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Box 1 |Ultracold quantum gases.

Creating and manipulating ultracold gases. Ultracold quantum
gases are dilute atomic systems that are cooled to temperatures of
the order of a few tens of nano-Kelvins and confined in immaterial
traps using combinations of magnetic and optic fields14,16. Owing
to strong dilution, the prominent interparticle interactions are
two-body interactions, whereas many-body interactions can
often be ignored. At ultralow temperatures, s-wave scattering
dominates and the interaction is accurately described by a contact
pseudopotential13,15. In the general case of mixtures of atoms in
different species (or different internal states), the physics is thus
governed by the Hamiltonian

Ĥ =
�

σ

�
dr Ψ̂ †

σ (r)
�
− h̄

2∇2

2mσ

+Vσ (r)
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+
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σ (r)Ψ̂
†
σ �(r)Ψ̂σ �(r)Ψ̂σ (r) (2)

where Ψ̂σ andmσ are the field operator and themass of an atom of
species σ , respectively. The first integral in equation (2) represents
the single-particle Hamiltonian, where the potential Vσ (r) is
controlled by the configuration of the magnetic and/or optic
fields (Fig. B1a). In most cases, it is nearly a harmonic trap14,16
(Vσ (x,y,z) = �

ζ∈{x,y,z}mσ ω2
σ ,ζ ζ

2/2, where ωσ ,ζ is the trap fre-
quency in the ζ direction for an atom of species σ ), the anisotropy
of which can be adjusted in experiments. For instance, making it
strongly anisotropic offers the possibility to produce one-104,105 or
two-27 dimensional gases. Another possibility is to create a guide
for the atoms using a strongly focused laser beam106. The second
integral in equation (2) represents the interaction operator, where
gσ ,σ � is the coupling constant for interacting atoms of same or dif-
ferent species (gσ ,σ � > 0 and gσ ,σ � < 0 correspond to repulsive and
attractive interactions, respectively). The value and the sign of gσ ,σ �

can be controlled in quantum gases using Feshbach resonances21.
Optical lattices. Considering different limits of the Hamiltonian

in equation (1) enables us to design various models initially
introduced in the context of condensed-matter physics, but
here in a controlled way. One important example is that of
optical lattices, which are produced from the interference
pattern of several laser beams20,21. The matter–light interaction
creates a periodic potential whose geometry and amplitude
are determined by the laser configuration and intensity. Both
can be controlled in experiments. For instance, using pairs of
counterpropagating laser beams (Fig. B1b), the lattice potential
readsV latt

σ (x,y,z)=V
0
σ

�
ζ∈{x,y,z}cos(2kLζ ), whereV

0
σ is the lattice

depth and kL the laser wavevector. In deep lattices, the atoms are
trapped at the periodically arrangedminima of the lattice potential
(so-called lattice sites). They can jump from site to site through
quantum tunnelling (with a rate J ), and two atoms interact only
in the same site (with an energy U ). This physics is governed
by the Hubbard Hamiltonian, that is, the discrete version of
Hamiltonian (1):

Ĥ = −
�

σ ,�j,l�
Jσ

�
â

†
σ ,j âσ ,l +h.c.

�
+

�

σ ,j

Vσ ,j â
†
σ ,j âσ ,j

+ 1
2

�

σ ,σ �,j

Uσ ,σ � â
†
σ ,j â

†
σ �,j âσ �,j âσ ,j (3)

where the sumover �j,l� covers all pairs of neighbour sites, and âσ ,j

is the annihilation operator of an atomof species σ in site j. Hence,
ultracold atoms (bosons or fermions) in optical lattices mimic the
Hubbard model, which is widely considered in condensed-matter
physics, for instance to capture the essential physics of electrons
in solids. However, in contrast to condensed-matter systems,
Hamiltonian (2) can be shown to be exact in the limit of deep
lattices, low temperature and low interactions19. The parameters
Jσ , Vσ ,j andUσ ,σ �,j in equation (3) can be calculated ab initio from
the potential Vσ (r)→Vσ (r)+V

latt
σ (r) and the coupling constant

gσ ,σ � in equation (2), and are thus controllable in experiments.
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Figure B1 | Confining ultracold atoms in magnetic and optical traps. a, Harmonic trapping and laser waveguide (coutesy of V. Josse and P. Bouyer).
Magnetic coils create a nearly harmonic trapping potential, at the bottom of which a degenerate quantum gas, surrounded by a cloud of thermal
atoms, is formed. A focused laser beam, which creates an almost one-dimensional waveguide, is also represented. b, Optical lattice. The
interference pattern of pairs of counterpropagating laser beams forms a periodic potential (represented here in two dimensions). The atoms are
trapped in the lattice sites, but they can tunnel from site to site with a tunnelling rate J and interact when placed in the same site with an energy U.

In free space, ψ(r) is an extended plane wave, but it can be shown
rigorously55,56 that, in the presence of disorder, any solution with
arbitrary E is exponentially localized in one dimension, that is,
ln(|ψ(z)|) ∼ |z |/Lloc, with localization length Lloc(E) ∝ lB (where
lB is the transport (Boltzmann) mean-free path). Even though

Lloc often increases with E , it is striking that interference effects
of multiply scattered waves are strong enough to profoundly
affect ψ(z) even for very high energies. In two dimensions, the
situation is similar57, but interference effects are weaker, and
Lloc ∝ lBexp(πklB/2), where k =

√
2mE/h̄ is the particle wavevector
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Interaction - Feshbach Resonance

6
Li

H. Feshbach - late 50s 
Unified theory of  nuclear scattering

Feshbach resonance occurs as a bound state 
in the interatomic potential is tuned into 
resonance with energy of two colliding 
atoms.

Tuning is achieved by an applied magnetic 
field and the scattering length and thus the 
interaction can be changed in the broad range. 

Repulsive

Attractive

Ketterle, Zwierlein, arXiv:0801.2500

Ketterle, Zwierlein, arXiv:0801.2500

V (�r) =
4π�2as

m
δ(�r)



From Atomic BEC to Condensed Matter Physics

Reduction of  dimensionality using optical lattices

E. Cornell’s group

H.T.C. Stoof, Nature, 2002 I. Bloch, Nature Physics, 2005

• BEC to BCS crossover;
• Superfluid to Mott insulator transition;
• Berezinskii-Kosterlitz-Thouless physics;
• Tonks-Girardeau gas;
• Anderson Localization and phase transition;
• Spin-imbalance Physics and 3D and 1D; 
• FFLO Physics?
• Luttinger liquid?
• Disorder?



Reduction to One Dimension

Hamiltonian for a 1D tube

Hamiltonian for a 3D cloud

Can be readily tuned using Feshbach 
resonance and can become effectively 
attractive (<0) or repulsive (>0).
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Realizing 1D Physics - Fermions

Repulsive Interactions Attractive Interactions

Paradigm of  1D metallic systems -
Luttinger Liquid.

Properties of  paired states.

Different regimes of  the Luttinger 
Liquid and crossover between them.

1D analog of  the Fulde-Ferrell-
Larkin-Ovchinnikov state for spin-

imbalanced systems.

