

Novel exact results

on

lattice models with the Kitaev interactions

Jiri Vala

Department of Mathematical Physics, National University of Ireland, Maynooth

and

School of Theoretical Physics, Dublin Institute for Advanced Studies

<u>Outline</u>

Topological phases and lattice models

- Toric code
- Kitaev honeycomb lattice model

Novel exact solution of the Kitaev model

Exact solution on torus and topological phase transition

topological degeneracy on torus

Other applications

- vortex and edge modes
- non-Abelian statistics
- novel solution of Yao-Kivelson model

.....

References

Phys. Rev. B (2010), arXiv:1009.4951 Phys. Rev. B 81, 104429 (2010) Phys. Rev. B 80, 125415 (2009) Phys. Rev. Lett. 101, 240404 (2008)

<u>Outline</u>

Topological phases and lattice models

- Toric code
- Kitaev honeycomb lattice model

Novel exact solution of the Kitaev model

Exact solution on torus and topological phase transitiontopological degeneracy on torus

Other applications

- vortex and edge modes
- non-Abelian statistics

• novel solution of Yao-Kivelson model

.....

References

Phys. Rev. B (2010), arXiv:1009.4951 Phys. Rev. B 81, 104429 (2010) Phys. Rev. B 80, 125415 (2009) **Phys. Rev. Lett. 101, 240404 (2008)**

 $\mathcal{D}(Z_2)$ topological phase "Toric code" $\boldsymbol{H}_{TC} = -J \Sigma_p \boldsymbol{Q}_p \qquad [\boldsymbol{Q}_p, \boldsymbol{Q}_q] = 0 \qquad [\boldsymbol{H}_{TC}, \boldsymbol{Q}_p] = 0$ $Q_{\rm p} | \{Q_{\rm p}\} > = Q_{\rm p} | \{Q_{\rm p}\} > \text{ where } Q_{\rm p} = \pm 1$ **Ground state:** $Q_p | \{Q_p\} > = | \{Q_p\} >$ on plane <u>on torus</u> $Q_{\mathbf{p}} | \{Q_{\mathbf{p}}\}, l_x, l_y > = | \{Q_{\mathbf{p}}\}, l_x, l_y >$ $l_x, l_y = \pm 1 \implies \text{Degeneracy}(\mathbf{T}^2) = 4$

Particle set

• trivial topological charge

1

e

m

3

- electric charge
- magnetic charge • fermion

Fusion rules

$$e \times e = m \times m = \varepsilon \times \varepsilon = 1$$

 $e \times m = \varepsilon$

$$e \mathbf{x} \mathbf{\varepsilon} = m$$

 $m \mathbf{x} \mathbf{\varepsilon} = \mathbf{e}$

Ising topological phase		
Particle set	 trivial topological charge non-Abelian (Ising) anyon fermion 	1 σ ε
Degeneracy of torus	$Deg(T^2) = 3$	
Fusion rules	$\varepsilon \mathbf{x} \varepsilon = 1$	
	$\varepsilon \mathbf{x} \boldsymbol{\sigma} = \boldsymbol{\sigma}$	
	$\sigma \mathbf{x} \sigma = 1 + \varepsilon$	
<u>Braidings</u>	$\begin{array}{l} \textbf{non-Abelian anyons} \\ \psi_1^{\sigma\sigma}\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \psi_{\varepsilon}^{\sigma\sigma}\rangle = \\ R = \begin{pmatrix} \exp\left\{i\frac{\pi}{8}\right\} & 0 \\ 0 & \exp\left\{-i\frac{3\pi}{8}\right\} \\ \end{array}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \qquad$

<u>Realizations of non-Abelian anyons σ </u>

- Ising lattice models Kitaev honeycomb model, Yao-Kivelson model
- e/4 charge quasiparticle in fractional quantum Hall state at the filling v=5/2
- (half-)vortices in p-wave superconductors

Kitaev honeycomb lattice model

$$H_0 = -\Sigma_{\alpha} J_{\alpha} \Sigma_{i,j} \sigma^{\alpha}_{\ i} \sigma^{\alpha}_{\ j} = -\Sigma_{\alpha} J_{\alpha} \Sigma_{i,j} K^{\alpha}_{\ ij}$$

A.Y.Kitaev, Ann. Phys. 321, 2 (2006).

Phase diagram:

- phase A
- can be mapped perturbatively onto the toric code:

$$|\uparrow\rangle_{eff} = |\uparrow\uparrow\rangle \ |\downarrow\rangle_{eff} = |\downarrow\downarrow\rangle \qquad \qquad H_{\rm eff} = -\frac{J_x^2 J_y^2}{16|J_z|^3} \sum_p Q_p,$$

$$Q_p = \sigma_{\text{left}(p)}^y \sigma_{\text{right}(p)}^y \sigma_{\text{up}(p)}^z \sigma_{\text{down}(p)}^z$$

with the ground state stabilized by the plaquette operators:

- $\boldsymbol{Q}_{\mathbf{p}} | \{ \boldsymbol{Q}_{\mathbf{p}} \} > = | \{ \boldsymbol{Q}_{\mathbf{p}} \} >$
- phase B gapless.

