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We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though

x

y

A B

Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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Exact mapping of a single Landau level!
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Details: E.J. Bergholtz and A. Karhede, 
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States with electrons in fixed positions are the energy eigenstates - 
groundstate obtained by separating the electrons as much as possible:
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(Tao-Thouless (TT) states)

These TT states are adiabatically connected to the abelian bulk FQH states!

Details: E.J. Bergholtz and A. Karhede, 
Phys. Rev. B 77, 155308 (2008)



Exact Diagonalization: Main Idea

Solve the Schrödinger equation of a quantum many body system numerically

Sparse matrix, but for quantum many body systems the vector space 
dimension grows exponentially!

H|ψ〉 = E|ψ〉

Away from the TT limit this is a difficult problem.



Example: ν=5/2 Fractional Hall Effect 

We solve the fully 
interacting problem with 
up to 20 particles
on the torus (L1=L2)

Matrix dimension up to 
3.5 billion states (using 
only one quantum 
number)

Topological degeneracy 
required for Pfaffian/
Antipfaffian ground 
state ?0 2 4 6 8 10 12 14 16

L
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0.03
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n
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20 24 28 32 36 401612

k
1
=0

k
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=!

other

"=5/2, square torus, Coulomb

Läuchli, Bergholtz, Haque, unpublished



Introduction: Fractional Quantum Effect

Topological Entanglement Entropy

Entanglement Spectra

Outline



S(ρ) = Tr[−ρ log ρ]

(Topological) Entanglement Entropy

 Let us look at reduced density matrices, and their entanglement entropies

System
Environment

ρ = TrE |ψ〉〈ψ|
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(Topological) Entanglement Entropy

 Let us look at reduced density matrices, and their entanglement entropies
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Topological entanglement entropy

Alexei Kitaev1,2 and John Preskill1
1 Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.

PACS numbers: 03.65.Ud, 71.10.Pm, 73.43.Nq

In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of

1

System
Environment

ρ = TrE |ψ〉〈ψ|

For topologically ordered two-dimensional phases:



Perimeter/‘Area Law’

S(ρ) = Tr[−ρ log ρ]

(Topological) Entanglement Entropy

 Let us look at reduced density matrices, and their entanglement entropies
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We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.
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In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of
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ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
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has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
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the entanglement in the ground state. Using topological quantum field theory methods, we derive
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In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of

1

System
Environment

ρ = TrE |ψ〉〈ψ|

For topologically ordered two-dimensional phases:



Perimeter/‘Area Law’

Topological entanglement entropy

S(ρ) = Tr[−ρ log ρ]

(Topological) Entanglement Entropy

 Let us look at reduced density matrices, and their entanglement entropies

ar
X

iv
:h

ep
-t

h
/0

5
1

0
0

9
2

v
2
  

2
3

 J
an

 2
0

0
6

Topological entanglement entropy

Alexei Kitaev1,2 and John Preskill1
1 Institute for Quantum Information, California Institute of Technology, Pasadena, CA 91125, USA

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.
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In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of
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We formulate a universal characterization of the many-particle quantum entanglement in the
ground state of a topologically ordered two-dimensional medium with a mass gap. We consider a
disk in the plane, with a smooth boundary of length L, large compared to the correlation length.
In the ground state, by tracing out all degrees of freedom in the exterior of the disk, we obtain a
marginal density operator ρ for the degrees of freedom in the interior. The von Neumann entropy
S(ρ) of this density operator, a measure of the entanglement of the interior and exterior variables,
has the form S(ρ) = αL−γ+ · · ·, where the ellipsis represents terms that vanish in the limit L → ∞.
The coefficient α, arising from short wavelength modes localized near the boundary, is nonuniversal
and ultraviolet divergent, but −γ is a universal additive constant characterizing a global feature of
the entanglement in the ground state. Using topological quantum field theory methods, we derive
a formula for γ in terms of properties of the superselection sectors of the medium.
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In a quantum many-body system at zero temperature,
a quantum phase transition may occur as a parameter
varies in the Hamiltonian of the system. The two phases
on either side of a quantum critical point may be charac-
terized by different types of quantum order; the quantum
correlations among the microscopic degrees of freedom
have qualitatively different properties in the two phases.
Yet in some cases, the phases cannot be distinguished by
any local order parameter.

For example, in two spatial dimensions a system with a
mass gap can exhibit topological order [1]. The quantum
entanglement in the ground state of a topologically or-
dered medium has global properties with remarkable con-
sequences. For one thing, the quasiparticle excitations of
the system (anyons) exhibit an exotic variant of indistin-
guishable particle statistics. Furthermore, in the infinite-
volume limit the ground-state degeneracy depends on the
genus (number of handles) of the closed surface on which
the system resides.

While it is clear that these unusual properties emerge
because the ground state is profoundly entangled, up un-
til now no firm connection has been established between
topological order and any quantitative measure of en-
tanglement. In this paper we provide such a connection
by relating topological order to von Neumann entropy,
which quantifies the entanglement of a bipartite pure
state.

Specifically, we consider a disk in the plane, with a
smooth boundary of length L, large compared to the
correlation length. In the ground state, by tracing out
all degrees of freedom in the exterior of the disk, we
obtain a marginal density operator ρ for the degrees
of freedom in the interior. The von Neumann entropy
S(ρ) ≡ −trρ log ρ of this density operator, a measure of
the entanglement of the interior and exterior variables,
has the form

S(ρ) = αL − γ + · · · , (1)

where the ellipsis represents terms that vanish in the limit
L → ∞. The coefficient α, arising from short wavelength
modes localized near the boundary, is nonuniversal and
ultraviolet divergent [2], but −γ (where γ is nonnegative)
is a universal additive constant characterizing a global
feature of the entanglement in the ground state. We call
−γ the topological entanglement entropy.

This universal quantity reflects topological properties
of the entanglement that survive at arbitrarily long dis-
tances, and therefore can be studied using an effective
field theory that captures the far-infrared behavior of
the medium, namely a topological quantum field theory
(TQFT) that describes the long-range Aharonov-Bohm
interactions of the medium’s massive quasiparticle exci-
tations. We find

γ = logD , (2)

where D ≥ 1 is the total quantum dimension of the
medium, given by

D =

√

∑

a

d2
a ; (3)

here the sum is over all the superselection sectors of the
medium, and da is the quantum dimension of a particle
with charge a.

Any abelian anyon has quantum dimension d = 1;
therefore, for a model of abelian anyons, D2 is simply
the number of superselection sectors. Thus for a Laugh-
lin state [3] realized in a fractional quantum Hall system
with filling factor ν = 1/q where q is an odd integer, we
have D =

√
q. For the toric code [4], which has four sec-

tors, the topological entropy is γ = log 2, as has already
been noted in [5].

