NORDITA Quantum Solids, Liquids, Gases --- Stockholm, Sweden --- 22 July 2010 p-Orbital ultracold particles and Bose-Einstein crystal

W. Vincent Liu University of Pittsburgh, Pennsylvania, USA

[View of Pittsburgh---source: PittsburghSkyline.com]

Acknowledgement

Done by group members:

Students: Chiu-Man Ho (now UC Berkeley),
H. H. Hung (now UCSD), Xiaopeng Li (current),
Vladimir Stojanovic (now Univ of Basel), Zixu Zhang (current)
Postdocs: Chungwei Lin (current, 2008 PhD from Columbia Univ),
Erhai Zhao (now tenure track assistant professor at George Mason Univ, Fairfax, VA)

in collaboration with

Sankar Das Sarma (Maryland) Joel Moore (Berkeley), Kai Sun (Maryland), Congjun Wu (UCSD)

Our Work:

• PRA 2006

• PRL 2006

PRL 2008a

rXiv:0910.2431

Xiv:1005.4027

PRL 2008b

PRL 2010

Thanks for Support by

U.S. ARO W911NF-07-1-0293 (individual) and *DARPA* OLE W911NF-07-1-0464 (Hulet/Rice team)

Advertisement

Cold Atoms/Optical Lattices Program, Santa Barbara 2010

Kavli Institute for Theoretical Physics (KITP), Santa Barbara

Program: "Beyond Standard Optical Lattices," Sep 13—Dec 10, 2010 (3 months) Coordinators:

Ehud Altman Maciej Lewenstein W. Vincent Liu* Scientific advisors: Immanuel Bloch Sankar Das Sarma Misha Lukin William Phillips

More details are announced at the KITP webpage: http://www.kitp.ucsb.edu/

Conference: "Frontiers of ultracold atoms and molecules," Oct 11-15, 2010 *Coordinators:* Ofir Alon, Immanuel Bloch, W. Vincent Liu*, William Phillips

*=lead coordinator

Part 1. Introduction: What is the p-band, Why?

p-band of an optical lattice (1D illustration)

A new direction: p-orbital physics in optical lattices

- Orbital degeneracy (*px*, *py*, *pz* orbitals) is considerably less understood in comparison. Implies emergent symmetry.
- Similar to spin physics but is different fundamentally.
- Strong anisotropy: Anisotropy is an interesting new feature, not a problem!
- p-orbitals are different than d-orbital in solids: Parity ODD. New possibility---p-orbital bosons as opposed to d-electrons (fermions) in solids
- unique to cold atom systems, not previously available in conventional condensed matter systems.

new quantum phases (a main motivation of our study).

Theoretical studies on the first excited (*p-orbital*) bands

An incomplete list!! [red=WVL involved]

- V. Scarola, S. Das Sarma, *Phys. Rev. Lett.* (2005)
- A. Isacsson and S. Girvin, *Phys. Rev. A* 72, 053604 (2005).
- A. B. Kuklov, *Phys. Rev. Lett.* (2006)
- WVL and C. Wu, *Phys. Rev. A* (2006)
- C. Wu, WVL, J. Moore, and S. Das Sarma, *Phys. Rev. Lett.* (2006).
- A. F. Ho, arXiv:cond-mat/0603299
- C. Xu and M. P. A. Fisher, *Phys. Rev. B* 75, 104428 (2007)
- C. Wu, D. Bergman, L. Balents, and S. Das Sarma, *Phys. Rev. Lett.* (2007)
- A. Kantian, A. J. Daley, P. Törmä and P. Zoller, New J. Phys. (2007)
- L. Guo, Y. Zhang, and S. Chen, Phys. Rev. A (2007)
- E. Zhao and WVL, Phys. Rev. Lett. (2008);
- R. O. Umucallar and M. Ö. Oktel, *Phys. Rev. A* (2008)
- K. Wu and H. Zhai, *Phys. Rev. B* (2008)
- L. Wang, X. Dai, S. Chen, X. C. Xie, *arXiv:0805.2719* (2008)
- R. M. Lutchyn, S. Tewari, S. Das Sarma, *arXiv:0812.0815 (2008)*
- V. Stojanovic, C. Wu, WVL and S. Das Sarma, *Phys. Rev. Lett.* (2008)
- ...

