Introduction to Unconventional Superconductivity

1

Daniel Agterberg, University of Wisconsin – Milwaukee agterber@uwm.edu

Topics:

- 1. Conventional superconductivity
- 2. Overview of unconventional superconductors
- 3. Group theory and Landau theory
- 4. Weak Coupling Theory determination of Landau theory
- 5. Homogeneous group states weak coupling and beyond
- 6. Inhomogeneous states topological defects
- 7. Recent symmetry-based developments in superconductivity

Special thanks to Manfred Sigrist for providing many powerpoint slides

Superconductivity

Electrical resistance (1911)

Meissner effect not a consequence of perfect conductivity

Inside a perfect conductor: E=0

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times \boldsymbol{E} = 0$$

Field expulsion (1933)

Meissner-Ochsenfeld effect

Symmetry Breaking and Ginzburg-Landau theory

Phase transition with spontaneously broken symmetry : macroscopic wavefunction

Order parameter:
$$\Psi \begin{cases} = 0 \quad T > T_c \\ \neq 0 \quad T < T_c \end{cases}$$
Free energy functional: $F[\Psi] = \int d^3 r \left[a(T) |\Psi|^2 + b |\Psi|^4 \right]$
uniform phase: $a(T) = a'(T - T_c) \quad a', b > 0$

$$F \int \frac{T > T_c}{|\Psi|} \int |\Psi|^2 = \frac{a'(T_c - T)}{|\Psi|} \int |\Psi|^2 = \frac{a'(T_c - T)}{|\Psi|} \int |\Psi| \int \frac{T > T_c}{T_c} \int T = \frac{T}{T_c} \int |\Psi|^2 = \frac{a'(T_c - T)}{|\Psi|} \int |\Psi|^2 = \frac{$$

Spin Singlet Cooper Pair and Energy Gap

Josephson Effect and Tunneling

Unconventional behavior in new superconductors

Heavy Fermion superconductors:

CeCu₂Si₂ Steglich et al. (1979)

Organic superconductors Jerome, Bechtgard et al (1980)

 $(\text{TMTSF})_2 \text{M} (\text{M=PF}_6, \text{SbF}_6, \text{ReO}_4,...) \quad T_c \sim 1 \text{K}$

 $(BEDT-TTF)_2M$ $T_c \sim 10K$

Ferromagnetic superconductors:

ZrZn₂ Pfleiderer et al. (2001)

Superconductivity within the ferromagnetic phase

Y. Maeno, J.G. Bednorz et al. (1994)

Superconductivity

 $T_{c} = 1.5 \text{ K}$

RuO₂ plane Berg

Bergemann et al. (2000)

Three metallic electron bands

Two-dimensional Fermi liquid

de Haas-van Alphen

The novel superconductors - under extreme conditions

Iron under pressure

Hydrated Na_xCoO₄

Superconductivity in a $T_c \sim 5 \text{ K}$ frustrated electron system

Takada et al., Nature 422, 53 (2003)

Skutterudite

Thompson et al. (Los Alamos)

 $PrOs_4Sb_{12}$ $T_c = 1.8 K$

Bauer et al. PRB 65, R100506 (2002)

Multiple phases

The novel superconductors - no inversion symmetry

No paramagnetic limiting

Interface superconductors (LaAIO3 on SrTiO3) Caviglia et al ; Ionic liquid/ solid interface SC (ZrNCI) Ye et al

10

Ferromagnetic quantum phase transition

The novel superconductors – FeAs

Landau Theory and Group Theory

Basis of order parameters

Landau:

order parameters belong to irreducible representations of the normal state symmetry group

 $\psi(\vec{k}) = \sum_{m} \eta_{m} \psi_{m}(\vec{k}) \qquad \{\psi_{1}(\vec{k}) \psi_{2}(\vec{k}) \dots\} \text{ basis set of irred. rep.}$

Set up a free energy functional as a scalar function of η_m { transform according to the representation

$$F[\eta_m] = \int d^3 r [a \sum_m |\eta_m|^2 + \sum_{m_1,\dots,m_4} b_{m_1,\dots,m_4} \eta_{m_1}^* \eta_{m_2}^* \eta_{m_3} \eta_{m_4}$$

Each representation has a different Tc!

invariant under all symmetry operations of rotations, time reversal and U(1)-gauge

$$a = a'(T - T_c)$$
, $\boldsymbol{b}_{m1,m2,m3,m4}$ real constant

Overview of Group Theory:

A group is a set of elements {a,b,c,..} with a multiplication rule that assigns to each ordered pair a,b of G, another element ab.