However, nonabelian anyons have quantum dimension
greater than one. The significance of da (which need not
be a rational number) is that the dimension Naaa···a of
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FIG. 6: (Color online.) Entanglement entropies in Moore-
Read state wavefunctions, extrapolated to the thermody-
namic limit. Dashed line is a fit to −γ + c1

√

lA, with some
points dropped. Inset plots SlA against 1/N for various fixed
lA.

C. Numerical results

Moore-Read state. Fig. 6 shows results of numerical
calculations for the ν = 1/2 Moore-Read state. We
used exact wavefunctions up to N = 18 particles. These
wavefunctions were obtained by diagonalizing L̂2 in an
Lz = 0 Hilbert space spanned by the “squeezed states”27.
After numerically obtaining the entanglement entropies
SlA(N) from these wavefunctions, we obtain estimates
and uncertainties for the N → ∞ extrapolations by the
procedure outlined in the previous subsection. The re-
sulting data are plotted in Fig. 6.

The linear SlA versus
√

lA behavior is expected only
for large lA; however our large-lA points have the greatest
uncertainty. For estimating the topological entropy, we
therefore make linear fits after discarding 0 to 5 of the
smallest-lA points and/or 0 to 2 of the largest-lA points.
This results in estimates of γ (magnitude of the vertical
intercept) scattered between 0.85 and 1.35. The error
propagated into our γ estimate from our extrapolation
uncertainties is ∼ 0.3, larger than that obtained from this
scatter. With all this we arrive at the result γ % 1.1±0.3,
quite consistent with the expected value of γ % 1.04.

Laughlin state. We used the well-defined procedure
of the previous subsection to revisit our previous esti-
mate of the topological entropy for the ν = 1/3 Laugh-
lin state.10 To get the extrapolated SlA , we now use the
BST estimates rather than doing several polynomial fits.
Dropping 0 to 4 of the smallest-lA points and 0 to 2
of the lrgest-lA points leads to γ%0.51±0.14, consistent
with the previously reported estimate (0.60 ± 0.15) and
with the expected value γ ≈ 0.55. The error estimate
reported in Ref. 10 only took into account this varia-
tion, due to dropping various number of points. There is
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FIG. 7: (Color online.) Density matrix eigenvalues in de-
creasing order for orbital partitioning with lA orbitals in a
block for N = 9, m = 3 Laughlin state.

also some error propagated from the extrapolation uncer-
tainty. Using the conservative uncertainty estimate pro-
posed in the previous subsection gives us a more conser-
vative and more rigorous error estimate, γ % 0.51± 0.25.

D. Eigenvalue distribution for reduced density
matrix

In Fig. 7, we show the largest eigenvalues of reduced
density matrices obtained by orbital or spatial partition-
ing. The eigenvalues are ordered according to decreasing
magnitude and plotted on a log scale; the resulting curves
are roughly linear, suggesting a roughly exponential de-
cay of the eigenvalue distribution function.

It is interesting to note the complete dissimilarity of
this eigenvalue spectrum compared to the particle parti-
tioning case discussed earlier, e.g., Fig. 1. It would also
be interesting to put our observations in the context of
the spectra of reduced density matrices of many-body
systems in general. Reduced density matrices for spa-
tially connected blocks have been studied previously in
the context of the convergence of the DMRG algorithm;
an overview is available in section III-B of Schollwöck’s
DMRG review.28 From our numeric data, It is difficult
to say whether or not the decay of the eigenvalue distri-
butions is slower than exponential.

V. CONCLUDING REMARKS

We have presented a detailed study of the entan-
glement entropy in abelian and non-abelian quantum
Hall states, taking a paradigmatic example of each, the
ν = 1/3 Laughlin state and the ν = 1/2 Moore-Read
state.

For entanglement between subsets of particles, we have
demonstrated the effects of particle-particle correlations
in the deviation of the entanglement entropies from an
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4

A generic translation-invariant two-body interaction Hamiltonian, acting within a LL, can
be written as

H =
∑

n

∑

k>|m|
Vkmc†

n+mc†
n+kcn+m+kcn, (3)

where c†
m creates an electron in the state ψm and Vkm is the amplitude for two particles to hop

symmetrically from separation k + m to k − m [33]. Hence, the problem of interacting electrons
in an LL maps onto a 1D, center-of-mass-conserving, lattice model with lattice constant 2π/L1.
This provides a natural setting for defining entanglement, by bipartitioning the system into
blocks A and B, which consist respectively of lA consecutive orbitals and the remaining
lB = Ns − lA orbitals (figure 1). Since the orbitals are localized in the direction of the lattice,
this is a reasonable approximation to spatial partitioning, as on the sphere [6]–[8], [10, 11].

Because this partitioning implies two disjoint edges between the blocks, each of length L1,
the entanglement entropy should satisfy the following specific form of (1):

SA(L1) = 2αL1 − 2γ +O(1/L1). (4)

Thus our setup should yield a linear scaling form of the entropy with the L1 = 0 intercept
at −2γ .

In this work, we obtain ground states of (3), in the orbital basis (2) using the Lanczos
algorithm for numerical diagonalization. We study bipartite entanglement in these ground
states. Apart from diagonalizing the Coulomb problem, we also consider pseudopotential
interactions [34, 35] which have the Laughlin states [36] as exact ground states. The largest
Hilbert space sizes considered are 208′267′320 for 39 orbitals at ν = 1/3, 19′692′535 for 45
orbitals at ν = 1/5 and 66′284′555 for 35 orbitals at ν = 2/5. The simulations are, however,
currently limited by the size of the reduced density matrices to be calculated and fully
diagonalized.

FQH states have degenerate ground states on the torus geometry. It is convenient to
label the ground states by their corresponding thin torus (or Tao–Thouless, TT) patterns [33],
[37]–[40]. For example, for ν = 1/3 there are three degenerate states, which correspond to the
TT configurations

100100100
∣∣∣100100100100100100

∣∣∣100100100

010010010
∣∣∣010010010010010010

∣∣∣010010010

001001001
∣∣∣001001001001001001︸ ︷︷ ︸

A

∣∣∣001001001, (5)

for Ns = 36. Here the positions of 1’s indicate the positions (or, equivalently, the transverse
momenta) of filled single-particle states. An equal partitioning (lA = lB = Ns/2) is illustrated.

In general, Abelian FQH states at ν = p/q have q degenerate ground states, related to each
other through translation and corresponding to q thin-torus patterns, each composed of unit cells
with p electrons on q sites. These states are ground states for generic (two-body) interactions
as L1 → 0 [33]. For non-Abelian states there is an enhanced degeneracy and the corresponding
thin-torus patterns are not simply translations of each other.

The thin-torus states are unentangled product states, in the orbital basis. As L1 is increased
from zero, fluctuations on top of the TT states will make the states entangled. A crucial property
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Area law at constant L1

 Increasing subsystem size at constant L1 ⇒ Saturation at large lA
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Entanglement entropy S(L1)

 For large enough Ns, S(L1) converges for each L1 
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Boundary entropy 
density (α)

S(ρ) = αL1 − 2γ + ...