Spin-coherent and -incoherent 
Luttinger Liquids

Phase Diagram of  a uniform system

Strong
 Correlations



(Spin-Coherent )Luttinger Liquid
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as the sum of two terms, A(k; !)=Acoh(k; !) + Aincoh(k; !). The single-particle Green’s func-
tion can similarly be expressed as a sum of two corresponding terms, G(k; !)=Gcoh(k; !) +
Gincoh(k; !). Then

Gcoh(k; !)=
Zk

!− !̃k + i="k
; (9)

which for large lifetimes "k gives a Lorentzian peak in the spectral density at the quasiparticle
energy !̃k ≡ !k−#. The incoherent Green’s function is smooth and hence for large "k corresponds
to the smooth background in the spectral density.
The condition for the occurrence of the well-de!ned feature can be expressed as the condition

that the self-energy $(k; !) has an analytic expansion about !=0 and k=kF and that its real
part is much larger than its imaginary part. One can easily see that were it not so, then expression
(9) for Gcoh could not be obtained. These conditions are necessary for a Landau Fermi liquid.
Upon expanding $(k; !) in (12) for small ! and small deviations of k from kF and writing it
in the form (9), we make the identi!cations

!̃k= !kZkẐk;
1
"k
=− Zk Im$(kF; !=0) ; (10)

where

Zk=
(

1− 9$
9!

)−1

!=0; k=kF
; Ẑ =

(

1 +
1
vF
9$
9k

)

!=0; k=kF
: (11)

From Eq. (8), we have a more physical de!nition of Zk :Zk is the projection amplitude of
| N+1
k 〉 onto the state with one bare particle added to the ground state, since all other terms

in the expansion vanish in the thermodynamic limit in the perturbative expression embodied
by (8):

Z1=2k = 〈 N+1
k |c†k| 

N 〉 : (12)

In other words, Zk is the overlap of the ground state wavefunction of a system of interacting
N ± 1 fermions of total momentum k with the wavefunction of N interacting particles and a
bare particle of momentum k. Zk is called the quasiparticle amplitude.
The Landau theory tacitly assumes that Zk is !nite. Furthermore, it asserts that for small !

and k close to kF, the physical properties can be calculated from quasiparticles which carry the
same quantum numbers as the particles, i.e., charge, spin and momentum and which may be
de!ned simply by the creation operator %†k;&:

| N+1
k 〉= %†k;&| 

N 〉 : (13)

Close to kF, and for T small compared to the Fermi energy, the distribution of the quasiparticles
is assumed to be the Fermi–Dirac distribution in terms of the renormalized quasiparticle en-
ergies. The bare particle distribution is quite di"erent. As is illustrated in Fig. 4, it is depleted
below kF and augmented above kF, with a discontinuity at T =0 whose value is shown in
microscopic theory to be Zk. A central result of Fermi liquid theory is that close to the Fermi
energy at zero temperature, the width 1="k of the coherent quasiparticle peak is proportional to
(!̃k − #)2 so that near the Fermi energy the lifetime is long and quasiparticles are well-de!ned.

Zk → 0

Breakdown of  Fermi liquid theory:

•No quasiparticles but collective excitations;
•Power law behavior of correlators with 

interaction dependent  exponents;
•Spin-charge separation;
•Suppression of the density of states at the 

Fermi level;

J. Voit, Rep. Prog. Phys. 58, 977 (1995)

Bosonization:

vc = vF

√

(

1 +
g4,c

π

)2

−

(

g2,c

π

)2

vs = vF

(

1 +
g4,s

π

)
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√

π − g2,c + g4,c

π + g2,c + g4,c

Ks = 1
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1

√

4π
(∂zϕc/s − rΠc/s)

ψr,σ =
ηr,σ
√

2πα
exp(ir

√

4πφr,σ)

Ψσ(x) = eikF xψR,σ(x) + e−ikF xψL,σ(x)

HTL =
∑

α=c,s

vα

2

∫

dx

[

KαΠ̃2

α +
1

Kα

(∂zϕ̃α)2
]



Spin-coherent Vs Spin-incoherent 
Luttinger Liquid

Uniform system

T � J � EF kF =
πn

2
H = Hc + Hs

J� T � EF kF = πn

H = Hc + Hs

J

J

Spins are 
correlated

Spins are 
uncorrelated



•Low-energy excitations are collective and separately carry spin and charge (spin-charge 
separation);

•Single-particle Green function decays as power law and the exponent depend on the LL 
interaction parameters in spin and charge sector;

•Low-energy excitations consist of only charge excitations, spin excitations are non-
propagating (non-unitary spin-charge separation) [Cheianov and Zvonarev, PRL, 2004, Fiete 

and Balents, PRL, 2004];

•Single-particle Green function decays as power law in the charge sector with a non-
unitary exponent; decay in the spin sector has an exponential nature [Cheianov and 

Zvonarev, PRL, 2004, Fiete and Balents, PRL, 2004];

Spin-coherent Vs Spin-incoherent 
Luttinger Liquid

Single-Particle Green Function

G(x, x′, τ) ∼
e−(ln 2/π)k̃F |r|

((α signτ + vcτ)2 + r2)∆

(

e−ik̃F reiζ

(α signτ + vcτ + ir)
+ c.c.

)



Spin-coherent and Spin-incoherent 
Luttinger Liquids in a Trap

Local Density (Thomas-Fermi) approximation

HSI =
�

dz
vc(z)

2

�
KcΠ2

c +
1

Kc
(∂zϕc)2

�

Spin-coherent 
regime

Spin-incoherent 
regime

HSC =
�

α=c,s

�
dz

vα(z)
2

�
Kα(z)Π2

α +
1

Kα(z)
(∂zϕα)2

�

The spin-coherent regime at the center of  
the cloud crosses over to the spin-incoherent 
counterpart at the edges.

dE[〈ρ〉]

d 〈ρ〉
= µ − Vtrap(z)

〈ρ〉 (z) = 〈ρ0〉

√

1 −
z2

R2

Kc(z) ≈ Kc(0)

Kc(z) = 1/2

Ks(z) = 1

approximation



Spin-coherent and Spin-incoherent 
Luttinger Liquids in a Trap

dz̃α = dz/ṽα(z) vα(z) = vα(0)ṽα(z) = vα,0ṽα(z)

ϕ̃α(z̃α) = ϕα(z(z̃α)) Π̃α(z̃α) = ṽα(z(z̃α))Πα(z(z̃α))

Using nonstandard transformations, we map a system in a 
trap onto a finite uniform system with open boundary 

conditions (OBCs) at the the edges.

HSI =
vc,0

2

z̃c(R)�

−z̃c(R)

dz̃c

�
KcΠ̃2

c +
1

Kc
(∂z̃c ϕ̃c)2

�
HSC =

�

α=c,s

vα,0

2

z̃α(R)�

−z̃α(R)

dz̃α

�
Kα,0Π̃2

α +
1

Kα,0
(∂z̃α ϕ̃α)2

�

Performing a conformal transformation and an analytic continuation, a finite
non-chiral system with OBCs can be mapped to an infinite chiral system.

vτ

z z z

vτ vτ

lnw ϕL(z) = ϕR(−z)
OBC

OBC

OBC

standard trick in conformal field theory

non-chiral chiral



How to Observe These Regimes?
Density-Density Correlator

Detect spin-charge separation (Recati et al., PRL, 2003; 
Kecke et al., PRL 2005) 

Our proposal - Density-Density Correlator  (Kakashvili, 
Bhongale, Pu and Bolech, PRA, 2008; see also Altman, Demler, 
and Lukin, PRA, 2004) 

Fölling et al., Nature, 2005

G↑↓(z, z�) = �δρ↑(z)δρ↓(z�)�

Gα(z, z�) = −Kα,0

R̃2
α

�
1

sin2 ∆−
α

+
1

cos2 ∆+
α

�

R̃2
α = 64z̃2

α(R)ṽα(z)ṽα(z�)

∆±α =
π(z̃α(z)± z̃α(z�))

4z̃α(R)

GSI
↑↓(z, z�) = − 1

2R̃2
c

�
1

sin2 ∆−
c

+
1

cos2 ∆+
c

�

GSC
↑↓ (z, z�) = Gc(z, z�)−Gs(z, z�)

GSI
↑↓(z, z�) < 0

GNI
↑↓(z, z�) = 0

GSC
↑↓ (z, z�) > 0
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• Robust observable, with high signal-to-noise ratio;
• Natural observable for cold atom experiments;
• Highly unusual for condensed matter realizations.