G1: a,b,c in G then a(bc)=(ab)c (composition) G2: ae=ea=a (identity) G3: $a a^{-1} = a^{-1}a=e$ (inverse) Specific example:

Superconductor with tetragonal crystal structure

Example of a tetragonal crystal with spin orbit coupling

Point group: D_{4h}

4 one-dim., 1 two-dim. representation

 D_{4h} contains inversion

 even and odd representations Character table for D_4

Ginzburg-Landau free energy functionals:

1-dimensional representations:

$$\boldsymbol{F}[\boldsymbol{\Psi}] = \int \boldsymbol{d}^{3} \boldsymbol{r} \left[\boldsymbol{a}(\boldsymbol{T}) \left| \boldsymbol{\Psi} \right|^{2} + \boldsymbol{b} \left| \boldsymbol{\Psi} \right|^{4} \right] \qquad \text{like} \\ \text{conventional SC}$$

2-dimensional representations:

$$\boldsymbol{F}[\vec{\eta}] = \int d^{3}\boldsymbol{r} \left[\boldsymbol{a} |\vec{\eta}|^{2} + \boldsymbol{b}_{1} |\vec{\eta}|^{4} + \frac{\boldsymbol{b}_{2}}{2} \left\{ \eta_{x}^{*2} \eta_{y}^{2} + \eta_{x}^{2} \eta_{y}^{*2} \right\} + \boldsymbol{b}_{3} |\eta_{x}|^{2} |\eta_{y}|^{2} \right]$$

Possible homogeneous superconducting phases

Higher-dimensional order parameters are interesting: $\vec{\eta} = (\eta_x, \eta_y)$

$$\boldsymbol{F}[\vec{\eta}] = \int d^{3}\boldsymbol{r} \left[a |\vec{\eta}|^{2} + b_{1} |\vec{\eta}|^{4} + \frac{b_{2}}{2} \left\{ \eta_{x}^{*2} \eta_{y}^{2} + \eta_{x}^{2} \eta_{y}^{*2} \right\} + b_{3} |\eta_{x}|^{2} |\eta_{y}|^{2} \right]$$

phase		broken symmetry
А	(1, i)	$U(1), \mathcal{K}$
В	(1,1)	$U(1), D_{4h} \to D_{2h}$
С	(1,0)	$U(1), D_{4h} \to D_{2h}$

 $\mathcal{K} \longrightarrow$ magnetism

 $D_{4h} \rightarrow D_{2h} \longrightarrow$ crystal deformation

Degeneracy: 2 domain formation possible Generalized BCS theory: Microscopic calculation of symmetry properties and gap functions

Generalized formulation of the BCS mean field theory

BCS Hamiltonian:

$$\mathcal{H} = \sum_{\vec{k},s} \xi_{\vec{k}} c^{\dagger}_{\vec{k}s} c_{\vec{k}s} + \frac{1}{2} \sum_{\vec{k},\vec{k}'} \sum_{s_1,s_2,s_3,s_4} V_{\vec{k},\vec{k}';s_1s_2s_3s_4} c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} c_{-\vec{k}'s_3} c_{\vec{k}'s_4}$$

Mean field Hamiltonian:

$$\mathcal{H}_{mf} = \sum_{\vec{k},s} \xi_{\vec{k}} c^{\dagger}_{\vec{k}s} c_{\vec{k}s} - \frac{1}{2} \sum_{\vec{k},s_1,s_2} \left[\Delta_{\vec{k},s_1s_2} c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} + \Delta^{*}_{\vec{k},s_1s_2} c_{\vec{k}s_1} c_{-\vec{k}s_2} \right]$$
$$-\frac{1}{2} \sum_{\vec{k},\vec{k}'} \sum_{s_1,s_2,s_3,s_4} V_{\vec{k},\vec{k}';s_1s_2s_3s_4} \langle c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} \rangle \langle c_{-\vec{k}'s_3} c_{\vec{k}'s_4} \rangle$$

Self-consistence
equations:
$$\Delta_{\vec{k},ss'} = -\sum_{\vec{k}',s_3s_4} V_{\vec{k},\vec{k}';ss's_3s_4} \langle c_{\vec{k}'s_3}c_{-\vec{k}'s_4} \rangle \qquad \text{gap: 2x2-matrix}$$
$$\Delta_{\vec{k}}^* = -\sum_{\vec{k}'s_1s_2} V_{\vec{k}',\vec{k};s_1s_2s's} \langle c_{\vec{k}'s_1}^{\dagger}c_{-\vec{k}'s_2}^{\dagger} \rangle \qquad \hat{\Delta}_{\vec{k}} = \begin{pmatrix} \Delta_{\vec{k}\uparrow\uparrow} & \Delta_{\vec{k}\downarrow\downarrow} \\ \Delta_{\vec{k}\downarrow\uparrow} & \Delta_{\vec{k}\downarrow\downarrow} \end{pmatrix}$$