Extracting the topological entanglement entropy

 Use a running γ extraction, and monitor L1 convergence

 2γ converges towards expected ln 3 ! 
 Most accurate numerical determination to date.
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Figure 4. ν = 1/3 Coulomb ground state: entanglement entropy. (a) SA and (b)
its derivative dSA/dL1 for the Coulomb ground state at ν = 1/3 as a function of
L1. One curve for the Laughlin state is also shown for comparison (dashed line).
In the inset (c), the difference in SA(L1) between the Coulomb and the Laughlin
is displayed (for Ns = 30, 36).

4.3. ν = 1/5

Figure 5 shows the SA(L1) and dSA/dL1 behaviors at ν = 1/5, for both the Laughlin ((a) and (b))
and the Coulomb ground state ((c) and (d)). As expected, the finite-size oscillations are much
more severe in these states. This is as expected as the interparticle distance is larger; thus larger
systems should be required to reach the scaling regime. Moreover, the proximity to the Wigner
crystal phase makes the Coulomb ground state deviate more substantially from the Laughlin
state than is the case at ν = 1/3 [45, 49]. While we are able to get an almost Ns-converged
S(L1) curve up to L1 ∼ 18 for the Laughlin state (leading to a rough estimate of α ≈ 0.17(2)),
the finite-size effects in the Coulomb ground state are so severe that no meaningful extraction
of α is possible with current system sizes.

4.4. Extraction of the topological entanglement entropy γ

In figure 6, we show calculations of γ for the Laughlin state at ν = 1/3 (a) and ν = 1/5 (c)
as well as for the Coulomb ground state at the same fractions ((b) and (d)). Evaluating the L1

derivative using a centered five-point formula, we plot SA(L1) − L1 × dS/dL1 as a function of
L1. This quantity is the intercept of a linear approximation made to the SA(L1) curve locally at
each L1. It should take the value −2γ in the scaling region, see equation (4). Not surprisingly,
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4.3. ν = 1/5

Figure 5 shows the SA(L1) and dSA/dL1 behaviors at ν = 1/5, for both the Laughlin ((a) and (b))
and the Coulomb ground state ((c) and (d)). As expected, the finite-size oscillations are much
more severe in these states. This is as expected as the interparticle distance is larger; thus larger
systems should be required to reach the scaling regime. Moreover, the proximity to the Wigner
crystal phase makes the Coulomb ground state deviate more substantially from the Laughlin
state than is the case at ν = 1/3 [45, 49]. While we are able to get an almost Ns-converged
S(L1) curve up to L1 ∼ 18 for the Laughlin state (leading to a rough estimate of α ≈ 0.17(2)),
the finite-size effects in the Coulomb ground state are so severe that no meaningful extraction
of α is possible with current system sizes.

4.4. Extraction of the topological entanglement entropy γ

In figure 6, we show calculations of γ for the Laughlin state at ν = 1/3 (a) and ν = 1/5 (c)
as well as for the Coulomb ground state at the same fractions ((b) and (d)). Evaluating the L1

derivative using a centered five-point formula, we plot SA(L1) − L1 × dS/dL1 as a function of
L1. This quantity is the intercept of a linear approximation made to the SA(L1) curve locally at
each L1. It should take the value −2γ in the scaling region, see equation (4). Not surprisingly,
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Figure 6. L1-local extraction of γ . The intercept of local linear approximations
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In the scaling regime, this quantity should give −2γ . The symbols for ν = 1/3
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−2γ values are shown as dashed horizontal lines. In panel (c), the solid line
through the largest size data is the fit obtained using equation (6).

meaningful γ extraction from system sizes currently reachable through numerical exact
diagonalization.

4.5. ν = 2/5 Coulomb interaction

Finally, in figure 7 we consider the Coulomb ground state at filling ν = 2/5, whose γ value
has not been studied numerically so far. This state is, for all L1, well described by the torus
version [50] of the Jain [51] (or, equivalently, the hierarchy [34]) state. The finite-size effects
are somewhat less severe than the ν = 1/5 Coulomb case (figures 5(c) and (d) and 6(d)). One
obtains an entanglement growth rate of α ≈ 0.188(16). While the Ns convergence is not good
enough for a precise determination of γ (expected to be 1

2 ln 5), examination of the largest two
available sizes suggests that two or three additional sizes may be enough to provide an estimate
at the ∼10% accuracy level.

5. Discussion

In this paper, we have shown how continuous geometric deformations of the torus can be
employed to explore the scaling form of the entanglement entropy. This has allowed us to
propose a method for determining the topological part, γ , from finite-size wavefunctions, to a
greater precision compared to earlier analyses, which did not utilize any continuous parameter.
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‘Complicated’ states continued...

 Hierarchy state at 2/511
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Figure 7. ν = 2/5 Coulomb ground state. (a) SA and (b) its derivative dSA/dL1

for the Coulomb ground state at ν = 2/5 as a function of L1. (c) Estimation of
−2γ through a plot of the L1-local intercept against L1.

B BA

A BB

A BB

Figure 8. Extrapolation at a fixed aspect ratio and fixed lA. Fixed lA implies that
the area covered by the region A is constant. Such an extrapolation does not lead
to a well-defined limit as the limiting case is one with infinitesimal thickness and
infinite boundary length.

Our analysis indicates that current state-of-the-art system sizes are enough to obtain reliable γ
calculations for the simplest FQH states (Laughlin states), but that more intricate states would
require larger sizes than currently accessible, in order to reach the scaling limit. Our procedure
provides a clear method for identifying whether the scaling window has been reached or not.

There has been an earlier report of entanglement entropy and γ calculations on the
torus [16], using a fixed aspect ratio, L1/L2 = 1. The authors of [16] performed Ns → ∞
extrapolations at fixed lA, and expected the extrapolated values to scale as c1

√
lA − 2γ . We

illustrate such a fixed lA extrapolation in figure 8. The extrapolation does not lead to a
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Our analysis indicates that current state-of-the-art system sizes are enough to obtain reliable γ
calculations for the simplest FQH states (Laughlin states), but that more intricate states would
require larger sizes than currently accessible, in order to reach the scaling limit. Our procedure
provides a clear method for identifying whether the scaling window has been reached or not.

There has been an earlier report of entanglement entropy and γ calculations on the
torus [16], using a fixed aspect ratio, L1/L2 = 1. The authors of [16] performed Ns → ∞
extrapolations at fixed lA, and expected the extrapolated values to scale as c1

√
lA − 2γ . We

illustrate such a fixed lA extrapolation in figure 8. The extrapolation does not lead to a
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2γ = ln 5 Best fit is very close to                   , but it is clearly not very convincing...