In the presence of magnetic field:

 $H = H_0 + H_1 = H_0 + \sum_i \sum_{\alpha = x, y, z} B_\alpha \sigma_{\alpha, i}$

- parity and time-reversal symmetry are broken
- phase B acquires a gap and becomes non-abelian topological phase of the Ising type

The leading P and T breaking term in perturbation theory occurs at the third order:

$$H_1 = -\kappa \sum_{\boldsymbol{q}} \sum_{l=1}^{6} P(\boldsymbol{q})^{(l)} \sum_{l=1}^{6} P(\boldsymbol{q})^{(l)} = \sigma_1^x \sigma_6^y \sigma_5^z + \sigma_2^z \sigma_3^y \sigma_4^x + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^x + \sigma_2^y \sigma_5^z \sigma_6^z + \sigma_3^y \sigma_5^z + \sigma_3^y \sigma_$$

Vortex operators in the honeycomb model

$$W_{p} = \frac{K^{z}_{1,2}K^{x}_{2,3}K^{y}_{3,4}K^{z}_{4,5}K^{x}_{5,6}K^{y}_{6,1}}{= \sigma^{x}_{1}\sigma^{y}_{2}\sigma^{z}_{3}\sigma^{x}_{4}\sigma^{y}_{5}\sigma^{z}_{6}}$$

The vortex operators commute with H_0

$$[H_0, W_p] = 0 \qquad H_0 = -\sum_{\alpha} J_{\alpha} \sum_{i,j} K^{\alpha}_{ij}$$
$$K^{\beta}_{k+1,k+2} K^{\alpha}_{k,k+1} = -K^{\alpha}_{k,k+1} K^{\beta}_{k+1,k+2}$$

and they also commute with the perturbative magnetic field term in the Hamiltonian:

$$H_1 = -\kappa \sum_{\boldsymbol{q}} \sum_{l=1}^{6} P(\boldsymbol{q})^{(l)} \qquad \sum_{l=1}^{6} P(\boldsymbol{q})^{(l)} = \sigma_1^x \sigma_6^y \sigma_5^z + \sigma_2^z \sigma_3^y \sigma_4^x + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^x + \sigma_2^y \sigma_3^z \sigma_4^y + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^x + \sigma_2^y \sigma_3^z \sigma_4^y + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^x + \sigma_2^y \sigma_3^y \sigma_4^z + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^y + \sigma_2^y \sigma_3^y \sigma_4^z + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^y + \sigma_2^y \sigma_3^y \sigma_4^z + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^y + \sigma_2^y \sigma_3^y \sigma_4^z + \sigma_1^y \sigma_2^y \sigma_3^z + \sigma_4^y \sigma_5^y \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^y + \sigma_2^y \sigma_3^y \sigma_4^z + \sigma_1^y \sigma_2^y \sigma_3^z + \sigma_4^y \sigma_5^y \sigma_6^z + \sigma_3^y \sigma_4^z + \sigma_3^y \sigma_4^y \sigma_5^y + \sigma_3^y \sigma_4^y + \sigma_3^y \sigma_5^y + \sigma_4^y \sigma_5^y \sigma_6^y + \sigma_3^y \sigma_4^y + \sigma_4^y \sigma_5^y \sigma_6^y + \sigma_3^y \sigma_4^y + \sigma_4^y \sigma_5^y \sigma_6^y + \sigma_3^y \sigma_4^y + \sigma_5^y \sigma_6^y + \sigma_5^y \sigma_5^y + \sigma_5^y \sigma_6^y + \sigma_5^y + \sigma_5^y \sigma_6^y + \sigma_5^y +$$

so for each energy eigenstate, we either have no vortex (+1) or a vortex (-1) at a plaquette p

$$W_{\mathbf{p}} | \mathbf{E}_{\mathbf{n}} > = \pm 1 | \mathbf{E}_{\mathbf{n}} >$$

The Hilbert space splits into vortex sectors, i.e. subspaces with particular vortex configurations

$$L = \bigoplus_{w_{1,\ldots,w_{m}}} L_{w_{1,\ldots,w_{m}}}$$

Products of the vortex operators are loops.

$$K_{i,j}^{\alpha(1)} K_{j,k}^{\alpha(2)} \dots K_{p,q}^{\alpha(M-1)} K_{q,i}^{\alpha(M)}$$

And all loop symmetries on torus $\prod_p W_p = 1$ can be written as $C_{(k,l)} = G_k F_l(W_l, W_2, \dots, W_{N-l}).$

Outline

Topological phases and lattice models

• Toric code

• Kitaev honeycomb lattice model

Novel exact solution of the Kitaev model

Exact solution on torus and topological phase transitiontopological degeneracy on torus

Other applications

- vortex and edge modes
- non-Abelian statistics

• novel solution of Yao-Kivelson model

.....