P. K., S. G. Bhongale, H. Pu and C. J. Bolech, Phys. Rev. A 78, 041602(R) (2008)

How to Observe These Regimes?

SC

SI



Realizing 1D Physics

Repulsive Interactions Attractive Interactions

Paradigm of  1D metallic systems -
Luttinger Liquid.

Properties of  paired states.

Different regimes of  the Luttinger 
Liquid and crossover between them.

1D analog of  the Fulde-Ferrell-
Larkin-Ovchinnikov state for spin-

imbalanced systems.

Spin-coherent and -incoherent 
Luttinger Liquids

Phase Diagram of  a uniform system

Strong
 Correlations

Repulsion

Spin-imbalance

?
SC LLSI LL

0 Attraction



Attractive Interactions - Pairing
States for Spin-imbalanced Systems

Spin-imbalanced case - Exotic Superconductivity
FFLO (Fulde, Ferrell, Larkin and Ovchinnikov) State;

R. Hulet’s Group

N↑ N↓

kF↓ + Q−kF↑

Mean Field - Huse, Parish;
QMC - Casula,  Ceperley, Mueller;
Bogoliubov - De Gennes Equation -  Liu, Hu, Drummond, Baksmaty, Bhongale, Pu;
Bosonization - Yang, Liu, Zhao, Liu;
DMRG - Rizzi, Polini, Cazalilla, Bakhtiari, Tosi, Fazio;
Bethe Ansatz - Orso, Hu, Liu, Drummond, Mueller, Kakashvili, Bolech, Zhao, Liu;

∆(x) ∼ eiQx; sin(Qx)

Recent theoretical considerations:

Quasi-1D organic superconductors,  heavy-fermion 
materials, neutron stars.

Experiment:

R. Hulet - Experimental 
realization using 2D 
optical lattices.
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FFLO in One-Dimensional Systems

Zero Temperature

Bosonization
K. Yang, PRB, 2001; 

E. Zhao, W. V. Liu, arXiv: PRA, 2008.

Bethe Ansatz 
G. Orso, PRL, 2007; 

H.Hu, X.-J. Liu, P. Drummond, PRL, 2007.

No long-ranger order;
Power-law decay of  the order parameter;

Exact result for a uniform system

< ∆†(x)∆(x�) >∝ eiQ(h)(x−x�)|x− x�|−(1/Kc+1/2)

Q(h) ∝ (h− hc)1/2 p �= 0

Correlators are challenging.



Framework for Analysis

1D system in a trap

Bethe-Ansatz Solution locally

Trap effects via Local Density 
Approximation

For a 1D tube, QMC (Casula, Ceperley, Mueller, 
PRA, 2008) calculations show that deviations 

from LDA are small for trap profiles.

Dimensional Crossover - 3D to 1D can be 
accessed by Bogoliubov-De Gennes approach.

Nontrivial Breakdown of  LDA
 in highly elongated traps -

 Partridge et al., Science, 2006; PRL, 2006;



Bethe-Ansatz Method

Wavefunction:

Yang-Baxter Equation:

Bethe-Ansatz Equations:

Energy:

ψa1,..,aN
(x1, ..., xN ) = Aei

P

j kjxj

∑

Q

S(Q)Aa1,...,aN
θ(xQ)

SikSjkSji = SjiSjkSik

eikjL =
M∏

m=1

α(kj) − Λm + ic/2

α(kj) − Λm − ic/2
,

−

M∏

m=1

Λn − Λm − ic

Λn − Λm + ic
=

N∏

j=1

Λn − α(kj) − ic/2

Λn − α(kj) + ic/2

Sij =
(α(ki) − α(kj))Iij + icPij

α(ki) − α(kj) + ic

E =
N∑

j=1

ε(kj)

H. Bethe, 1931

ε(k) → k
2

α(k) → k

Gaudin-Yang Model



Bethe-Ansatz Solution

H = −

∑ ∂2

∂z2
i

− 4∆
∑

δ(zi − zj) +
∑

z
2

i

∆ = −

g1D

2!ωz

√

mωz

!
> 0

Auxiliary Equation

Eigenvalue EquationeikjL =

M∏

m=1

kj − Λm − i∆

kj − Λm + i∆
,

−

M∏

m=1

Λn − Λm − 2i∆

Λn − Λm + 2i∆
=

N∏

j=1

Λn − kj − i∆

Λn − kj + i∆

j = 1, ..., N n = 1, ..., M M ≤ N/2

Bethe-Ansatz Equations

kj

k±

j = Λj ± i∆, Λj

Λ(r)j = Λ(r) + i∆(r + 1 − 2j)

j = 1, ..., r

Unpaired particles

Bound states of  two particles

Bound states of  r spinons

Classes of  Solutions L → ∞, N → ∞, M → ∞

E =

N∑

j=1

k
2

j ≡ eL



Bethe-Ansatz Solution: Thermodynamic Limit

L → ∞, N → ∞, M → ∞

ρr(h)
u (k, z) ρ

r(h)
b

(k, z) ρ
r(h)
sn (Λ, z)

N/L = const M/L = const

fα = ln(1 + ρh
α/ρr

α) f̄α = ln(1 + ρr
α/ρh

α)

nt = n↑ + n↓ =

∫
dkρr

u(k) + 2

∫
dqρr

b(q)

ns = n↑ − n↓ =

∫
dkρr

u
(k) − 2

∑
m

m

∫
dΛρr

sm
(Λ)

s =
∑
α

∫
dk[ρr

α(k)fα(k) + ρh
α(k)f̄α(k)]

e =

∫
dkk2ρr

u(k) + 2

∫
dq(q2

− ∆2)ρr
b(q) Energy density

Particle density

Spin density

Entropy density

Free energy densityF(z) = e(z) − Ts(z)− µ(z)nt(z) − hns(z)



Thermodynamic-Bethe-Ansatz Equations

Free Energy Functional

G(k) =
1

4∆ cosh πk
2∆

Kn(k) =
1
π

n∆
k2 + (n∆)2

Minimization of  the Free Energy

Exact energy spectrum Partition Function

Free energy densityF(z) = −
T

2π

∫
dkf̄u(k, z) −

T

π

∫
dkf̄b(k, z)

fu − f̄u = G ∗ fb −G ∗ fs1

lim
n→∞

(Kn+1 ∗ fsn −Kn ∗ fsn+1) = −2h/T

Unpaired particles

Paired particles

Spin waves

Asymptotic condition

fb − f̄b = 2[k2
− ∆2

− µ(z)]/T + K1 ∗ f̄u + K2 ∗ f̄b

fsn − f̄sn = δn,1G ∗ f̄u + G ∗ (fsn+1 + δ̂n,1fsn−1)

Total particle density Spin density Entropy density

nt(z) = −
∂F(z)

∂µ(z)
ns(z) = −

∂F(z)

∂h
s(z) = −

∂F(z)

∂T
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“Phase Diagram” of  a Single Tube

Is it possible to determine the “phase 
diagram” of  a uniform system from an 

experiment in a trap?

We propose  a scheme that requires measurements 
of  density and polarization profiles.