Implications: FQH using DMRG ?

 S(L) ~ L1

 m ~ exp[S] ~ exp[a L1], exponential effort in the physical width of the system

 DMRG will not work easily for large 2D FQH samples (sphere approximately as 
hard as the torus)

 fermionic MERA/PEPS in suitable gauge?
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Introduction: Fractional Quantum Effect
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Entanglement Spectra (Li & Haldane PRL ’08)

 The entanglement entropy is a single number !

 Is there more one can extract from the reduced density matrix ?

 One can always write

 Assuming that the entanglement Hamiltonian and the physical Hamiltonian
 are “similar” (e.g. as in free fermionic systems), then one expects to see 
 features related to the open boundary structure in the spectrum of the reduced
 density matrix

 FQH states have interesting edge physics, visible in entanglement spectrum ?

A

B
The !i’s are ‘‘energy levels’’ of a system with thermo-

dynamic entropy at temperature T ! 1 equivalent to the
entanglement entropy, S ! P

i!i exp"#!i$, which has
been shown to contain information on the topological
properties of the many-body state [12]. The full structure
of the entanglement spectrum (logarithmic Schmidt spec-
trum) of levels !i contains much more information than the
entanglement entropy S, a single number. This is analo-
gous to the extra information about a condensed matter
system given by its low-energy excitation spectrum rather
than just by its ground state energy.

Because the FQHE ground state is translationally and
rotationally invariant (with quantum number Ltot ! 0 on
the sphere), and the partitioning of Landau-level orbitals
conserves both gauge symmetry and rotational symmetry
along the z direction, in either block A or B both the
electron number (NA

e and NB
e ) and the total z-angular

momentum (LA
z and LB

z ) are good quantum numbers con-
strained by NA

e % NB
e ! Ne, LA

z % LB
z ! 0. The entangle-

ment spectrum splits into distinct sectors labeled by NA
e

and LA
z .

In the thermodynamic limit, the MR model state can be
represented by its ‘‘root configuration’’ [15], which has oc-
cupation numbers ‘‘11001100 & & & 110011’’, with a re-
peated sequence & & & 1100 & & & ; in spherical geometry, this
is terminated by ‘‘11’’ at both ends. This is the highest-
density ‘‘MR root configuration’’, which we define as an
occupation-number configuration satisfying a ‘‘general-
ized Pauli principle’’ that no group of 4 consecutive orbi-
tals contains more than 2 particles (this rule also applies to
MR states with quasiholes, and generates the CFT edge
spectrum of a finite MR droplet on the open plane [15].)
When the MR state is expanded in the occupation-number
basis, the only configurations (Slater determinants) present
are those obtained by starting from the root configuration,
and ‘‘squeezing’’ pairs of particles with Lz!m1, m2 closer
together, reducing jm1 #m2j, while preserving m1 %m2

[15].
From the root configuration, we see that there are three

distinct ways of partitioning the orbitals: (i) between two
0’s; (ii) between two 1’s; or (iii) between 0 and 1 (the
partitioning between 1 and 0 is equivalent to that between 0
and 1 by reflection symmetry). We use symbols P'0j0(,
P'1j1(, and P'0j1( to represent the three cases, respec-
tively. This will correspond to choosing one of the three
sectors of the associated conformal field theory. For finite
systems, we always try to draw the boundary of the parti-
tioning either on the equator (if possible), or closest to the
equator but in the southern hemisphere. Moreover, we can
associate a ‘‘natural’’ value to NA

e for a particular partition-
ing, i.e., the total number of 1’s in the root occupation
sequence on the left-hand side to the boundary. In this
Letter, it is sufficient to consider only levels whose NA

e is
exactly this natural value. Table I describes the precise
meaning of these symbols for systems that are considered
here.

Figure 1 shows the spectra for each of the three different
ways of partitioning, for the Moore-Read state at Ne ! 16
and Norb ! 30. The spectrum not only has far fewer levels
than expected for a generic wave function, but also exhibits
an intriguing level-counting structure (as a function of LA

z
and NA

e ) that resembles that of the associated conformal
field theory of the edge excitations. Intuitively, this is
because the boundary of the Landau-level partitioning in-
deed defines an edge shared by region A and B.

In the intuitive picture, the quantum entanglement be-
tween A and B arises from correlated quasihole excitations
across the boundary along which the partitioning is carried

TABLE I. The numbers in the parenthesis are values of (NA
orb,

NA
e ), respectively, for each system and partitioning as specified.

Ne P'0j0( P'0j1( P'1j1(
10 (7,4) (8,4) (9,5)

12 or 14 (11,6) (12,6) (13,7)
16 (15,8) (16,8) (17,9)

FIG. 1. The complete entanglement spectra of the Ne ! 16
and Norb ! 30 Moore-Read state (only the relative values of !
and LA

z are meaningful).

PRL 101, 010504 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

010504-2

ρ =: exp[−HEntanglement]



Moore-Read state on the sphere (Li & Haldane, PRL ’08)

 Entanglement spectrum has dispersive structure

The !i’s are ‘‘energy levels’’ of a system with thermo-
dynamic entropy at temperature T ! 1 equivalent to the
entanglement entropy, S ! P

i!i exp"#!i$, which has
been shown to contain information on the topological
properties of the many-body state [12]. The full structure
of the entanglement spectrum (logarithmic Schmidt spec-
trum) of levels !i contains much more information than the
entanglement entropy S, a single number. This is analo-
gous to the extra information about a condensed matter
system given by its low-energy excitation spectrum rather
than just by its ground state energy.

Because the FQHE ground state is translationally and
rotationally invariant (with quantum number Ltot ! 0 on
the sphere), and the partitioning of Landau-level orbitals
conserves both gauge symmetry and rotational symmetry
along the z direction, in either block A or B both the
electron number (NA

e and NB
e ) and the total z-angular

momentum (LA
z and LB

z ) are good quantum numbers con-
strained by NA

e % NB
e ! Ne, LA

z % LB
z ! 0. The entangle-

ment spectrum splits into distinct sectors labeled by NA
e

and LA
z .