...

- K. Sun. E. Zhao, WVL, *Phys. Rev. Lett.* (2010)
- Z. Zhang, H. H. Hung, C.M. Ho, E. Zhao, WVL, *arXiv:0910.2431*

Orbital physics of interacting cold atoms

• <u>Fermions in p-band</u> M. Köhl et al, PRL **94**, 080403 (2005)

Fermi Surface vs band filling

Fermions are transferred into the p-band using a sweep across the Feshbach resonance, i.e., by strong interaction.

Preparation of p-band fermions

- *Even simpler:* Fill the lowest s-band with the specific species (say spin up). Just by having more than 2 particles/site for two-components
- p-band fermions should have no problem in lifetime (Pauli exclusion principle)

Bosons in the optical lattice p-band

Experiments

- By moving lattices [A. Browaeys, W. D. Phillips, et al, PRA **72**, 053605 (2005)]
- Dynamically deforming the double-well lattice [NIST Porto/Phillips groups: PRA (2006); J. Phys. B (2006); PRL 2007; Nature 2007; ...]
- Pumping bosons by Raman transition [T. Mueller, I. Bloch et al., PRL 2007]

Theories:

- Isacsson & Girvin, PRA 05
- Kuklov, PRL 06
- WVL & Wu, PRA 06

Lifetime issue: to be discussed.

Part 2. Novel orbital BEC or topological phases

p-orbital Bose-Hubbard model: 3D cubic lattice [derived in WVL and C. Wu, PRA (2006)]

$$H = \sum_{\mathbf{r}\mu} [t_{\parallel}\delta_{\mu\nu} - t_{\perp}(1 - \delta_{\mu\nu})] \left(b_{\mu,\mathbf{r}+a\mathbf{e}_{\nu}}^{\dagger}b_{\mu\mathbf{r}} + h.c. \right) + \frac{1}{2}U\sum_{\mathbf{r}} \left[n_{\mathbf{r}}^{2} - \frac{1}{3}\mathbf{L}_{\mathbf{r}}^{2} \right]$$

Density field operator $n_{\mathbf{r}} = \sum_{\mu} b^{\dagger}_{\mu \mathbf{r}} b_{\mu \mathbf{r}}$

Angular momentum operator: $L_{\mu \mathbf{r}} = -i \sum_{\nu \lambda} \epsilon_{\mu \nu \lambda} b^{\dagger}_{\nu \mathbf{r}} b_{\lambda \mathbf{r}}$

The *p*-orbital BEC (*p*-OBEC)

Parameterization of Order parameter:

phase

orbital T-reversal

For a dilute lattice gas of U>0, the condensate is found to be a **non-zero-momentum** $p_x + ip_y$ BEC.

 $[\vec{T}$'s are three 3x3 matrices]

$$\begin{pmatrix} \langle b_{x\mathbf{k}=\mathbf{Q}_x} \rangle \\ \langle b_{y\mathbf{k}=\mathbf{Q}_y} \rangle \\ \langle b_{z\mathbf{k}=\mathbf{Q}_z} \rangle \end{pmatrix} = \sqrt{\frac{\text{Vol.} \times n_0^b}{2}} \begin{pmatrix} 1 \\ \pm i \\ 0 \end{pmatrix}$$

- A new concept that defies the paradigm of BEC!
- A metastable BEC wavefunction with nodes---not contradict Feynman's argument.