Experimental Parameters and Measurements
Particle number per tube Interaction strength TemperatureN ∼ 100 g1D = 40 − 300 T/µ↑F ∼ 0.1

Experiment - R. Hulet’s Group

Figure 2: Column density profiles of a spin-imbalanced 1D ensemble of tubes. Column density profiles (black: 
majority; blue: minority; red: difference) are shown as function of P. Lines are theoretical predictions from the finite 
temperature thermodynamic Bethe ansatz (130 nK) within the local density approximation, using the measured 
radial 3D density distribution as input. (a-c) P corresponds to 0.05, 0.15, and 0.59, respectively. a, At low P, the edge 
of the cloud is fully paired and the density difference is zero. b, Near Pc, nearly the entire cloud is partially polarized. 
c, Well above Pc, the edge of the cloud becomes fully polarized and the minority density is zero. These column 
density profiles are averaged over a radial distance of  9.4 μm.
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Single 1D tube:
No long-ranger order;
Power-law decay of  the order parameter;

Many 1D tubes:
Tunneling of  pairs (Josephson tunneling)
 between tubes;
True long-range order;

How to get information about individual 
tubes from column or axial densities?

Column Density + Cylindrical 
Symmetry + Inverse Abel Transform = 
Reconstruction of  a 3D cloud.

Axial Density + Harmonic trap + LDA
+Derivative =
Density profile of  the central tube.

What About Pairing?

What About Many Tubes?

E. Zhao, W. V. Liu, PRA, 2008.

Mueller, private communication.



Damped Dipole Oscillations

Y. P. Chen, J. Hitchcock, D. Dries, M. Junker, C. Welford, and R. G. Hulet, PRA 77, 033632 (2008);
D. Dries, S. E. Pollack, J. M. Hitchcock, and R. G. Hulet, arXiv:1004.1891;
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FIG. 3: Velocity dependent damping. Results of fitting the
data of Fig. 2 to Eq. 5 using a traveling 4-period window.
The peak velocity v0 is obtained from v0 = Aωz. The solid
line is a square-root function convolved with an exponential
decay and is meant as a guide to the eye. The inset shows
the same data on a semi-log plot, emphasizing the nearly
exponential decay of β/ωz for large v0/c0. Vertical error bars
correspond to the range in β for which ∆χ2 = 1 for the fit to
Eq. 5 while simultaneously adjusting all other parameters to
minimize χ2. Horizontal error bars are determined using an
identical process for A in Eq. 5 and are typically ∼15%.
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FIG. 4: Characteristic in situ polarization phase-contrast im-
ages of the data shown in Fig. 2 at various times. The images
are nearly equally spaced in time between the time labels.

accompanied by an exponential decrease of 〈dE/dt〉, sim-
ilar to our experimental observations. In contrast to a
single impurity in a uniform condensate, a defect is al-
ways present in a low density region of a condensate in
a disordered harmonic trap. Consequently, v0 is always
greater than the local speed of sound at the edge of the
condensate and excitations are always present. Previous
experimental [32, 34, 41] and numerical [42] studies of the
damping of collective modes and the damping of Bloch
oscillations in a disordered lattice potential [43, 44] have
found qualitatively similar results.
Figure 4 shows in situ polarization phase-contrast im-

ages [45] of the BEC at various times in the oscillation
shown in Fig. 2. The damping clearly does not result
from a loss of collectivity as predicted by 1D NLSE nu-
merical simulations [42]. Rather, the BEC nearly main-
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FIG. 5: Generation of a non-condensed component.
(a) Squares show the center of the Thomas-Fermi (condensed)
component and circles show the center of the Gaussian (non-
condensed) component. The Gaussian center trails behind
the Thomas-Fermi center and has a lower amplitude of oscil-
lation. Within experimental uncertainty, ωz = (2π) 5.1(2) Hz
for both components. For this data, a = 200 a0, N = 3× 105 ,
µ/h = 1.8 kHz, VD/µ = 0.22, v0 = 28mm/s, c0 = 7.2mm/s,
and ωr = (2π) 220Hz. (b–d) Axial density distributions with
bimodal fits (solid lines) and a single component Thomas-
Fermi fit (dashed lines) at various times during the oscilla-
tion: (b) 28ms, (c) 100ms, (d) 190ms. The condensates in
(b) and (d) are traveling in the positive direction whereas the
condensate in (c) is traveling in the negative direction.

tains its original shape throughout the oscillation. Close
inspection of the density distributions in Fig. 4 reveals
a “tail” of non-condensed atoms that appears to oscil-
late slightly out-of-phase with the central Thomas-Fermi
distribution. At early times, these non-condensed atoms
appear to lag behind the BEC, while at later times they
oscillate in-phase with it. This two-component out-of-
phase oscillation is reminiscent of the second sound-like
oscillation reported in Ref. [46]. In that work, the initial
temperature was high enough that damping occurred due
to the interaction between a BEC and a thermal compo-
nent. In contrast to those results, we observe that the
dipole oscillation is undamped in the absence of the dis-
ordered potential. Furthermore, there is no observable
heating due to the quick switch on of the disorder. In our
experiment, therefore, the presence of the non-condensed
component seems to be linked to the motion of the BEC
in the disordered potential. A recent numerical simula-
tion using a truncated Wigner method predicts the emis-
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Disorder - Optical-Speckle Potential

L. Sanchez-Palencia and M. Lewenstein, Nat. Phys. 6, 87  (2010) 
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Box 2 |Creating controlled disordered potentials

In atomic gases, disorder can be created in a controlled way. For
instance, the so-called speckle potentials are formed as follows107.
A coherent laser beam is diffracted through a ground-glass plate
and focused by a converging lens (Fig. B2a). The ground-glass
plate transmits the laser light without altering the intensity, but
imprints a random phase profile on the emerging light. Then,
the complex electric field E(r) on the focal plane results from the
coherent superposition of many independent waves with equally
distributed random phases, and is thus a Gaussian random pro-
cess. In such a light field, atoms with a resonance slightly detuned
with respect to the laser light experience a disordered potential
V (r), which, up to a shift introduced to ensure that the statistical
average �V � ofV (r) vanishes, is proportional to the light intensity,
V (r) ∝ ±(|E(r)|2 − �|E|2�), an example of which is shown in
Fig. B2b.Hence, the laws of optics enable us to precisely determine
all statistical properties of speckle potentials. First, although the
electric field E(r) is a complex Gaussian random process, the
disordered potential V (r) is not Gaussian itself, and its single-
point probability distribution is a truncated, exponential decaying
function, P(V (r)) = e−1|VR|−1 exp(−V (r)/VR)Θ(V (r)/VR + 1),
where

√�V 2� = |VR| is the disorder amplitude and Θ is the
Heaviside function. Both the modulus and sign of VR can be
controlled experimentally30: the modulus is proportional to the
incident laser intensity whereas the sign is determined by the
detuning of the laser relative to the atomic resonance (VR is
positive for ‘blue-detuned’ laser light30,36,39,41, and negative for

‘red-detuned’ laser light35,37,40). Second, the two-point correlation
function of the disordered potential, C2(r) = �V (r)V (0)�, is
determined by the overall shape of the ground-glass plate but
not by the details of its asperities107. It is thus also controllable
experimentally30. There is however a fundamental constraint: as
speckle potentials result from interference between light waves of
wavelength λL coming from a finite-size aperture of angular width
2α (Fig. B2a), they do not contain Fourier components beyond a
value 2kC, where kC = (2π/λL)sin(α). In other words, C2(2k)= 0
for |k| > kC.