In the thermodynamic limit, the MR model state can be
represented by its ‘‘root configuration’’ [15], which has oc-
cupation numbers ‘‘11001100 & & & 110011’’, with a re-
peated sequence & & & 1100 & & & ; in spherical geometry, this
is terminated by ‘‘11’’ at both ends. This is the highest-
density ‘‘MR root configuration’’, which we define as an
occupation-number configuration satisfying a ‘‘general-
ized Pauli principle’’ that no group of 4 consecutive orbi-
tals contains more than 2 particles (this rule also applies to
MR states with quasiholes, and generates the CFT edge
spectrum of a finite MR droplet on the open plane [15].)
When the MR state is expanded in the occupation-number
basis, the only configurations (Slater determinants) present
are those obtained by starting from the root configuration,
and ‘‘squeezing’’ pairs of particles with Lz!m1, m2 closer
together, reducing jm1 #m2j, while preserving m1 %m2

[15].
From the root configuration, we see that there are three

distinct ways of partitioning the orbitals: (i) between two
0’s; (ii) between two 1’s; or (iii) between 0 and 1 (the
partitioning between 1 and 0 is equivalent to that between 0
and 1 by reflection symmetry). We use symbols P'0j0(,
P'1j1(, and P'0j1( to represent the three cases, respec-
tively. This will correspond to choosing one of the three
sectors of the associated conformal field theory. For finite
systems, we always try to draw the boundary of the parti-
tioning either on the equator (if possible), or closest to the
equator but in the southern hemisphere. Moreover, we can
associate a ‘‘natural’’ value to NA

e for a particular partition-
ing, i.e., the total number of 1’s in the root occupation
sequence on the left-hand side to the boundary. In this
Letter, it is sufficient to consider only levels whose NA

e is
exactly this natural value. Table I describes the precise
meaning of these symbols for systems that are considered
here.

Figure 1 shows the spectra for each of the three different
ways of partitioning, for the Moore-Read state at Ne ! 16
and Norb ! 30. The spectrum not only has far fewer levels
than expected for a generic wave function, but also exhibits
an intriguing level-counting structure (as a function of LA

z
and NA

e ) that resembles that of the associated conformal
field theory of the edge excitations. Intuitively, this is
because the boundary of the Landau-level partitioning in-
deed defines an edge shared by region A and B.

In the intuitive picture, the quantum entanglement be-
tween A and B arises from correlated quasihole excitations
across the boundary along which the partitioning is carried

TABLE I. The numbers in the parenthesis are values of (NA
orb,

NA
e ), respectively, for each system and partitioning as specified.

Ne P'0j0( P'0j1( P'1j1(
10 (7,4) (8,4) (9,5)
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 momenta follows
 CFT counting rule
 (edge theory of the 
 Pfaffian is U(1)+Majorana)
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Moore-Read state on the sphere (Li & Haldane, PRL ’08)

 Now for “realistic” Coulomb Hamiltonian at ν=5/2

A

B

113

out. Any quasihole excitation in region A necessarily
pushes electrons into region B, and vice versa. However,
the electron density anywhere on the sphere must remain
constant, which can be achieved if the quasihole excita-
tions in A and B are correlated (entangled). This gives the
empirical rules of counting the levels. Take the spectrum in
Fig. 1(a) as an example. The partitioning P!0j0" results in
the root configuration 110011001100110 on the northern
hemisphere (region A), and it corresponds to the single
‘‘level’’ at the highest possible value of LA

z # LA
z;max # 64.

We measure the LA
z by its deviation from LA

z;max, i.e. !L :#
LA
z;max $ LA

z , which has the physical meaning of being the
total z-angular momentum carried by the quasiholes. At
!L # 1, the levels correspond to edge excitations upon the
!L # 0 root configuration. There is exactly one edge
mode in this case, represented by the MR root configura-
tion 110011001100101.

The number of !L # 2 levels can be counted in exactly
the same way. There are three of them, of which the root
configurations are

 

1100110011001001
1100110011000110
1100110010101010

;

while for !L # 3, the five root configurations are

 

11001100110010001
11001100110001010
11001100101001100
11001100101010010
11001010101010100

:

The counting for the levels at small !L for P!0j1" and
P!1j1" can be obtained similarly.

For an infinite system in the thermodynamic limit, the
above idea gives an empirical counting rule of the number
of levels at any !L; i.e., it is the number of independent
quasihole excitations upon the semi-infinite root configu-
ration uniquely defined by the partitioning. For a finite
system, this rule explains the counting only for small
!L; for large !L, the finite-size limits the maximal
angular momentum that can be carried by an individual
quasihole. Therefore the number of levels at large !L in a
finite system will be smaller than the number expected
in an infinite system. Not only is this empirical rule con-
sistent with all our numerical calculation, but it also ex-
plains why P!0j0" and P!0j1" have essentially identical
low-lying structures. This is because the (semi-infinite)
configuration ‘‘% % % 1100110’’ is essentially equivalent
to ‘‘% % % 11001100’’ (with an extra ‘‘0’’ attached to the
right). We expect that P!0j0" and P!0j1" become exactly
identical in the thermodynamic limit.

For completeness, we list the root configurations asso-
ciated with the first few low-lying levels in Fig. 1(c).

 

!L # 0 : 11001100110011001
!L # 1 : 110011001100110001

110011001100101010
!L # 2 : 1100110011001100001

1100110011001010010
1100110011001001100
1100110010101010100

Figure 2 shows the spectra of the system of the same size
as in Fig. 1, i.e., Ne # 16 and Norb # 30, but for the ground
state of the Coulomb interaction projected into the second
Landau level, obtained by direct diagonalization.
Interestingly, the low-lying levels have the same counting
structure as the corresponding Moore-Read case. We iden-
tify these low-lying levels as the ‘‘CFT’’ part of the spec-

FIG. 2. The low-lying entanglement spectra of the Ne # 16
and Norb # 30 ground state of the Coulomb interaction projected
into the second Landau level (there are levels beyond the regions
shown here, but they are not of interest to us). The insets show
the low-lying parts of the spectra of the Moore-Read state, for
comparison [see Fig. 1]. Note that the structure of the low-lying
spectrum is essentially identical to that of the ideal Moore-Read
state.
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FIG. 5: (Color online) Top row: entanglement entropies for
hemisphere partitioning, plotted against sphere radius; ν =
1/3. Center row shows quality of linear fit as function of
pseudopotential δV1 for ν = 1/3. Bottom row shows χ2 for
ν = 5/2.

VI. ENTANGLEMENT SPECTRUM AND
ENTANGLEMENT GAP

Following Ref. [4], we introduce the ”entanglement
spectrum” ξ as λi = exp(−ξi), where λi are eigenvalues
of the reduced density matrix ρA of one hemisphere. The
eigenvalues can be classified by the number of fermions
NA in the A block, and also by the total “angular mo-

mentum” L(A)
z of the A block. It was argued [4] that

the low-lying spectrum ξi of the reduced density ma-

trix for fixed NA, plotted as a function of L(A)
z , should

display a structure reflecting the conformal field theory
(CFT) describing the edge physics. In figure 6 this “CFT
spectrum” is marked with an ellipse. For interactions at
which the FQH state provides a good description of the
physics, the CFT spectrum is well-separated by a gap
from a higher “non-CFT” part of the spectrum.