The state's configuration in the real space is:

Transversely Staggered Orbital Current (TSOC)

Quantitative Description of TSOC:

$$\langle L_{x\mathbf{r}} \rangle = \langle L_{y\mathbf{r}} \rangle = 0, \langle L_{z\mathbf{r}} \rangle = n_0^b(-)^{rac{x+y}{a}}.$$

Prediction: non-zero momentum BEC of *p-orbital* atoms

Time-of-flight (TOF) experiment

Peaks not at (0,0)!

p-orbital wavefunction imposes a *non-Gaussian* profile; The highest moves when varying the size of the *p*-wavefunction. [WVL and C. Wu, PRA (2006)]

[Related results independently by: A. Isacsson, S. Girvin, PRA (2005); A. B. Kuklov, PRL 97, 110405 (2006)]

Experimental observation I: finite momentum BEC by the Mainz/Bloch group [Mueller, Bloch, et al, PRL, 2007]

Mueller, Bloch et al [PRL 2007] confirmed the prediction of finite momentum BEC!

Experimental observation II: complex p-orbital superfluids

arXiv: 1006.0509

Orbital superfluidity in the *P*-band of an optical square lattice

Georg Wirth, Matthias Ölschläger, and Andreas Hemmerich

Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany (Dated: July 7, 2010)

The successful emulation of the Hubbard model [1] in optical lattices [2, 3] has stimulated world wide efforts to extend their scope to also capture more complex, incompletely understood scenarios of many-body physics [4, 5]. Unfortunately,

can be unexpectedly long, has further strengthened the potential significance of orbital physics in optical lattices [8, 9]. Previous experiments have demonstrated that the excitation of higher Bloch bands is in fact possible [18, 19]. In a recent experiment, investigating a homoge-

Other lattices: finite-momentum BEC with circulating currents

- **Triangle lattices:** [C. Wu, WVL, J. Moore, and S. Das Sarma, *Phys. Rev. Lett.* (2006); more in next slide]
 - Is geometrically frustrated. Groundstate has super-lattice structure (orbital stripes). Currents circulate around neighboring triangles through nearest neighbor tunneling.
- **Double-well lattices** [V. Stojanovic, C. Wu, WVL, S. Das Sarma, *PRL* 2008]
 - *experimental system* realized in NIST (Porto group): J. Sebby-Strabley, et al, PRA (2006); M. Anderlini, et al, J. Phys. B (2006); Nature (2007); ...
 - A new *supersolid-like* phase---incommensurate crystalline superfluidity with circulating super-currents. (Super-current densitywave order instead of charge).

Stripes of superfluid orbital-currents: 2D triangle lattice

Found "**quantum orbital stripes**" for all couplings [C. Wu, WVL, J. Moore, and S. Das Sarma, *Phys. Rev. Lett.* (2006).]

• Orbital wavefunction in lattice site *r*:

[Superfluid orbital stripes are new in both AMO and condensed matter]

Ising variable

Sign of orbital

+1 or -1

 $e^{i\phi_r}(\cos\alpha | p_x) + i\sigma_r \sin\alpha | p_y)$

U(1) phase

How do we solve the strong coupling? $U \gg t$ i.e. Interaction >> tunneling

- Treat the lattice system as a Josephson array of $p_x + ip_y$ BECs
- Found that the effective field theory = U(1) lattice gauge theory (not standard XY model but related!)

$$H_{\text{eff}} = -\frac{1}{2}nt_{\parallel} \sum_{\langle \vec{r}_1, \vec{r}_2 \rangle} \cos\left\{\phi_{\vec{r}_1} - \phi_{\vec{r}_2} - A_{\vec{r}_1, \vec{r}_2}(\sigma_{\vec{r}_1}, \sigma_{\vec{r}_2})\right\} + \frac{1}{3}U\sum_{\vec{r}} n_{\vec{r}_1}^2$$

The gauge field (as an "external flux" for ϕ)

External flux in a triangular plaquette:

 $\Phi = \frac{1}{2\pi} \sum_{\langle r, r' \rangle} A_{r, r'} = \frac{1}{6} (\sigma_{\vec{r}_1} + \sigma_{\vec{r}_2} + \sigma_{\vec{r}_3}) \mod 1 \quad \text{must be} \quad \pm \frac{1}{6}$

Require minimum flux in each plaquette [as shown, e.g., by Moore and Lee (2004) for a Josephson array of superconductors].