Structure of the gap function

Gap function: 2x2 matrix in spin space

$$\Delta_{\vec{k},ss'} = -\sum_{\vec{k}',s_3s_4} V_{\vec{k},\vec{k}';ss's_3s_4} \langle c_{\vec{k}'s_3} c_{-\vec{k}'s_4} \rangle$$

$$\Delta_{\vec{k},ss'}^{*} = -\sum_{\vec{k}\,'s_{1}s_{2}} V_{\vec{k}\,',\vec{k}\,;s_{1}s_{2}s's} \langle c_{\vec{k}\,'s_{1}}^{\dagger} c_{-\vec{k}\,'s_{2}}^{\dagger} \rangle$$

Even parity spin singlet

$$\widehat{\Delta}_{\vec{k}} = \begin{pmatrix} \Delta_{\vec{k},\uparrow\uparrow} & \Delta_{\vec{k},\uparrow\downarrow} \\ \Delta_{\vec{k},\downarrow\uparrow} & \Delta_{\vec{k},\downarrow\downarrow} \end{pmatrix} = \begin{pmatrix} 0 & \psi(\vec{k}) \\ -\psi(\vec{k}) & 0 \end{pmatrix} = i\widehat{\sigma}_{y}\psi(\vec{k})$$

represented by scalar function $\psi(\vec{k}) = \psi(-\vec{k})$ even

Odd parity spin triplet

$$\widehat{\Delta}_{\vec{k}} = \left(\begin{array}{cc} -d_x(\vec{k}\,) + id_y(\vec{k}\,) & d_z(\vec{k}\,) \\ d_z(\vec{k}\,) & d_x(\vec{k}\,) + id_y(\vec{k}\,) \end{array}\right) = i\left(\vec{d}\,(\vec{k}\,) \cdot \hat{\vec{\sigma}}\,\right) \hat{\sigma}_y$$

represented by vector function $\vec{d(k)} = -\vec{d(-k)}$ odd

Classification of gap functions

$$\mathcal{H}_{mf} = \sum_{\vec{k},s} \xi_{\vec{k}} c^{\dagger}_{\vec{k}s} c_{\vec{k}s} - \frac{1}{2} \sum_{\vec{k},s_1,s_2} \left[\Delta_{\vec{k},s_1s_2} c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} + \Delta^{*}_{\vec{k},s_1s_2} c_{\vec{k}s_1} c_{-\vec{k}s_2} \right]$$
$$-\frac{1}{2} \sum_{\vec{k},\vec{k}'} \sum_{s_1,s_2,s_3,s_4} V_{\vec{k},\vec{k}';s_1s_2s_3s_4} \langle c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} \rangle \langle c_{-\vec{k}'s_3} c_{\vec{k}'s_4} \rangle$$

For a symmetry g of H: $H_{mf} = g^+ H_{mf} g$

We know how the operators c transform under g and thus can deduce how the gap function transforms

Symmetry operations

Symmetries of normal phase:
$$G = G_o \times G_s \times K \times U(1)$$

orbital rotation spin rotation time reversal gauge

symmetry operation		
orbital rotation	$gc_{\vec{k}s}^+ = c_{\hat{R}_o \vec{k}s}^+$	\hat{R}_o orbital rotation
spin rotation	$gc_{\vec{k}s}^{+} = \sum_{s'} D_{ss'}c_{\vec{k}s'}^{+}$	$\hat{D} = e^{i\vec{\theta}\cdot\hat{\sigma}/2}$
time reversal (antiunitary)	$\hat{K}c_{\vec{k}s} = \sum_{s'} (-i\hat{\sigma}_{y})_{ss'} c_{-\vec{k}s'}$	
U(1) gauge	$\hat{\Phi}c_{\vec{k}s}^{+} = e^{i\phi/2}c_{\vec{k}s}^{+}$	

presence of strong spin-orbit coupling ----- spin and lattice rotation go together

Symmetry operations

Symmetries of normal phase:

$$G = G_{o} \times G_{s} \times K \times U(1)$$
orbital rotation spin rotation time reversal gauge
$$-\vec{d}(\vec{k})$$

Parity:
$$\psi(\vec{k}) = \psi(-\vec{k}) \quad \vec{d}(-\vec{k}) = -\vec{d}(\vec{k})$$

symmetry operation	spin singlet	spin triplet
orbital rotation	$g_o \psi(\vec{k}) = \psi(\hat{R}_o \vec{k})$	$g_o \ \vec{d}\left(\vec{k}\right) = \vec{d}\left(\hat{R}_o \vec{k}\right)$
spin rotation	$g_s \psi(\vec{k}) = \psi(\vec{k})$	$g_{s} \vec{d}(\vec{k}) = \hat{R}_{s} \vec{d}(\vec{k})$
time reversal	$\hat{K}\psi(\vec{k}) = \psi^*(\vec{k})$	$\hat{K}\vec{d}\left(\vec{k}\right) = \vec{d}^*\left(\vec{k}\right)$
U(1) gauge	$\Phi \psi(\vec{k}) = e^{i\phi} \psi(\vec{k})$	$\Phi \vec{d} \left(\vec{k} \right) = e^{i\phi} \vec{d} \left(\vec{k} \right)$

presence of strong spin-orbit coupling \longrightarrow spin and lattice rotation go together Spin triplet pairing: $g\vec{d}(\vec{k}) = \hat{R}_s\vec{d}(\hat{R}_o\vec{k})$ identical 3D rotations $\begin{cases} \hat{R}_o \\ \hat{R}_s \end{cases}$