As in Ref. [4], we denote the gap between the lowest

two ξi, at the L(A)
z value where the highest-L(A)

z member
of the CFT spectrum occurs, as δ0. In figure 6, this is the

gap between the lowest two states at L(A)
z = 54 (marked

by arrow). We study what happens to the spectrum as
we tune the interaction away from the FQH state across
a quantum phase transition. We quantify the change of
the spectrum in terms of the quantity δ0, defined above.
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FIG. 6: (Color online) Top panels: entanglement spectrum,
ν = 1/3, N = 12, block A containing lA = 17 orbitals and
NA = 6 fermions. Main plot: ground state for δV1 = 0.04.
Ellipse indicates the most prominent “conformal” part of the
spectrum. Arrow indicates the “entanglement gap” δ0 be-
tween CFT and non-CFT parts of the spectrum. Inset shows
exact Laughlin state, which has no higher-lying non-CFT
part. Lower panel: Empty dots show two lowest levels at
L(A)

z = 54, plotted against δV1. Filled squares show “entan-
glement gap”, the difference of the two lowest levels.

(The quantities δ1,2 defined in Ref. [4], the gaps at other

L(A)
z values, are expected to have similar dependence on

δV1.)
In figure 6 (lower panel), we plot δ0 as a function of the

pseudopotential δV1 for the ν = 1/3 case. This clearly
shows a dramatic decrease of the ”entanglement gap”
around the region of the phase transition. The two levels
in question are also individually plotted with open dots;
there is a level crossing around δV1 ∼ −0.1. We note
that for values of δV1 < −0.1 the CFT-like structure
of the entanglement spectrum is lost so it is no longer
meaningful to think of δ0 as the gap between CFT and
non-CFT energy levels. A similar picture is observed for
Moore-Read wavefunctions [32].

VII. MAJORIZATION

The concept of majorization involves comparison of
two complete spectra. In the context of condensed-
matter applications, it generally involves the comparison
of two reduced density matrix spectra corresponding to

Zozulya, Haque & Regnault
PRB ’09
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Many further studies of FQH stets on the sphere.
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Entanglement Spectra studies: some examples

 The “conformal limit” gives a better identification of
 the “conformal part” of the ES of FQH states

R. Thomale, A. Sterdyniak, N. Regnault, B.A. Bernevig, 
Phys. Rev. Lett. 104, 180502 (2010)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)

Many further studies of FQH stets on the sphere.
Bernevig, Regnault, Sterdyniak, Thomale, Papic, 
Haldane, Haque, Zozulya,... (2009-2010)

http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1
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Entanglement Spectra studies: some examples

 The “conformal limit” gives a better identification of
 the “conformal part” of the ES of FQH states

R. Thomale, A. Sterdyniak, N. Regnault, B.A. Bernevig, 
Phys. Rev. Lett. 104, 180502 (2010)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)

Many further studies of FQH stets on the sphere.
Bernevig, Regnault, Sterdyniak, Thomale, Papic, 
Haldane, Haque, Zozulya,... (2009-2010)

 Early studies on ”non-interacting” systems

E.g.: M.-C. Chung and I. Peschel, Phys. Rev. B 64, 
064412 (2001)

http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1


Entanglement Spectra studies: some examples

 The “conformal limit” gives a better identification of
 the “conformal part” of the ES of FQH states

R. Thomale, A. Sterdyniak, N. Regnault, B.A. Bernevig, 
Phys. Rev. Lett. 104, 180502 (2010)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)

Many further studies of FQH stets on the sphere.
Bernevig, Regnault, Sterdyniak, Thomale, Papic, 
Haldane, Haque, Zozulya,... (2009-2010)

 Applied to many other systems (dimer 
models, Kitaev models, Bose condensates, 
spin chains,...)

 Early studies on ”non-interacting” systems

E.g.: M.-C. Chung and I. Peschel, Phys. Rev. B 64, 
064412 (2001)

http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1


Entanglement Spectra studies: some examples

 Twofold degenerate ES in the Haldane phase - 
better than the ‘string order parameter‘            
F. Pollmann et al., Phys. Rev. B 81, 064439 (2010)

 The “conformal limit” gives a better identification of
 the “conformal part” of the ES of FQH states

R. Thomale, A. Sterdyniak, N. Regnault, B.A. Bernevig, 
Phys. Rev. Lett. 104, 180502 (2010)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)

Many further studies of FQH stets on the sphere.
Bernevig, Regnault, Sterdyniak, Thomale, Papic, 
Haldane, Haque, Zozulya,... (2009-2010)

 Applied to many other systems (dimer 
models, Kitaev models, Bose condensates, 
spin chains,...)

 Early studies on ”non-interacting” systems

E.g.: M.-C. Chung and I. Peschel, Phys. Rev. B 64, 
064412 (2001)

http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1


Entanglement Spectra studies: some examples

 Twofold degenerate ES in the Haldane phase - 
better than the ‘string order parameter‘            
F. Pollmann et al., Phys. Rev. B 81, 064439 (2010)

 The “conformal limit” gives a better identification of
 the “conformal part” of the ES of FQH states

R. Thomale, A. Sterdyniak, N. Regnault, B.A. Bernevig, 
Phys. Rev. Lett. 104, 180502 (2010)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)
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FIG. 1: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2 Coulomb state on the sphere. The cut is such that
lA = 10 orbitals and NA = 5 bosons. (a) Standard normalization on the quantum hall sphere. The inset show the remainder
part of the spectrum where the entanglement levels exceed ξ = 24. (b) CL normalization. We observe that the CL separates a
set of universal low-lying energy states, which allows an unambiguous definition of the entanglement gap over all LA

z subsectors
as the minimal difference between the highest energy CFT state and lowest generic state. The inset in (b) shows the the finite
size scaling of the entanglement gap for the Coulomb state, which remains finite in the TD limit.

magnetic length from the problem, we obtain the ”confor-
mal limit” (CL) of the FQH polynomial. For model FQH
states, the CL has the desirable property that the spac-
ing between entanglement eigenvalues at the same angu-
lar momentum goes to zero very quickly as the sphere
is enlarged, thus cementing the relation between entan-
glement energies and edge mode energies. The low-lying
levels start by showing the universal CFT counting but
then exhibit finite size effects. For generic FQH states,
obtained by diagonalizing the Coulomb Hamiltonian, the
entanglement spectrum in the CL exhibits a full gap be-
tween all the model levels and the generic, high-energy
Coulomb ones. This shows that not only the CFT-like
levels are important in the determination of a state: the
levels which exhibit finite-size effects are also a finger-
print of the state.