Staggered fluxes (stripe order)

Vortex sector of U(1) gauge theory: Duality mapping to a lattice Coulomb gas

Difference between square and triangular lattices

Ising variables summed around a plaquette

The decay problem of p-orbital bosons

The decay process where two p-bosons collide, promoting one to the 2nd excited band and bringing one down to the s-band.

First Studied by [Isacsson and Girvin (2005).]

FIG. 15. (Color online) First-order lifetime w^{-1} for a 1D system with filling factor $v_1 = 1$ and $(a_s/a) = 1/100$ in the narrowband limit

p-band decay time measured by the Mainz group [T. Mueller, I. Bloch, et al, PRL 2007]

A key to slow decay as explained by Bloch et al: anharmonicity

"Energy-blocking" mechanism to suppress the decay [WVL and C. Wu, PRA (2006)]

Low energy motion of bosons is an effective two-band model;
 p-orbital bosons cannot decay to the "s" by energy conservation.

Another mechanism for a stable p-orbital BEC: a two-component bosonic mixture interacting with a p-wave Feshbach resonance [A. B. Kuklov, PRL 97, 110405 (2006)]

Digression to a Related Topic: Finite-momentum BEC in the groundstate.

With a novel type of momentum dependent interaction

Our work:

• X. Li, WVL, C. Lin, arXiv:1005.4027

Bose-Einstein supersolid phase

Novel form of interaction

Hamiltonian

$$H = \int d^2 \mathbf{x} \hat{\psi}^{\dagger}(\mathbf{x}) \left[-\frac{\mathbf{h}^2}{2m} \nabla^2 - \mu \right] \hat{\psi}(\mathbf{x})$$
$$+ \frac{1}{2} \int d^2 \mathbf{x}_1 d^2 \mathbf{x}_2 \hat{\psi}^{\dagger}(\mathbf{x}_1) \hat{\psi}^{\dagger}(\mathbf{x}_2) V(\left| \mathbf{x}_1 - \mathbf{x}_2 \right|) \hat{\psi}(\mathbf{x}_2) \hat{\psi}(\mathbf{x}_1)$$

BES state

$$|BES\rangle = exp[\sqrt{N}\sum_{\mathbf{K}} \phi_{\mathbf{K}} b_{\mathbf{K}}^{\dagger}]|\Omega\rangle$$

First order phase transition

-order parameter: $\phi_{\mathbf{K}} = \sqrt{\frac{1}{N}} \langle b_{\mathbf{K}}^{\dagger} b_{\mathbf{K}} \rangle$

-parameters:
$$r_d = \frac{2mDn^{1/2}}{h^2}, \quad \tilde{n} = n \times r_0^2$$

-phase transition

27

Stability of Bose-Einstein supersolid

BES=Bose-Einstein supersolid USF=uniform superfluid

-Bogoliubov spectrum

Fluctuations

$$\psi(\mathbf{x},t) = \left[\rho_0(\mathbf{x}) + \delta\rho(\mathbf{x},t)\right]^{1/2} e^{i\varphi(\mathbf{x},t)}$$

Block diagonal effective action

$$S_{eff}[\delta \rho(\mathbf{x}), \varphi(\mathbf{x})] = \sum_{\mathbf{k}} \left[\eta^{\dagger}(\mathbf{k}) \quad \varphi^{\dagger}(\mathbf{k}) \right] \mathcal{G}_{k}^{-1} \begin{bmatrix} \eta(\mathbf{k}) \\ \varphi(\mathbf{k}) \end{bmatrix}$$

Bose-Einstein supersolid phase is stable against these fluctuations in a parameter regime to be shown in the next slide!

28

Phase Diagram

K. Mitra, et al (2009), arXiv:0903.4655

29

-our result

fluctuations and has lower energy than crystal.

Part 3. Study important quantum condensed matter models with lattice orbitals

Novel aspects of spinless fermions in p-bands *Our proposal* to realize the *orbital quantum 120° model* [E. Zhao and WVL, PRL (2008); See also independent work by C. Wu, PRL 2008.]

Pseudo-spin operators on frustrated lattices (triangular, honeycomb, Kagome, ...)