Example of a tetragonal crystal with spin orbit coupling

Point group: D_{4h}

4 one-dim., 1 two-dim. representation even (g) / odd (u) parity

Γ	$\psi(\vec{k})$	Γ	$\vec{d}(\vec{k})$
A _{1g}	1	A _{1u}	$\hat{x}k_x + \hat{y}k_y$
A_{2q}	$k_x k_y \left(k_x^2 - k_y^2 \right)$	A _{2u}	$\hat{y}k_x - \hat{x}k_y$
B _{1g}	$k_x^2 - k_y^2$	B _{1u}	$\hat{x}k_x - \hat{y}k_y$
B _{2g}	$k_x k_y$	B _{2u}	$\hat{y}k_x + \hat{x}k_y$
E_{g}	$\left\{k_{x}k_{z},k_{y}k_{z}\right\}$	E _u	$\{\hat{z}k_x, \hat{z}k_y\} \{\hat{x}k_z, \hat{y}k_z\}$

Conventional: A_{1g}

Unconventional: everything else

only one representation is relevant for the superconducting phase transition

58

Generalized BCS theory: Microscopic calculation of the Landau Energy

Generalized formulation of the BCS mean field theory

BCS Hamiltonian:

$$\mathcal{H} = \sum_{\vec{k},s} \xi_{\vec{k}} c^{\dagger}_{\vec{k}s} c_{\vec{k}s} + \frac{1}{2} \sum_{\vec{k},\vec{k}'} \sum_{s_1,s_2,s_3,s_4} V_{\vec{k},\vec{k}';s_1s_2s_3s_4} c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} c_{-\vec{k}'s_3} c_{\vec{k}'s_4}$$

Mean field Hamiltonian:

$$\mathcal{H}_{mf} = \sum_{\vec{k},s} \xi_{\vec{k}} c^{\dagger}_{\vec{k}s} c_{\vec{k}s} - \frac{1}{2} \sum_{\vec{k},s_1,s_2} \left[\Delta_{\vec{k},s_1s_2} c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} + \Delta^{*}_{\vec{k},s_1s_2} c_{\vec{k}s_1} c_{-\vec{k}s_2} \right]$$
$$-\frac{1}{2} \sum_{\vec{k},\vec{k}'} \sum_{s_1,s_2,s_3,s_4} V_{\vec{k},\vec{k}';s_1s_2s_3s_4} \langle c^{\dagger}_{\vec{k}s_1} c^{\dagger}_{-\vec{k}s_2} \rangle \langle c_{-\vec{k}'s_3} c_{\vec{k}'s_4} \rangle$$

Self-consistence
equations:
$$\Delta_{\vec{k},ss'} = -\sum_{\vec{k}',s_3s_4} V_{\vec{k},\vec{k}';ss's_3s_4} \langle c_{\vec{k}'s_3}c_{-\vec{k}'s_4} \rangle \qquad \text{gap: 2x2-matrix}$$
$$\Delta_{\vec{k}}^* = -\sum_{\vec{k}'s_1s_2} V_{\vec{k}',\vec{k};s_1s_2s's} \langle c_{\vec{k}'s_1}^{\dagger}c_{-\vec{k}'s_2}^{\dagger} \rangle \qquad \hat{\Delta}_{\vec{k}} = \begin{pmatrix} \Delta_{\vec{k}\uparrow\uparrow} & \Delta_{\vec{k}\downarrow\downarrow} \\ \Delta_{\vec{k}\downarrow\uparrow} & \Delta_{\vec{k}\downarrow\downarrow} \end{pmatrix}$$

Generalized BCS theory

Bogolyubov transformation:

$$\begin{aligned} \text{Mean field Hamiltonian:} \quad H_{mf} &= \sum_{\vec{k}} C^+_{\vec{k}} \hat{X}_{\vec{k}} C_{\vec{k}} + K \qquad \hat{\sigma}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \text{with} \quad C_{\vec{k}} &= \begin{pmatrix} c_{\vec{k}\uparrow} \\ c_{\vec{k}\downarrow} \\ c_{-\vec{k}\uparrow}^+ \\ c_{-\vec{k}\downarrow}^+ \end{pmatrix} \quad \text{and} \quad \hat{X}_{\vec{k}} &= \frac{1}{2} \begin{pmatrix} \xi_{\vec{k}} \hat{\sigma}_0 & \hat{\Delta}_{\vec{k}} \\ \hat{\Delta}^+_{\vec{k}} &-\xi_{\vec{k}} \hat{\sigma}_0 \end{pmatrix} \qquad \text{assumption: unitary} \qquad \hat{\Delta}^+_{\vec{k}} \hat{\Delta}_{\vec{k}} &= \left| \Delta_{\vec{k}} \right|^2 \hat{\sigma}_0 \\ \\ \text{Show: Unitary Bogolyubov transformation} \quad \hat{U}_{\vec{k}} &= \begin{pmatrix} \hat{u}_{\vec{k}} & \hat{v}_{\vec{k}} \\ \hat{v}^+_{-\vec{k}} & \hat{u}^+_{-\vec{k}} \end{pmatrix}, \quad \hat{U}^+_{\vec{k}} \hat{U}_{\vec{k}} &= \hat{1} \implies A_{\vec{k}} &= \hat{U}^+_{\vec{k}} C_{\vec{k}} \\ \\ H_{mf} &= \sum_{\vec{k}} A^+_{\vec{k}} \hat{E}_{\vec{k}} A_{\vec{k}} + K \\ \hat{u}_{\vec{k}} &= \frac{(E_{\vec{k}} + \xi_{\vec{k}}) \hat{\sigma}_0}{\left\{ 2E_{\vec{k}} (E_{\vec{k}} + \xi_{\vec{k}}) \right\}^{1/2}}, \quad \hat{v}_{\vec{k}} &= \frac{-\hat{\Delta}_{\vec{k}}}{\left\{ 2E_{\vec{k}} (E_{\vec{k}} + \xi_{\vec{k}}) \right\}^{1/2}} \end{aligned}$$

$$H_{mf} = \sum_{\vec{k}} A_{\vec{k}}^{+} \hat{E}_{\vec{k}} A_{\vec{k}} + K$$
$$\hat{u}_{\vec{k}} = \frac{(E_{\vec{k}} + \xi_{\vec{k}})\hat{\sigma}_{0}}{\{2E_{\vec{k}}(E_{\vec{k}} + \xi_{\vec{k}})\}^{1/2}}, \quad \hat{v}_{\vec{k}} = \frac{1}{\{2E_{\vec{k}}(E_{\vec{k}} + \xi_{\vec{k}})\}^{1/2}}, \quad \hat{v}_{\vec{k}} = \frac{1}{\{2E_{\vec{k}}(E_{\vec{k}$$

Self-consistent gap equation

Bogolyubov transformation _____ Quasiparticle spectrum

$$E_{\vec{k}} = \sqrt{\xi_{\vec{k}}^2 + |\Delta_{\vec{k}}|^2}$$

Note: quasiparticle gap is *k*-dependent

$$|\Delta_{\vec{k}}|^{2} = \frac{1}{2} \operatorname{tr} \left(\widehat{\Delta}_{\vec{k}}^{\dagger} \widehat{\Delta}_{\vec{k}} \right)$$
$$\hat{\Delta}_{\vec{k}} = \begin{pmatrix} \Delta_{\vec{k}\uparrow\uparrow} & \Delta_{\vec{k}\uparrow\downarrow} \\ \Delta_{\vec{k}\downarrow\uparrow} & \Delta_{\vec{k}\downarrow\downarrow} \end{pmatrix}$$

Self-consistence equation:

$$\Delta_{\vec{k},ss'} = -\sum_{\vec{k}',s_3s_4} V_{\vec{k},\vec{k}';ss's_3s_4} \langle c_{\vec{k}'s_3} c_{-\vec{k}'s_4} \rangle$$

$$\Delta^*_{\vec{k},ss'} = -\sum_{\vec{k}\,'s_1s_2} V_{\vec{k}\,',\vec{k}\,;s_1s_2s's} \langle c^{\dagger}_{\vec{k}\,'s_1} c^{\dagger}_{-\vec{k}\,'s_2} \rangle$$

$$\Delta_{\vec{k},s_1s_2} = -\sum_{\vec{k}',s_3s_4} V_{\vec{k},\vec{k}';s_1s_2s_3s_4} \frac{\Delta_{\vec{k}',s_4s_3}}{2E_{\vec{k}}} \tanh\left(\frac{E_{\vec{k}}}{2k_BT}\right)$$

Transition temperature

Pairing interaction: $V_{\vec{k},\vec{k}';s_1s_2s_3s_4} = J^0_{\vec{k},\vec{k}}, \hat{\sigma}^0_{s_1s_4} \hat{\sigma}^0_{s_2s_3} + J_{\vec{k},\vec{k}}, \hat{\vec{\sigma}}_{s_1s_4} \cdot \hat{\vec{\sigma}}_{s_2s_3}$ density-density spin-spin