Diagonalizing a many-body Hamiltonian invariably in-
troduces normalization factors of the non-interacting
many-body states which depend on the specific geometry
of the underlying manifold. In particular, these factors
contain the information about the extent of the Landau
orbitals in space, and depend on the magnetic length
of the problem. Stated differently, this type of normal-
ization relies on the curvature, i.e. a local quantity of
the manifold. By contrast, the CL should by definition
contain no real length-scale. We are led to the conclu-
sion that the best way to analyze a FQH polynomial ob-
tained from the diagonalization of any Hamiltonian is to
un-normalize it and strip it down of its magnetic length
information. We now exemplify this procedure for the
sphere geometry. Free boson states are spanned by the
monomials mλ = 1

Q

j nj !
Per(z

λj

i ), where i runs over the

number of particles N and j over the number of orbitals,
and nj denotes the multiplicity of occupation of the jth
orbital. λ defines a partition of the angular momentum
λj of different occupied orbitals, and Per denotes the
permanent state with single particle positions zi. The
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FIG. 2: Entanglement spectrum at filling ν = 1/2 for the
N = 11 bosons and the ground state of Coulomb interaction
with a modified short range component by some δV0 pseu-
dopotential. Here Nφ = 20, NA = 5 and lA = 10. Left panel
(a) is obtained for δV0 = −0.35 where the gap starts closing.
Right panel (b) is for δV0 = −0.425, close to transition to an
compressible L "= 0 state.

mλ are free many-particle states that are unnormalized.
When one diagonalizes a many-body Hamiltonian, the
expansion of the interacting wavefunction is in normal-
ized free many-body states Mλ, which differ from the
unnormalized basis above through normalization factors
that contain information about the geometry of the man-
ifold and the magnetic length. On the sphere of radius
R the normalization of mλ is given by [8]

Nλ
sphere =

(

4π

(2S + 1)!

)N N !
∏λ1

j=0 nj !

N
∏

i=1

λi!(2S − λi)!,

(1)
where nj is the multiplicity of the jth orbital in the
decreasingly ordered partition λ = (λ1, λ2...λN ), where
λi ∈ [0, 2S] is the angular momentum of the Landau or-
bitals . We set the partition to be padded, such that, if
the initial partition has lλ number of elements non-zero
then all the rest λlλ+1...λN = 0. The number of orbitals
is conventionally given by 2S + 1, where Nφ = 2S is the
magnetic flux. We then apply the transformation

Mλ = mλ/

√

Nλ
sphere (2)

Many further studies of FQH stets on the sphere.
Bernevig, Regnault, Sterdyniak, Thomale, Papic, 
Haldane, Haque, Zozulya,... (2009-2010)

 Applied to many other systems (dimer 
models, Kitaev models, Bose condensates, 
spin chains,...)

 Early studies on ”non-interacting” systems

E.g.: M.-C. Chung and I. Peschel, Phys. Rev. B 64, 
064412 (2001)
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FIG. 2: Entanglement spectrum of Hamiltonian H0 in (3)
for Bx = 0 (only the lower part of the spectrum is shown).
The dots show the multiplicity of the Schmidt values, which
is even in the entire Haldane phase.

ant under spatial inversion, under e−iπSx

, and under
e−iπSy×TR. Using the above argument, we know that
inversion symmetry alone is sufficient to protect a Hal-
dane phase. The phase diagram is shown in FIG. 1(a)
and agrees with the results of Ref. 3. A diverging en-
tanglement entropy indicates a phase transition (see for
example Ref. 31) and we use observables such as Sy, Sz

to reveal the nature of the phases. In our approach, the
Haldane phase can be easily identified by looking at the
degeneracy of the entanglement spectrum as shown in
FIG. 2: the even degeneracy of the entanglement spec-
trum occurs in the entire phase.
In the entanglement spectrum of the TRI phase, there

are both singly and multiply-degenerate levels. We have
checked that the multiple degeneracies in the TRI spec-
trum can be lifted by adding symmetry-breaking pertur-
bations to the Hamiltonian (while preserving inversion
symmetry). In the Haldane phase, on the other hand,
the double degeneracy of the entire spectrum is robust
to adding such perturbations.
The colormap in FIG. 3(a) shows the difference of the

two largest Schmidt values for the whole Bx-Uzz phase
diagram. In the Haldane phase, the whole spectrum is at
least two-fold degenerate and thus the difference is zero.
Example 2: The Hamiltonian H0 has in fact more

symmetries than are needed to stabilize the Haldane
phase. To demonstrate this, we add a perturbation H1

of the form

H1 = Bz

∑

j

Sz
j + Uxy

∑

j

(

Sx
j S

y
j + Sy

j S
x
j

)

. (17)

H1 is translation invariant and symmetric under spatial
inversion, but breaks the e−iπSx

and the eiπS
y

×TR sym-
metry. The phase diagram for fixed Bz = 0.1J and

FIG. 3: The colormaps show the difference between the two
largest Schmidt values |λ1 − λ2| for different spin-1 models.
Panel (a) corresponds to the original Hamiltonian H0 in (3),
panel (b) to H0 plus a term that breaks the time reversal
symmetry [Eq. (17)], and panel (c) to H0 plus a term which
breaks time reversal and inversion symmetry [Eq. (18)]. The
quantity |λ1 − λ2| is zero only in the Haldane phase.

Uxy = 0.1J as a function of Bx and Uzz is shown in
FIG. 1(b). As predicted by the symmetry arguments
above, we find a finite region of stability for the Hal-
dane phase. This region is characterized, as before, by
a twofold degeneracy in the entanglement spectrum, as
shown in FIG. 3(b).

Example 3: In this example, we consider a case in
which there is no symmetry that protects the Hal-
dane phase. We add the following inversion symmetry-

http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sterdyniak_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Regnault_N/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Bernevig_B/0/1/0/all/0/1


And now for something different, the torus

 The natural partition of Landau level orbitals leads to blocks having two edges

How do the two chiral edges combine in the entanglement spectrum ?

Can we exploit the tunability of the aspect ratio to understand the entanglement
spectrum quantitatively ?

Conspiring chiral structures in the entanglement spectra of Laughlin states on the torus

Andreas M. Läuchli1, Juha Suorsa2, Emil J. Bergholtz1 and Masudul Haque1

1Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany
2Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway

(Dated: November 20, 2009)

We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.

PACS numbers: 73.43.Cd, 71.10.Pm

Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though

x

y

A B

Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with



Combining two chiral U(1) edges

What do we expect to see when there are two linearly dispersing chiral U(1) modes?

 This well known in the excitation spectrum of e.g. Luttinger liquids in spin chains
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of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.
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and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition
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states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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2Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway

(Dated: November 20, 2009)

We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though
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Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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Figure 4: (Color online) Comparison of the entanglement spectrum,
and overlaps, between the Laughlin wave function and the Coulomb
ground state for L1 = 6, . . . , 14 at fixed Ns = 36. Only the central
part of the most prominent tower for the symmetric cut is displayed.
We observe that the entanglement spectra of the two wave functions
become very similar for sufficiently large L1. The appearance of
”generic levels” beyond the two-edge CFT picture in the Coulomb
state is indicated by the shaded regions, leading to a tentative notion
of ”Entanglement gap” [4].

state converges to CFT behavior at any L1, at larger circumfer-
ences more particles are required for finite-size convergence.