Speckle potentials can be used directly to investigate the
transport of matter waves in disordered potentials35–38. They can
also be superimposed on deep optical lattices83. In the latter case,
the physics is described by Box 1 Hamiltonian (3) with Vσ ,j a
random variable whose statistical properties are determined by
those of the speckle potential. In particular,Vσ ,j is non-symmetric
and correlated from site to site. Yet another possibility to create
disorder in deep optical lattices is to superimpose a shallow
optical lattice with an incommensurate period38,42,82. In this case,
Vσ ,j = �cos(2πβj + φ), where � and φ are determined by the
amplitude and the phase of the second lattice and β = k2/k1 is the
(generally irrational) ratio of the wavevectors of the two lattices.
Although the quantity Vσ ,j is deterministic, it mimics disorder in
finite-size systems32,33,84,85. In contrast to speckle potentials, these
bichromatic lattices form a pseudorandom potential, which is
bounded (|Vσ ,j | � �) and symmetrically distributed.
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Figure B2 |Optical speckle potentials. a, Optical configuration. b, Two-dimensional representation of a speckle potential.

in free space. Hence Lloc explodes exponentially for k > 1/lB,
inducing a crossover from extended to localized states in finite-size
systems. The situation is dramatically different in three dimensions,
where a proper phase transition (the Anderson transition) occurs
at the so-called mobility edge kmob: although low-energy states
with k < kmob are exponentially localized, those with k > kmob are
extended. The exact features of the mobility edge are unknown,
but approximately captured by the Ioffe–Regel criterion58,59, which
basically states that localization requires that the phase accumulated
between two successive deflecting scattering processes is less than
2π. In other words, the de Broglie wavelength must exceed the
memory of the initial particle direction, thus yielding kmob ∼1/lB.

Anderson localization of matter waves
Observing AL of matter waves requires meeting several challenging
conditions. First, we must use weak enough disorder that interfer-
ence effects at the origin of AL dominate over classical trapping
in potential minima. Second, we must eliminate all perturbations
such as time-dependent fluctuations of themedium, or interparticle

interactions. Finally, wemust demonstrate exponential localization,
not only suppression of transport, as this can also arise from
classical trapping. Although these conditions are very demanding
in condensed-matter physics, they can be accurately fulfilled with
ultracold atoms, using (1) controlled disorder, (2) negligible inter-
actions, (3) strong isolation from the environment and (4) direct
imaging of atomic density profiles. This way, direct signatures of
AL of non-interacting matter waves were reported in refs 41, 42. As
we shall see, these two experiments are complementary rather than
similar, because they significantly differ as regards both observation
scheme and class of disorder.

In ref. 41, a weakly interacting BEC is created in a trap, which is
abruptly switched off at time t = 0. Then, the condensate expands
in a guide and in the presence of disorder (Fig. 1a), created with
optical speckle (Box 2). This physics is captured by the Gross–
Pitaevskii equation

ih̄
∂ψ

∂t
= − h̄2∇2

2m
ψ +V (r)ψ +g |ψ |2ψ (4)
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and focused by a converging lens (Fig. B2a). The ground-glass
plate transmits the laser light without altering the intensity, but
imprints a random phase profile on the emerging light. Then,
the complex electric field E(r) on the focal plane results from the
coherent superposition of many independent waves with equally
distributed random phases, and is thus a Gaussian random pro-
cess. In such a light field, atoms with a resonance slightly detuned
with respect to the laser light experience a disordered potential
V (r), which, up to a shift introduced to ensure that the statistical
average �V � ofV (r) vanishes, is proportional to the light intensity,
V (r) ∝ ±(|E(r)|2 − �|E|2�), an example of which is shown in
Fig. B2b.Hence, the laws of optics enable us to precisely determine
all statistical properties of speckle potentials. First, although the
electric field E(r) is a complex Gaussian random process, the
disordered potential V (r) is not Gaussian itself, and its single-
point probability distribution is a truncated, exponential decaying
function, P(V (r)) = e−1|VR|−1 exp(−V (r)/VR)Θ(V (r)/VR + 1),
where

√�V 2� = |VR| is the disorder amplitude and Θ is the
Heaviside function. Both the modulus and sign of VR can be
controlled experimentally30: the modulus is proportional to the
incident laser intensity whereas the sign is determined by the
detuning of the laser relative to the atomic resonance (VR is
positive for ‘blue-detuned’ laser light30,36,39,41, and negative for

‘red-detuned’ laser light35,37,40). Second, the two-point correlation
function of the disordered potential, C2(r) = �V (r)V (0)�, is
determined by the overall shape of the ground-glass plate but
not by the details of its asperities107. It is thus also controllable
experimentally30. There is however a fundamental constraint: as
speckle potentials result from interference between light waves of
wavelength λL coming from a finite-size aperture of angular width
2α (Fig. B2a), they do not contain Fourier components beyond a
value 2kC, where kC = (2π/λL)sin(α). In other words, C2(2k)= 0
for |k| > kC.

Speckle potentials can be used directly to investigate the
transport of matter waves in disordered potentials35–38. They can
also be superimposed on deep optical lattices83. In the latter case,
the physics is described by Box 1 Hamiltonian (3) with Vσ ,j a
random variable whose statistical properties are determined by
those of the speckle potential. In particular,Vσ ,j is non-symmetric
and correlated from site to site. Yet another possibility to create
disorder in deep optical lattices is to superimpose a shallow
optical lattice with an incommensurate period38,42,82. In this case,
Vσ ,j = �cos(2πβj + φ), where � and φ are determined by the
amplitude and the phase of the second lattice and β = k2/k1 is the
(generally irrational) ratio of the wavevectors of the two lattices.
Although the quantity Vσ ,j is deterministic, it mimics disorder in
finite-size systems32,33,84,85. In contrast to speckle potentials, these
bichromatic lattices form a pseudorandom potential, which is
bounded (|Vσ ,j | � �) and symmetrically distributed.
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in free space. Hence Lloc explodes exponentially for k > 1/lB,
inducing a crossover from extended to localized states in finite-size
systems. The situation is dramatically different in three dimensions,
where a proper phase transition (the Anderson transition) occurs
at the so-called mobility edge kmob: although low-energy states
with k < kmob are exponentially localized, those with k > kmob are
extended. The exact features of the mobility edge are unknown,
but approximately captured by the Ioffe–Regel criterion58,59, which
basically states that localization requires that the phase accumulated
between two successive deflecting scattering processes is less than
2π. In other words, the de Broglie wavelength must exceed the
memory of the initial particle direction, thus yielding kmob ∼1/lB.

Anderson localization of matter waves
Observing AL of matter waves requires meeting several challenging
conditions. First, we must use weak enough disorder that interfer-
ence effects at the origin of AL dominate over classical trapping
in potential minima. Second, we must eliminate all perturbations
such as time-dependent fluctuations of themedium, or interparticle

interactions. Finally, wemust demonstrate exponential localization,
not only suppression of transport, as this can also arise from
classical trapping. Although these conditions are very demanding
in condensed-matter physics, they can be accurately fulfilled with
ultracold atoms, using (1) controlled disorder, (2) negligible inter-
actions, (3) strong isolation from the environment and (4) direct
imaging of atomic density profiles. This way, direct signatures of
AL of non-interacting matter waves were reported in refs 41, 42. As
we shall see, these two experiments are complementary rather than
similar, because they significantly differ as regards both observation
scheme and class of disorder.