Self-consistence equation:

even parity spin singlet

$$\psi(\vec{k}) = -\sum_{\vec{k}'} \underbrace{(J_{\vec{k},\vec{k}'}^0 - 3J_{\vec{k},\vec{k}'})}_{= v_{\vec{k},\vec{k}'}^0} \frac{\psi(\vec{k}')}{2E_{\vec{k}'}} \tanh\left(\frac{E_{\vec{k}'}}{2k_BT}\right)$$

$$T \to T_c$$

$$-\lambda \psi(\vec{k}) = -N(0) \langle v_{\vec{k},\vec{k}'}^s, \psi(\vec{k}') \rangle_{\vec{k}'}, FS$$

$$k_B T_c = 1.14\epsilon_c e^{-1/\lambda}$$

From self-consistent gap equation to free energy

$$\psi(\vec{k}) = -\sum_{\vec{k}'} \underbrace{(J^{0}_{\vec{k},\vec{k}'} - 3J_{\vec{k},\vec{k}'})}_{= v^{s}_{\vec{k},\vec{k}'}} \frac{\psi(\vec{k}')}{2E_{\vec{k}'}} \tanh\left(\frac{E_{\vec{k}'}}{2k_{B}T}\right)$$

Go from the above gap equation to
$$\frac{\partial F}{\partial \eta_i^*}$$

$$\boldsymbol{F}[\vec{\eta}] = \int d^{3}\boldsymbol{r} \left[\boldsymbol{a} |\vec{\eta}|^{2} + \boldsymbol{b}_{1} |\vec{\eta}|^{4} + \frac{\boldsymbol{b}_{2}}{2} \left\{ \eta_{x}^{*2} \eta_{y}^{2} + \eta_{x}^{2} \eta_{y}^{*2} \right\} + \boldsymbol{b}_{3} |\eta_{x}|^{2} |\eta_{y}|^{2} \right]$$

with

Sr₂RuO₄ example:

$$\vec{d}(k) = \hat{z}[\eta_{x}f_{x}(k) + \eta_{y}f_{y}(k)]$$

$$F[\vec{\eta}] = \int d^{3}r \left[a|\vec{\eta}|^{2} + b_{1}|\vec{\eta}|^{4} + \frac{b_{2}}{2} \{\eta_{x}^{*2}\eta_{y}^{2} + \eta_{x}^{2}\eta_{y}^{*2}\} + b_{3}|\eta_{x}|^{2}|\eta_{y}|^{2} \right]$$

$$\beta_{2} / \beta_{1} = \gamma$$

$$\beta_{3} / \beta_{1} = 2\gamma - 1$$

$$\gamma = \frac{\langle f_{x}^{2}f_{y}^{2} \rangle}{\langle f_{x}^{4} \rangle}$$

Possible homogeneous superconducting phases

Higher-dimensional order parameters are interesting: $\vec{\eta} = (\eta_x, \eta_y)$

$$\boldsymbol{F}[\vec{\eta}] = \int d^{3}\boldsymbol{r} \left[a |\vec{\eta}|^{2} + \boldsymbol{b}_{1} |\vec{\eta}|^{4} + \frac{\boldsymbol{b}_{2}}{2} \left\{ \eta_{x}^{*2} \eta_{y}^{2} + \eta_{x}^{2} \eta_{y}^{*2} \right\} + \boldsymbol{b}_{3} |\eta_{x}|^{2} |\eta_{y}|^{2} \right]$$

phase	$\psi(ec{k})$	$ec{d}(ec{k})$	broken symmetry
А	$(k_x \pm ik_y)k_z$	$\hat{z}(k_x \pm ik_y)$	$U(1), \mathcal{K}$
В	$(k_x \pm k_y)k_z$	$\hat{z}(k_x \pm k_y)$	$U(1), D_{4h} \to D_{2h}$
С	$k_x k_z, k_y k_z$	$\hat{z}k_x,\hat{z}k_y$	$U(1), D_{4h} \to D_{2h}$

Degeneracy: 2

domain formation possible

Fermi surfaces of Sr₂RuO₄

ARPES

de Haas-van Alphen

Damascelli et al.

Bergemann et al.

quasi-two-dimensional Fermi liquid

Agrees very well with bandstructure calculations Oguchi, Singh

Electronic structure of t_{2g}-orbitals

Broken Time Reversal: Sr2RuO4

Also Polar Kerr effect (Xia, Kapitulnik, 2006)

Topological defects and spatial variations

Ginzburg-Landau free energy: spatial variations: conventional case

1-dimensional representations:

$$F\left[\eta, \vec{A}\right] = \int d^3 r \left[a \left| \eta \right|^2 + b \left| \eta \right|^4 + K \left| \vec{D} \eta \right|^2 + \frac{1}{8\pi} \left(\vec{\nabla} \times \vec{A} \right)^2 \right]$$
$$a(T) = a'(T - T_c) \quad a', b, K > 0 \quad \vec{D} = \vec{\nabla} + i \frac{2e}{\hbar c} \vec{A} \qquad \vec{B} = \vec{\nabla} \times \vec{A}$$