This quantum 120° model is closely related to the compass model and Kitaev model. Quantum 120° model of e_g orbitals in cubic lattice: van den Brink, New J. Phys. 6, 201 (2004).

Topological phase of dipolar bosons in elongated Wannier orbitals

Orbital + Dipolar interaction to realize a quantum dimer model

[Kai Sun, Erhai Zhao, WVL, Phys. Rev. Lett. 104, 165303 (2010)]

• Hard-core constraint? use interaction.

[Kai Sun, Erhai Zhao, WVL, Phys. Rev. Lett. 104, 165303 (2010)]

Polar Molecules

to enforce 'no double occupancy' constraint

Dipoles aligned in z direction (2D $1/r^3$ repulsive interaction)

1/6 filling mapped to Orbital Quantum Dimer Model

- Energy scale: 1nk (by our estimate)
- Charge (no spin)
- Either Fermion or Boson? (Having fermionic dimers is new and unexplored.)

Phase Diagram for Bosons

- Breaks no symmetry (no local order parameter), outside the paradigm of Landau-Ginsburg-Wilson theory
 - No symmetry-related signature, c.f. other three phases
- Fractional excitation: holons
 - carries ¹/₂ quantum number of the particle
 - can be fermions or bosons (microscopic details)
 - Fermionic quasiparticles in a bosonic system!
- Topological degeneracy

my other current interest (I)

Mismatched Fermi surfaces / Mass and population imbalance / from 3D to 1D

- **3D: Breached pair superfluidity** [proposed] in WVL and F. Wilczek, *Phys. Rev. Lett.* 2003a. And with Wilczek, Zoller, et al. *Phys. Rev. Lett.* 2003b; Phys. Rev. A 2004; Phys. Rev. Lett. 2005; Annals of Physics 2008]
- □ 1D: A new effective field theory of the 1D FFLO phase based on Bethe ansatz and conformal invariance. Generalized to coupled 1D tubes [Zhao, WVL, *Phys. Rev. A 2008*]
- □ Thermodynamic Bethe ansatz, simplified solution, and thermometry for 1D strongly interacting Fermi gases (the Gaudin-Yang model) [Zhao, Guan, WVL, Batchelor, Oshikawa, *Phys. Rev. Lett.* 2009]
 - Related studies on resonant superfluids (topological chiral bound states, effective field theory description of strongly interaction) [WVL, *Phys. Rev.* A 2005; WVL, Phys. Rev. Lett. 2005]

[2003a PRL citation: **178** as of Jan 2010]

Reported in Phys. Rev. Focus

Title and Authors

5 January 2005

Odd Particle Out

A new state of matter that combines the properties of a superfluid and a regular fluid may be within experimental reach. Critics have argued that this

my other current interest (II) Damping of Collective Excitations in BCS/BEC crossover superfluids

my other current interest (II)

Damping of Collective Excitations in BCS/BEC crossover superfluids

Introduction to the puzzling damping

- A. Motivation: PRL 99, 150403 by M. J. Wright et al. (2007)
- B. Unpolarized ultracoldFermi gases: BCS-BEC crossover
- C. Oscillation frequency and damping rate measured by *varying the temperature* at (BCS side)

Our damping mechanism and results

[Z. Zhang and WVL, arXiv:1007.3694]

- A. Our model says: the mechanism is not due to fermion pair breaking, but is Landau damping at finite temperature. (Collective modes scatter with thermally excited fermionic quasi-particles.)
- B. Our method:
 - 1) At high T, above the phase transition, use Boltzmann equation to calculate the damping rate. [Phys. Rev. A, 76, 045602 by G. M. Bruun and H. Smith (2007)]
 - 2) At low T, use our effective field theory.
 - 3) Intermediate T: interpolate two limits

Conclusion and summary of main results

p-band bosons

Vortex sector of U(1) gauge theory: Duality mapping to a lattice Coulomb gas

Elongated orbitals \rightarrow quantum dimers

Phase Diagram for Bosons

Novelty of lattice p-band Bose gases

- Non-zero momentum BEC---defying the paradigm
- A single order parameter for both superfluidity and crystalline order