In ref. 41, a weakly interacting BEC is created in a trap, which is
abruptly switched off at time t = 0. Then, the condensate expands
in a guide and in the presence of disorder (Fig. 1a), created with
optical speckle (Box 2). This physics is captured by the Gross–
Pitaevskii equation

ih̄
∂ψ

∂t
= − h̄2∇2

2m
ψ +V (r)ψ +g |ψ |2ψ (4)
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3

intensity pattern and is measured to be σD = 5.5µm.
In the radial direction, the speckle size is much larger
than the radial Thomas-Fermi radius RTF∼10µm, mak-
ing the disorder effectively 1D. We have verified that the
intensity distribution of the disorder follows a decaying
exponential P (I) = 〈I〉−1 e−I/〈I〉, as expected for fully
developed speckle [37]. The average value of the speckle
intensity 〈I〉 determines the disorder strength through
the relation VD = h̄Γ2 〈I〉 /(4Isat∆), where the transition
linewidth Γ = (2π) 5.9MHz and the saturation intensity
Isat = 5.1mW/cm2. The detuning from the 7Li 2S → 2P
transition ∆ = (2π) 300GHz, producing a repulsive dis-
order potential. For the strongest disorder used in these
studies, off-resonant scattering from the disorder occurs
at a rate of ∼ 0.1 s−1. The statistical properties of the
speckle pattern are measured by direct imaging with a
CCD camera before the optical system is installed onto
the experimental apparatus.
A cylindrically focused laser beam is used for the

studies involving a single Gaussian defect. This
beam has a Gaussian intensity distribution I (z, r) =

I0e−2(r2/w2

r
+z2/w2

z
), with beam waists wr = 5mm and

wz = 12µm. The radial size of the defect wr is much
larger than RTF, ensuring that flow around the defect
is suppressed. We conduct experiments using both a re-
pulsive (blue detuned) and an attractive (red detuned)
defect with |∆| = 300GHz.
We adjust the healing length through an approximate

range 0.5µm < ξ < 20µm by tuning a. Thus, a wide
range of values are achievable for the relevant dimension-
less quantities, 0.1 < ξ/σD < 3.6 and 0.04 < ξ/wz < 1.7.

III. DISORDER INDUCED DISSIPATION

A. Thomas-Fermi Regime

Figure 2 shows the position of the center of a con-
densate at various times during a dipole oscillation in
a disordered potential. The dipole oscillation is initi-
ated by a kick that produces an initial peak velocity
of v0 = 20mm/s when the condensate passes through
the center of the trap. For this data, the condensate
begins its motion well into the supersonic regime with
v0 ∼ 4 c0. The resulting oscillation is characterized by
a time-dependent damping, suggesting that the damping
depends on v0. The damping begins relatively weak, goes
through a maximum after about 3.8 s, and then dimin-
ishes at later times. We fit 4-period sections of the data
in Fig. 2 to the form of a damped harmonic oscillator:

z(t) = Ae−βt cos (ω′t+ φ) , (5)

where ω′ = (ω2
z − β2)1/2. The peak velocity v0 is then

computed from the fitted A for each data subset to ob-
tain the damping coefficient β as a function of v0, with
the results shown in Fig. 3. The damping monotonically
increases for small v0, peaking near v0 ∼ 1.1 c0, followed
by a nearly exponential decay of β for v0 > c0.
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FIG. 2: Damping of a condensate initially traveling supersoni-
cally through a disordered potential with VD/h = 280Hz. The
center of the BEC (circles) is extracted from a Thomas-Fermi
fit to the radially integrated column density (the “axial den-
sity”). The thick lines tracing the amplitude are phenomeno-
logical guides to the eye. The initial amplitude is A = 0.6mm
yielding an initial peak velocity of v0 = 20mm/s. For this
data, ωz = (2π) 5.5Hz, ωr = (2π) 260Hz, a = 25 a0, and
µ = 1

2
mω2

zR
2

TF = h (1.1 kHz). In addition, c0 = 5.6mm/s,
ξ = 0.8µm, and ξ/σD = 0.2. The insets show details of the
oscillation at early and late times.

A perturbative theoretical treatment has produced a
closed form solution for the velocity-dependent damp-
ing, resulting in good quantitative agreement with our
measurements [38]. For weak disorder the qualitative
behavior shown in Fig. 3 can be understood through a
local Landau critical velocity argument. At low veloci-
ties, Bogoliubov quasiparticles are only created within a
thin shell at the surface of the condensate, where the low
density leads to a low local speed of sound, and there-
fore a low local vL. As the velocity of the condensate
increases, a larger condensate volume can support exci-
tations because a larger fraction of the atoms violate the
local Landau criterion. The maximum damping occurs
near the point where the velocity of the BEC reaches the
peak speed of sound c0 in the condensate. At even larger
velocities the excitation volume cannot increase further,
but the Bogoliubov density of states decreases, resulting
in the observed exponential decrease of the damping.

Except for the absence of a critical velocity, the quali-
tative behavior of the velocity dependent damping shown
in Fig. 3 is remarkably similar to that predicted by 1D
NLSE simulations of a uniform, repulsive BEC in the
presence of an oscillating Gaussian obstacle [39, 40]. In
these simulations, above a certain impurity strength-
dependent critical velocity, the impurity moving at a ve-
locity v deposits energy into the BEC in the form of den-
sity fluctuations. The average rate of condensate energy
growth 〈dE/dt〉 increases nearly linearly with v, to a peak
at v ∼ c as the defect excites dark solitons and linear
sound waves. As the velocity of the defect is increased
further, the density fluctuations decrease significantly,

http://publish.aps.org/search/field/author/Chen_Yong_P
http://publish.aps.org/search/field/author/Chen_Yong_P
http://publish.aps.org/search/field/author/Hitchcock_J
http://publish.aps.org/search/field/author/Hitchcock_J
http://publish.aps.org/search/field/author/Dries_D
http://publish.aps.org/search/field/author/Dries_D
http://publish.aps.org/search/field/author/Junker_M
http://publish.aps.org/search/field/author/Junker_M
http://publish.aps.org/search/field/author/Welford_C
http://publish.aps.org/search/field/author/Welford_C
http://publish.aps.org/search/field/author/Hulet_R_G
http://publish.aps.org/search/field/author/Hulet_R_G


Theoretical Approach
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t = 0 t = T/4 

v 

FIG. 1: Sketch of the experimental scenario in question. The
zigzag line corresponds to the speckle potential that is super-
imposed onto the smooth harmonic potential. The condensate
(shown in blue) is shifted to one edge of the trap and released
at t = 0, resulting in dipole oscillations.

can be precisely quantified within our model, and are
attributed to an intricate interplay between the various
length scales corresponding to BEC coherence, the dis-
order correlations, and the condensate size.

Non-linear oscillations of the BEC occur, for instance,
when the trapping potential is abruptly shifted by a
small distance. If the number of atoms is large, which
is typically the case, such non-equilibrium motion of
the condensate can be captured by the coupled hy-
drodynamic equations for the velocity, v(r, t) and the
density, n(r, t): ∂n/∂t + div(vn) = 0 and m∂v/∂t +
∇

{

mv2/2 + Vext + λn
}

= 0. where Vext(r) represents
the trapping potential, and the interaction parameter
is given in terms of the s-wave scattering length, a, by
λ = 4π!2a/m. These equations allow for solutions, where
the condensate is oscillating as a whole [13], with frequen-
cies given by ωe = ωho

√

2n2
r + 2nr% + 3nr + %, assuming

Vext(r) is harmonic with frequency ωho. The particu-
lar collective oscillations of interest are the dipole modes
corresponding to quantum numbers (nr = 0, % = 1), and
hence, have the same frequency as the trapping poten-
tial. As depicted in Fig. 1, the oscillating motion of the
condensate is perturbed by the presence of the disorder
potential. Also, experimental data presented in [3, 4]
provides strong hints towards a perturbative regime even
with significant disorder strength. Therefore, we safely
assume this to be true and postpone the discussion with
regards to the disorder strength until later.