Ginzburg Landau equations:

$$\left\{ a + 2b \left| \Psi \right|^2 - K \vec{D}^2 \right\} \Psi = 0$$

$$\vec{\nabla} \times \vec{B} = \frac{4\pi}{c} \vec{J}_s \qquad \vec{J}_s = \frac{e}{2hi} K \left\{ \Psi^* \left(\vec{D} \Psi \right) - \Psi \left(\vec{D} \Psi \right)^* \right\}$$

 $\boldsymbol{K}(\boldsymbol{\vec{n}}\cdot\boldsymbol{\vec{D}})\boldsymbol{\psi}=0 \qquad \quad \boldsymbol{\vec{n}}\times(\boldsymbol{\vec{B}}-\boldsymbol{\vec{H}})=0$

Conventional Superconductivity

Field expulsion (1933) Meissner-Ochsenfeld effect

Explained within GL theory by taking $|\psi|$ fixed:

Standard Vortex

The free energy has a U(1) gauge invariance.

Consider a line-defect in the wave function:

$$\psi(\boldsymbol{r},\phi) = |\psi(\boldsymbol{r})| e^{in\phi}$$

$$\vec{j} = i\hbar m [\psi(\nabla \psi)^* - \psi^*(\nabla \psi)] - \frac{2me}{c} |\psi|^2 \vec{A}$$

Far from the vortex core

$$0 = |\psi|^2 m[\hbar n \nabla \phi - \frac{2e}{c} \vec{A}]$$
$$\oint A \cdot dl = n \Phi_0 = n \frac{hc}{2e}$$

The flux contained by a vortex is quantized

Ginzburg-Landau free energy: spatial variations

1-dimensional representations:

$$F\left[\eta, \vec{A}\right] = \int d^3r \left[a |\eta|^2 + b |\eta|^4 + K \left| \vec{D} \eta \right|^2 + \frac{1}{8\pi} \left(\vec{\nabla} \times \vec{A} \right)^2 \right]$$
$$a(T) = a'(T - T_c) \quad \vec{a}, \vec{b}, \vec{K} > 0 \quad \vec{D} = \vec{\nabla} + i \frac{2e}{\hbar c} \vec{A} \quad \vec{B} = \vec{\nabla} \times \vec{A}$$

2-dimensional representations:

$$F\left[\vec{\eta},\vec{A}\right] = \int d^{3}r \left[a|\vec{\eta}|^{2} + b_{1}|\vec{\eta}|^{4} + \frac{b_{2}}{2} \left\{ \eta_{x}^{*2}\eta_{y}^{2} + \eta_{x}^{2}\eta_{y}^{*2} \right\} + b_{3}|\eta_{x}|^{2}|\eta_{y}|^{2} + K_{1} \left\{ D_{x}\eta_{x}|^{2} + \left| D_{y}\eta_{y} \right|^{2} \right\} + K_{2} \left\{ D_{x}\eta_{y}|^{2} + \left| D_{y}\eta_{x} \right|^{2} \right\} + K_{3} \left\{ D_{z}\eta_{x}|^{2} + \left| D_{z}\eta_{y} \right|^{2} \right\} + \left\{ K_{4}(D_{x}\eta_{x})^{*}(D_{y}\eta_{y}) + K_{5}(D_{x}\eta_{y})^{*}(D_{y}\eta_{x}) + cc. \right\} + \frac{1}{8\pi} \left(\vec{\nabla} \times \vec{A} \right)^{2} \right]$$

Anisotropy

Diamagnetic screening: supercurrents $\vec{j} = -c \frac{\partial F}{\partial \vec{A}}$ $j_x = 8\pi e i \left[K_1 \eta_x^* D_x \eta_x + K_2 \eta_y^* D_x \eta_y + K_4 \eta_x^* D_y \eta_y + K_5 \eta_y^* D_y \eta_x - cc. \right]$ $j_y = 8\pi e i \left[K_1 \eta_y^* D_y \eta_y + K_2 \eta_x^* D_y \eta_x + K_4 \eta_y^* D_x \eta_x + K_5 \eta_x^* D_x \eta_y - cc. \right]$ $j_x = 8\pi e i K_3 \left\{ \eta_x^* D_z \eta_x + \eta_y^* D_z \eta_y - cc. \right\}$

tensorial London equation: $\nabla^2 \vec{B} = \hat{\Lambda} \vec{B}$ Important for vortex lattice structure! $\hat{\Lambda}_A = \begin{pmatrix} \lambda^{-2} & 0 & 0\\ 0 & \lambda^{-2} & 0\\ 0 & 0 & \lambda_z^{-2} \end{pmatrix}$ $\hat{\Lambda}_B = \begin{pmatrix} \lambda^{-2} & \tilde{\lambda}^{-2} & 0\\ \tilde{\lambda}^{-2} & \lambda^{-2} & 0\\ 0 & 0 & \lambda_z^{-2} \end{pmatrix}$ $\hat{\Lambda}_C = \begin{pmatrix} \lambda^{-2} & 0 & 0\\ 0 & \lambda'^{-2} & 0\\ 0 & 0 & \lambda_z^{-2} \end{pmatrix}$ tetragonal orthorhombic