For large L1 and finite Ns, the edges are close and therefore
interact, leading to complicated effects such as the aspect ratio
deviations seen in Fig. 3b.

Coulomb ground states — The ES for ground states of the
Coulomb Hamiltonian have more complicated L1 dependence
(Fig. 4). At smaller L1 only the few lowest levels resemble the
Laughlin ES; for L1 ! 8 the Coulomb ES cannot be generated
using the two-edge procedure beyond the diamond structure.
This does however not contradict the larger overlap between
Laughlin and Coulomb states known at L1 → 0 [11, 16], be-
cause the higher ES levels are pushed upwards at small L1

(cf also Fig. 4). The ES thus exposes correlations much more
subtle than is visible in overlap considerations. As L1 is in-
creased, more and more Coulomb ES levels match the Laugh-
lin ES, and the emergent CFT tower structure can be seen.

Discussion — This work presents entanglement spectra
calculated through numerical diagonalization, for the Laugh-
lin state at ν = 1/3 on a torus. We presented two radically dif-
ferent physical ways of understanding the ES structure. The
first interpretation is based on a combination of two chiral
CFT edges. Each of these are individually similar to the edge
spectrum previously extracted from ES studies on the sphere
[15]. This interpretation is powerful as it reproduces the en-
tire ES through the assignment of a few levels. Our second
approach uses the adiabatic connection to the thin-torus limit,
and the remarkable fact that the two-edge CFT structure is pre-
served even close to the thin-torus limit. Perturbative analysis
based on the simple thin-torus states yields the locations and
shapes of the towers, and many other quantitative predictions.

Accessing edge modes in explicit numerical calculations re-
mains a highly desired but difficult task, due to edge recon-

struction and other difficulties [7]. Our study of edge combi-
nations through entanglement calculations provides an alter-
native track to gaining insight into this issue.

Our work opens up several important research directions,
of which we list a few. We expect our results to have interest-
ing generalizations to more intricate FQH states, such as the
non-abelian states. The study of torus ES could provide new
insights into the physics of such states.

Our data at large L1 deviates from the independent-edges
picture because the edges are close. The present setup thus
provides the intriguing possibility of studying the interaction
and interferences between two spatially separated edges. e.g.,
through exploring large L1 features as in Fig. 3b.

The CFT edge interpretation relies on the idea that the ‘en-
tanglement Hamiltonian’ is similar to the physical Hamilto-
nian. This notion is plausible but entirely unexplored for FQH
states. There is thus a clear need for constructing and under-
standing entanglement Hamiltonians. It is also possible that a
more detailed study of the CFT towers in the ES could yield
Luttinger liquid features such as the compactification radius
and more generally the scaling dimensions.
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Combination of two spatially separated 
edges to form conformal towers with 
correct Virasoro count. Microscopics 
understood from the TT limit.

Topological Entanglement Entropy

Exploiting the advantage of the 
torus to continuously change the 
circumference allows to get a 
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Conspiring chiral structures in the entanglement spectra of Laughlin states on the torus
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We analyze the entanglement spectrum of quantum Hall states on the torus and show that it is arranged in
towers, each of which is generated by modes of two separated chiral edges with unusual dispersion. Strikingly,
theses structures are present for all torus circumferences, which allows for a microscopic identification of the
prominent features of the spectrum by perturbing the solvable thin torus limit.
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Introduction — The description of condensed matter
phases using entanglement measures, borrowed from the field
of quantum information theory, has led to an explosive growth
of interdisciplinary work [1]. Despite all this interest, there are
very few cases where entanglement concepts provide physi-
cal information that is not obtainable through more conven-
tional quantities, such as correlation functions. One such rare
and striking example involves topologically ordered states and
their gapless conformal edge modes, for which the use of bi-
partite enanglement measures can indeed reveal exotic physics
[2–4].

Fractional quantum Hall (FQH) states of two-dimensional
electrons in a magnetic field stand out as the only experi-
mentally realized topologically ordered phases. These states
have recently received renewed intense attention due to quan-
tum computation proposals based on their topological prop-
erties [5]. An intriguing feature of FQH states is that their
edges have gapless modes, described by chiral luttinger liq-
uids [6, 17]. In this Letter we study the interplay of two such
edges, through the study of entanglement spectra.

We focus on bipartite entanglement between two parts (A
and B) of the system, where the entanglement spectrum (ES),
{ξi}, is defined in terms of the Schmidt decomposition

|ψ 〉 =
∑

i

e−ξi/2|ψA
i 〉 ⊗ |ψB

i 〉,

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for
the subsystem A (B).

Very recently, the ES studies have been used [4, 8] for FQH
states to probe edge modes. The entanglement between two
partitions of an edgeless wavefunction seems at first sight un-
related to edge physics, and this has widely been regarded
as a somewhat mysterious connection. However, some in-
sight is provided by studies of ES in non-interacting systems
[15, 16], where it is found that the entanglement spectrum is
also the spectrum of an effective “entanglement Hamiltonian”
confined to the A region of space, which is locally not identi-
cal but similar to the original physical Hamiltonian. Assuming
the same result to hold for interacting systems, the low-lying
structure of the ES can be expected to be similar to the low-
energy spectrum of a state confined to the region A. Since
the region A does have an edge (partition boundary), the low-
lying spectrum should show the edge structure, even though

x

y

A B

Figure 1: (Color online) Torus setup for block entanglement compu-
tations. The lowest Landau level is spanned by orbitals which in Lan-
dau gauge are centered along the circles shown. The arrows indicate
the chiralities of the virtual ‘edges’ created by the block partitioning.

the total system has no edge. Refs. [4, 8] used FQH states
on spherical geometries, and analyzed the ES for hemispheric
partitioning. The multiplet structure of the Virasoro repre-
sentations of the conformal field theory (CFT) describing the
edge appear in the low part of the ES.

In this Letter we present and analyze the entanglement
spectrum of ν = 1/3 Laughlin states on a torus geome-
try. This choice of geometry gives us access to striking new
physics and analysis tools, compared to the spherical case.
The natural partitions of the torus are cylinder-like segments
with two disjoint edges. The ES thus contains the physics of a
combination of two separate conformal edges. We show that
this leads to ‘towers’ in the ES spectrum, when plotted against
appropriate quantum numbers. The chiral spectra lack both
the linear dispersion expected from CFT and the exact degen-
eracies, which makes their combination to form a tower all
the more remarkable. Also in cases where the two edges have
different spectra, the two spectra combine to form towers. To
the best of our knowledge, this is the only explicit example
of formation of conformal towers from two separated chiral
edges.

The torus geometry also allows us to adiabatically connect
to the “thin torus” limit which is exactly solvable [11, 12],
having as ground states the crystalline states coinciding with
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