For treating disorder within an analytic approach,
among several well established methods in the literature
[14, 15], we find it convenient to use the replica trick.
The disorder potential Ud(x) is described in terms of a
Gaussian distribution function with a strength γ such
that P [Ud] = exp[ −1

2γ2

∫

dxdx′Ud(x)K−1(x − x′)Ud(x′)]

and K describes the spatial correlations [14]. Such pro-
cedure automatically allows for a freedom in choosing
the actual disorder potential, the details of which are
quickly erased by multiple scattering. To further sim-
plify our investigation, we consider a white noise corre-
lation function K(x) ∼ δ(x). Thus, 〈Ud(x)〉dis = 0 and
〈Ud(x)Ud(x′)〉dis = γ2δ(x − x′), where 〈· · ·〉dis means
averaging over disorder. Now, for calculating expecta-

tion values of observables, performing disorder-averaging
after the quantum averages is hard due to the par-
tition function in the denominator. This difficulty is
eliminated by the replica trick where R-replicas of the
same field are introduced with the understanding that
R → 0 limit is taken at the end. However, this proce-
dure comes with a cost, it leads to an effective attrac-
tive interaction between atoms from different replicas.
To illustrate this, we simply write down the full average
of some operator Ô, as 〈Ô〉= limR→0[∂η〈ZR[η]〉dis/R],
where η is some source field, and ZR[η] is the parti-
tion function of the replicated boson field {(ψa†, ψa), a =
1, .., R}. Thus, essentially it involves an averaging
of the partition function over the distribution, P [Ud],
that can be carried out quite easily using Gaussian
integration resulting in an effective action Seff =
∑R

a=1 S0[ψa, ψa†] +
∑R

a,b=1 Sreplica[ψa, ψb, ψa†, ψb†], with

Sreplica = −γ2

2

∑

m,n

∫

dx ψa†
m (x)ψa

m(x)ψb†
n (x)ψb

n(x),
where S0 is the action in the absence of disorder, and
index m and n are introduced to indicate Matsubara
frequencies ωm and ωn respectively. Thus, the addi-
tional replica-induced action represents interactions be-
tween atoms of different replica index. Also, it does not
involve energy exchange between replicas since the disor-
der potential is intrinsically time independent.

Until here the formalism is quite general and allows
for calculating observables in a broad range of scenar-
ios by including appropriate orders in the perturbation
theory. Here we choose to focus on a Bose condensed
cloud at T = 0, a situation relevant to ultra-cold exper-
iments [3, 4]. Thus, we expand around the condensate
mode ψ0 and write the atom field operators as ψ̂(x) →
ψ0+

1
V 3/2

∑

k $=0 eik·xâk. To lowest order, the contribution
to the self-energy of the condensate atoms, originating
from the replica-induced action Sreplica, may be conve-
niently represented by the Feynman diagrams of Fig. 2.
It is convenient to work in the non-interacting quasi-
particle basis given by b̂k = ukâk + vkâ†

−k
, where the

quasi-particle amplitudes are obtained by solving for the
Bogoliubov modes uk and vk, with u2

k
= (ek/Λk + 1)/2

and v2
k

= (ek/Λk − 1)/2, corresponding to the quasi-
particle eigenenergies Λk =

√

e2
k − (λρ0)2 with ek =

!2k2/2m + λρ0. Now, the rate of generation of excita-
tions as the condensate flows through the disorder follows

(b)(a)

FIG. 2: Diagrammatic contributions to the self-energy of the
condensate atom. The dashed line represents the impurity
vertex, the solid line is for the propagator of the excitation
and the squiggly line is for the condensate.

Interplay of  Disorder, interaction
and confinement

Non-linear oscillations:
• Bogoliubov modes;
• Thermal excitations;
• Solitons?

Assumptions:
• T=0;
• Non-interacting quasi-particles;
• Local density approximation;
• Delta-correlated disorder;
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2nd Order

4th Order

Damping Rate

Local density approximation Galilean transformation

• Quasi-1D, excitations along the axes;
• Weak disorder;
• No condensate depletion;
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directly from the imaginary part of the self energy and,
hence, can be immediately written as

w =
2πγ2

!

∫

dk

(2π)3
ρ0(uk − vk)2δ(Λk − !k · v). (1)

Interestingly, in the above expression, the contribution
of diagrams involving bubbles of type shown in Fig. 2(b)
tend to zero as R → 0. In essence, the replica trick
eliminates all diagrams that are disconnected before the
disorder averaging, thus vastly reducing the computa-
tion. Another technical point of interest is to notice the
delta function in the above equation. Essentially, it em-
phasizes the fact that the excitation energies are to be
calculated in the moving frame of the condensate which,
using a Galilean transformation, immediately leads us to
Λk → Λlab

k
= Λk − !k ·v. Furthermore, since we work in

the perturbative regime, it is justified to assume that the
condensate is big enough that the above coupling to the
excitations results only in energy loss from the conden-
sate mode, leaving the total number constant. The above
expression describes a homogeneous condensate and still
needs to be modified to address finite-size effects. For
this we define a position dependent chemical potential
µ → µ(r) = µ − Vtrap(r), implying a local density ap-
proximation (LDA), clearly justified for a δ-correlated
disorder. While, this theoretical prescription may be ap-
plied more generally with appropriate caution, here we
specialize to the situation of a cigar shaped trap, as for
example described in the experiments of Refs. [3, 4]. We
assume 7Li atoms trapped in an axial harmonic trap with
ωz = 2π × 5.5 Hz, aspect ratio α = ω⊥/ωz ≈ 46. The s-
wave scattering length is tuned via a Feshbach resonance
to about a = 25 aB, resulting in an axial condensate with
the size represented by the Thomas-Fermi (TF) radius,
which in units of the axial oscillator length 'z, is given by
R ≈ 13.6 'z. These parameters conform with the experi-
mental data shown in Fig. 4 of Ref. [4]. The large aspect
ratio allows us to simplify the model further by allowing
excitations only in the axial direction. The TF density
of the stationary condensate in cylindrical coordinates is
ρ(r⊥, z) = mω2(R2 − α2r2

⊥ − z2)/2λ. For convenience,
we define the dimensionless ratio ξ[r⊥] = v/c[r⊥], where
c[r⊥] is the speed of sound at the coordinate {r⊥, z = 0}.
We also use the notation, c ≡ c[0] and ξ ≡ ξ[0].

Thus, the Fermi golden rule in Eq. (1) can be converted
into an equation for the rate of loss of condensate energy,

Γ=
4πγ2

!(2π)3

∫

dk

∫

Ω
dr⊥

∫ R[r⊥]

0
dz

!2k2µ(r)ρ(r)

2mΛk[r]
δ(Λk[r] − !k · v),

where R[r⊥] =
√

R2 − α2r2
⊥ and Ω is the trans-

verse cross section at z = 0. The solution of the
δ-function above can be written as (k∗

x = 0, k∗
y =

0, k∗
z = (2m/!)

√

v2 − c[r⊥, z]2), essentially implying a
minimum value of the spatial coordinate zmin[r⊥] =
R[r⊥]

√

1 − ξ[r⊥]2 + ξmin[r⊥]2. Here ξmin is related to

the minimum velocity vmin that arises due to a low mo-
mentum cutoff, κ, in the excitation spectrum introduced
to eliminate the zero mode. Performing the momentum
integration and subsequently simplifying, we arrive at

Γ =
2πγ2m2ω3

π
√

2!2λR2
⊥

∫ R
α

0
r⊥dr⊥R[r⊥]4I[ξ[r⊥], ξmin[r⊥]], (2)

where I is a function whose value is given by

I[p, q]=

{

F(1, p) − F(0, p), ∀p ≥
√

1 + q2

F(1, p) − F(
√

1 − p2 + q2, p), ∀p <
√

1 + q2
,

with the analytic function F defined by,

F(y, x) =
1

8

[

y(−5 + 2y2 − 3x2)
√

−1 + x2 + y2+

(3 + 2x2 + 3x4) log
(

2y + 2
√

−1 + y2 + x2
)]

.