Surface properties - spontaneous supercurrents for chiral phase

surface scattering detrimental interference effects:

Topological defects

two degenerate phases

domains and domain walls

Energy of domain wall

depends on domain wall orientation

degenerate minima or metastable forms of a domain wall

Analog to Josephson junction

 $\eta_{\pm} = \eta_{\pm} | e^{i\phi_{\pm}}$

relative phase

$$\alpha = \phi_{\!_+} - \phi_{\!_-}$$

Simplified Theory:
$$\Delta_1$$
 and Δ_2
 $f = \alpha |\Delta_1|^2 + \alpha |\Delta_2|^2 + \beta_1 (|\Delta_1|^2 + |\Delta_2|^2)^2$
 $+ \beta_2 |\Delta_1|^2 |\Delta_2|^2 + \frac{1}{2m} (|\vec{D}\Delta_1|^2 + |\vec{D}\Delta_2|^2)$
 $U(1) \times U(1)$ symmetry

Two homogeneous solutions:

$$(\Delta_1, \Delta_2) = \Delta(1, 1) / \sqrt{2}$$
$$(\Delta_1, \Delta_2) = \Delta(1, 0)$$

Vortices

$\psi_1(\boldsymbol{r},\boldsymbol{\phi}) = |\psi_1(\boldsymbol{r})| e^{in\phi} \qquad \psi_2(\boldsymbol{r},\boldsymbol{\phi}) = |\psi_2(\boldsymbol{r})| e^{im\phi}$

Consider (1,0) vortex in a phase where both components have unequal magnitudes:

$$\vec{j} = i\hbar m [\psi_1 (\nabla \psi_1)^* - \psi_1^* (\nabla \psi_1)] - \frac{2me}{c} (|\psi|_1^2 + |\psi|_2^2) \vec{A}$$
$$\oint A \cdot dl = \Phi_0 \frac{|\psi_1|^2}{|\psi_1|^2 + |\psi_2|^2}$$

(1,1) vortex is usual Abrikosov vortex with flux Φ_0

If one of the U(1) symmetries is broken then get confinement - Vcos[l($\varphi_1 - \varphi_2$)] - relative phase is not free to rotate - single fractional vortices no longer exist.

The b2 term breaks U(1)×U(1) symmetry

$$\boldsymbol{F}[\vec{\eta}] = \int d^{3}\boldsymbol{r} \left[\boldsymbol{a} |\vec{\eta}|^{2} + \boldsymbol{b}_{1} |\vec{\eta}|^{4} + \frac{\boldsymbol{b}_{2}}{2} \left\{ \eta_{x}^{*2} \eta_{y}^{2} + \eta_{x}^{2} \eta_{y}^{*2} \right\} + \boldsymbol{b}_{3} |\eta_{x}|^{2} |\eta_{y}|^{2} \right]$$

Can fractional vortices exist with confinement?

Yes -if they appear on a domain wall. Sigrist, Ueda, and Rice, Phys. Rev. Lett. 63, 1727 (1989).

Structure of domain wall vortex

$$\eta_{\pm}=\mid$$
 $\eta_{\pm}\mid$ $e^{i\phi_{\pm}}$ for

$$\alpha = \phi_{\!\scriptscriptstyle +} - \phi_{\!\scriptscriptstyle -}$$

relative phase

Stability of fractional vortices

decay of conventional vortex

Spatially inhomogeneous BCS theory:

$$H = \sum_{\vec{k},s} \xi_{\vec{k}} c_{\vec{k}s}^{+} c_{\vec{k}s} + \frac{1}{2} \sum_{\vec{k},\vec{k}',s,s'} V_{\vec{k},\vec{k}'} c_{\vec{k}+q/2,s}^{+} c_{-\vec{k}+q/2s'} c_{-\vec{k}'+q/2s'} c_{\vec{k}'+q/2s'} c_{\vec{k}'+q/$$

BCS: Ignore q dependence in V since q will be much less than k

Conclusions and final remarks

- Superconductivity in strongly correlated electron systems often unconventional
 - strong Coulomb repulsion favors angular momentum I > 0
- Unconventional order parameters give rise to new phenomena
 - quasi-particle properties, tunneling and Josephson effect
 - vortex matter, flux dynamics
 - superconducting multi-phase diagrams, competing phases
 - intrinsic magnetism and connection to competing magnetic phases

higher dimensional order parameters (Sr₂RuO₄, (U,Th)Be₁₃, UPt₃, …) are interesting

Many chapters on unconventional superconductivity are still unwritten and new materials are discovered at an accelerating pace (sample purity is mandatory!)