit”)

(Related approach used for “discrete vector solitons”, e.g. 
Hudock et al., Phys. Rev. E 67, 056618 (2003), Meier et al., Phys. Rev. Lett. 91, 143907 (2003), 
Horne et al, Phys. Rev. E 73, 066601 (2006).)

Square lattice with nearest-neighbour coupling:

            > 0                  generally, due to 

anisotropy of dipole waveguide modes:

Two conserved quantities: 

Hamiltonian:  
(energy)

Total power (norm): 
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Numerical continuation from anticontinuous limit: 

Existence: All three fundamental (single-site) stationary solutions may be continued 

smoothly for increasing coupling all the way to the continuum limit, where 

      they approach standard vector solitons. (e.g., Kivshar/Agrawal and refs. therein)

Linear stability: Diagonalize 4N X 4N matrix for N-site lattice.
(cf. Hudock et al., Phys. Rev. E 67, 056618 (2003), Horne et al, Phys. Rev. E 73, 066601 (2006))

1. σ/γ ≠ 1/3: (non-circular waveguides)

• Dipole modes (I,II) keep their stability properties from anticontinuous limit.

• Vortex modes (III) are stable for weak coupling, but develop oscillatory 

instabilities for larger coupling. 

(Resonance between localized internal mode and extended mode.)

Analytical estimate for instability threshold obtained by calculating stability 

eigenvalues to order (         ).

In addition, all modes develop Vakhitov-Kolokolov (VK) “quasicollapse” instability close to 

continuum limit.
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2. σ/γ = 1/3: (circular waveguides)

• Horizontal/vertical dipole modes (I) are stable and diagonal modes (II) unstable 

when C
1
 ≠ C

2
: Lattice directions select favorable dipole orientations!

• Vortex modes (III) develop weak oscillatory instabilities for any values 

of the coupling  when C
1
 ≠ C

2 
if lattice is infinite.

For finite lattice: Narrow windows of very weak instabilities for small couplings.

(For C
1
 = C

2
 all modes remain marginally stable.)

In addition, all modes develop VK instability close to continuum limit.
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Directional mobility of dipole modes in square lattice: 

Study of mobility for horisontal/vertical modes (I) reduces to one-component 

anisotropic DNLS (e.g. Kevrekidis et al., Phys. Rev. E 72, 046613 (2005)).

Stable solutions mobile in the strong-coupling direction are known to exist for 

C
2
/C

1      
0.17: 

(For vortices (III), no stable mobile solutions exist.)
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Triangular lattice: 

(cf. eg. Kevrekidis et al., PRE 66, 016609 (2002); Koukouloyannis/MacKay, J. Phys. A 38,
1021 (2005) for results on discrete solitons and vortices in 1-component models)

 C
1  

> 0, C
2  

> 0, C
AB 

> 0, sign of C
AA 

and C
BB 

depend on particular geometry.
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Relation between coupling constants for circular waveguides (σ/γ = 1/3): 

                        (valid more generally for waveguides having the same (6-fold) 
 rotational symmetry as the lattice, or higher)
 

6-fold rotational symmetry → 
3 classes of distinct fundamental solutions appear from anticontinuous limit:

(i) Dipoles pointing in lattice direction (e.g. B = 0):                                                       

Stable when C
2 
> C

1
 (VK instabilities close to continuum limit).

(ii) Dipoles pointing between lattice directions (e.g. A = 0):                                       

Stable when C
2 
< C

1 
(VK instabilities close to continuum limit).

In both cases, stability eigenvalues                    .

(iii) Vortex modes:                            ; always (weakly) oscillatorily unstable.

(When C
2
  = C

1
, type (i) modes are stable for γ = +1 and type (ii) modes stable for γ = -1. 

But the instability is very weak close to anticontinuous limit:                                !!)

- +

-
+
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Directional mobility of dipole modes in triangular lattice: 

Appears close to special parameter values where VK-instabilities are suppressed: 

C
2
 = C

1
/3 (→ C

BB 
= 0),  γ = +1 , and C

2
 = 3C

1  
(→ C

AA 
= 0),  γ = -1.

At these values, for large coupling the stable dipole mode approaches a one-

dimensional band-edge mode in strong-coupling direction, and becomes mobile in 

this direction.
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“Translational and Rotational mobility” of dipole modes: 

Wellknown approach to measure mobility of discrete modes: 
 (Kivshar/Campbell, PRE 48, 3077 (1993)) 

Calculate energy difference at fixed power between “one-site”  and  “two-site” modes:
“Peierls-Nabarro (PN) potential barrier”

Analogously, we may define “rotational PN barrier” as energy difference between 
stable and unstable dipole modes → 

Minimum energy needed for rotation of stable dipole modes!
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Comparison between translational and rotational barriers for square lattice:
stable 1-site vertical mode  (A≡0)   unstable 2-site vertical mode 

 unstable 1-site diagonal mode

dipole modes 
at P ≈ 3.28:

Good mobility regime:

General pictures for increasing power: 
translational barrier increases, rotational decreases:
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Dynamical illustration of rotational PN-barrier:

Perturbed stable 1-site vertical mode:

ε = 0.0112 (just below rotation threshold)

ε = 0.0113 (just above rotation threshold)

Central site intensity:
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Comparison between translational and rotational barriers for triangular lattices (γ = +1):

stable 1-site 
vertical mode 

Good mobility regime: dipole modes at P ≈ 1.65:

unstable 2-site 
vertical mode 

unstable 1-site 
horizontal mode 

General pictures:
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Dynamical illustration of rotational PN-barrier for triangular lattice:

Perturbed stable 1-site vertical mode:

ε = 0.0306 (just below rotation threshold)

ε = 0.0307 (just above rotation threshold)

Central site intensity:

Note: first barrier to overcome is unstable solution 
rotated 30°, with ⎟B⎟2 = 3⎟A⎟2 at central site.
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Dynamical illustration of translational PN-barrier for triangular lattice:

Perturbed stable 1-site vertical mode:

ε = 0.012 (just below translation threshold)

ε = 0.014 (just above translation threshold)

Intensity of central site 
+ 2 horizontal neighbours:
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