Introducing dimensionless quantities represented by (¯)
(all lengths are scaled in units of 'z and energies in !ωz),
we can rewrite Eq. (2) in a more convenient form as

Γ̄[ξ] =
γ̄2R̄4

4
√

2πā

∫ 1

0
t2 I[ξ/

√
t, ξmin/

√
t] dt. (3)

Figure 3(a) shows the velocity dependence of the function
I for points along the long axis of the condensate. The
sharp discontinuity near the speed of sound c is a clear
indication of the origin of distinct regimes of damping as
the BEC flows through the disordered medium. Essen-
tially, for velocities significantly smaller than the speed
of sound c, excitations are only allowed in a small shell
near the surface of the condensate. This region tends to
grow inwards, eventually allowing excitations everywhere
in the condensate, as the center-of-mass (CM) velocity
reaches c. However, increasing the velocity beyond this
critical value, the excited volume remains fixed while the
Bogoliubov density of states keeps falling resulting in net
exponential decay of the damping rate with velocity.

The above expression for Γ represents the first of the
two main results in this Letter. It conveniently leads us
to a dynamical equation for the condensate motion if we
picture the BEC oscillating in the random potential as a
rigid body whose hydrodynamic oscillations are damped
as the kinetic energy is transferred to the internal excita-
tions. Such damped oscillatory motion of the BEC CM
coordinate can easily be described by an equation for the
peak velocity of the condensate motion in terms of ξpeak

∂ξpeak

∂t
= −

2

NR̄2ξpeak
Γ̃[ξpeak] = −βξpeak, (4)

where the energy dissipation rate is averaged over one
oscillation period, represented by Γ̃ = (1/T )

∫ T
0 Γdt.

The above equation for ξpeak represents the second main
result of this Letter. These results immediately pro-
vide asymptotic exponents governing the dependence of

Damping Rate

β = − 2Γ̃[ξpeak]
NR̄2ξ2

peak
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sharp discontinuity near the speed of sound c is a clear
indication of the origin of distinct regimes of damping as
the BEC flows through the disordered medium. Essen-
tially, for velocities significantly smaller than the speed
of sound c, excitations are only allowed in a small shell
near the surface of the condensate. This region tends to
grow inwards, eventually allowing excitations everywhere
in the condensate, as the center-of-mass (CM) velocity
reaches c. However, increasing the velocity beyond this
critical value, the excited volume remains fixed while the
Bogoliubov density of states keeps falling resulting in net
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• Single free parameter     ;
• Interactions reduce the effect of  disorder - weak disorder;
• Disorder correlations - some quantitative corrections;
• Good qualitative agreement with the experiment; 
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FIG. 8: Universal damping vs. v0/c0. The disorder strength
was adjusted to keep 0.30 < VD/µ < 0.35 for all of the
data. Squares correspond to a = 28 a0, N = 2.5 × 105,
µ/h = 550Hz, c0 = 4.0mm/s, ωz = (2π) 5.5Hz, and
ωr = (2π) 260Hz; open circles correspond to a = 200 a0,
N = 3×105, µ/h = 2.4 kHz, c0 = 8.3mm/s, ωz = (2π) 4.5Hz,
and ωr = (2π) 460Hz; filled circles correspond to the same pa-
rameters as Fig. 7. Error bars are as defined in Fig. 3.
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FIG. 9: Peak damping vs. a with fixed VD/µ and v0/c0. For
this data, VD and v0 were adjusted to keep 0.3 < VD/µ < 0.4
and 0.6 < v0/c0 < 1.4 with all other parameters as in Fig. 7.
The upper horizontal axis shows values for µ obtained from
a variational solution of the GPE [19]; note that the upper
tick marks are not strictly logarithmically spaced. The linear
fit has a slope 0.002 a−1

0
. Vertical error bars are as defined in

Fig. 3.

An investigation of the effect of interatomic interac-
tions on the peak damping (v0/c0 ∼ 1) at fixed VD/µ
is shown in Fig. 9. We find that β scales linearly with
a, going to zero with decreasing interactions, consistent
with the disappearance of the low energy phonon portion
of the excitation spectrum as U → 0.
The elongated confinement geometry in our system fa-

cilitates the investigation of the dimensional crossover
from the 3D to the quasi-1D regime where µ # h̄ωr

[48, 49]. Shown in Fig. 10 are measurements of β vs. µ
at constant VD and v0. When µ > h̄ωr and v0 is compa-
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FIG. 10: Damping vs. µ with fixed VD and v0. Squares and
filled circles correspond to VD/h = 370Hz with v0 = 11mm/s
and 6mm/s, respectively. Open circles correspond to VD/h =
140Hz and v0 = 6mm/s. The vertical dashed line denotes
µ = h̄ωr. We varied µ by adjusting a, shown on the up-
per horizontal axis; note that the upper tick marks are not
strictly logarithmically spaced. Values for µ are obtained
from a variational solution of the GPE [19] using the fol-
lowing measured experimental parameters: ωr = (2π) 460Hz,
ωz = (2π) 4.5Hz, and N = 4 × 105 atoms. For this data
σD = 3.4µm. Vertical error bars are as defined in Fig. 3.

rable to c0, we find β ∝ µ−p with p ∼ 1.4. By reference
to Fig. 7, one can gain a qualitative understanding of
this behavior going from high to low µ: starting subson-
ically (open and filled circles), the system travels along
a trajectory from the weakly damped regime (lower left
corner of Fig. 7) towards the regime of strong damping
(middle right region). However, starting supersonically
(squares) allows the BEC to roughly trace a contour of
constant β as µ is reduced, resulting in only a weak de-
pendence of β on µ. When µ < h̄ωr, and consequentially
v0 % c0, we also observe a weak dependence of β on µ.
In this quasi-1D regime, β is affected only by changing
VD or v0, consistent with the behavior expected for a
nearly ideal, classical fluid. This may be understood by
reference to Eq. 2 where for v % c, the first term in the
Bogoliubov excitation spectrum dominates making the
system “quasi-ideal” with ε(p) independent of µ.

Figure 11 shows damping of a weakly interacting gas
with a = 0.4 a0, deep into the quasi-1D regime, where
µ/h̄ωr ∼ 0.1. We find that VD = 4µ produces the
same damping (β/ωz = 0.07) as that for a BEC with
a = 200 a0 and VD = 0.25µ. The nature of the damped
motion of a weakly interacting gas in strong disorder
is strikingly different from the damped motion of a
strongly interacting gas in weak disorder, even though
the timescale of the damping in both cases is compara-
ble. Figure 11 shows that the damping in the weakly
interacting regime is caused by the loss of coherence of
the collective dipole mode brought on by extensive frag-
mentation. Because VD > µ, it is perhaps not surprising
that the condensate quickly fragments. While the cen-



Conclusion

• Luttinger Liquid Physics;

★ Distinguish between Spin-coherent and -incoherent Luttinger Liquids; 

★ Density noise correlations;

• Interplay of  Spin Imbalance and Attractive interaction in 1D;

★ Different paired phases and their stability for finite temperatures;

★ Experimental scheme to determine the phase diagram of the uniform system 
from trap profiles.

• Dissipative Dipole Oscillations;

★ Interplay of  interaction, disorder and confinement;

★ Remarkable agreement with experiment;
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