References

Phys. Rev. B (2010), arXiv:1009.4951 Phys. Rev. B 81, 104429 (2010) **Phys. Rev. B 80, 125415 (2009)** Phys. Rev. Lett. 101, 240404 (2008)

Effective spins and hardcore bosons

New perspective:

spin-hardcore boson representation

$$\begin{split} |\uparrow_{\blacksquare}\uparrow_{\square}\rangle &= |\Uparrow,0\rangle, \quad |\downarrow_{\blacksquare}\downarrow_{\square}\rangle = |\Downarrow,0\rangle \\ |\uparrow_{\blacksquare}\downarrow_{\square}\rangle &= |\Uparrow,1\rangle, \quad |\downarrow_{\blacksquare}\uparrow_{\square}\rangle = |\Downarrow,1\rangle \end{split}$$

Schmidt, Dusuel, and Vidal (2008)

Pauli operators:

$$\begin{array}{ll} \sigma_{\mathbf{q}, \blacksquare}^x = \tau_{\mathbf{q}}^x(b_{\mathbf{q}}^{\dagger} + b_{\mathbf{q}}) &, \quad \sigma_{\mathbf{q}, \square}^x = b_{\mathbf{q}}^{\dagger} + b_{\mathbf{q}}, \\ \sigma_{\mathbf{q}, \blacksquare}^y = \tau_{\mathbf{q}}^y(b_{\mathbf{q}}^{\dagger} + b_{\mathbf{q}}) &, \quad \sigma_{\mathbf{q}, \square}^y = i \, \tau_{\mathbf{q}}^z(b_{\mathbf{q}}^{\dagger} - b_{\mathbf{q}}), \\ \sigma_{\mathbf{q}, \blacksquare}^z = \tau_{\mathbf{q}}^z &, \quad \sigma_{\mathbf{q}, \square}^z = \tau_{\mathbf{q}}^z(I - 2b_{\mathbf{q}}^{\dagger}b_{\mathbf{q}}), \end{array}$$

Vortex and plaquette operators:

$$W_{\mathsf{q}} = (I - 2\mathsf{N}_{\mathsf{q}})(I - 2\mathsf{N}_{\mathsf{q}+\mathsf{n}_y})\mathsf{Q}_{\mathsf{q}}$$

$$\mathsf{N}_{\mathsf{q}} = b_{\mathsf{q}}^{\dagger} b_{\mathsf{q}} \quad \mathsf{Q}_{\mathsf{q}} = \tau_{\mathsf{q}}^{z} \quad \tau_{\mathsf{q}+\mathsf{n}_{x}}^{y} \tau_{\mathsf{q}+\mathsf{n}_{y}}^{y} \tau_{\mathsf{q}+\mathsf{n}_{y}}^{z}$$

In the A_z-phase, $J_z \gg J_x$, J_y , the bosons are energetically suppressed, thus at low energy

 $|\{W_q\}, 0> = |\{Q_q\}>$ the low-energy perturbative Hamiltonian equals to toric code $H_{TC} = -J_{\text{eff}} \sum_{q} Q_q \otimes I$

This allows to write down an orthonormal basis of the full system in terms of the toric code operators:

$$|\{Q_{q}\}, \{N_{q}\}>$$

where $\{Q_q\}$ lists all honeycomb plaquette operators and $\{N_q\}$ lists the position vectors of any occupied bosonic modes. **On a torus,** the homologically nontrivial symmetries must be added

$$|\{Q_{q}\}, l_{x}, l_{y}, \{N_{q}\}>$$

G. Kells, J.K. Slingerland, J. Vala, Phys. Rev. B **80**, 125415 (2009)

Jordan-Wigner transformation

н

Bosonic and effective spin Hamiltonian can be written in terms of fermions and vortices by applying a Jordan-Wigner transformation

$$= -J_x \sum_{\mathbf{q}} (b_{\mathbf{q}}^{\dagger} + b_{\mathbf{q}}) \tau_{\mathbf{q}+\mathbf{n}_x}^x (b_{\mathbf{q}+\mathbf{n}_x}^{\dagger} + b_{\mathbf{q}+\mathbf{n}_x})$$

- $J_y \sum_{\mathbf{q}} i \tau_{\mathbf{q}}^z (b_{\mathbf{q}}^{\dagger} - b_{\mathbf{q}}) \tau_{\mathbf{q}+\mathbf{n}_y}^y (b_{\mathbf{q}+\mathbf{n}_y}^{\dagger} + b_{\mathbf{q}+\mathbf{n}_y})$
- $J_z \sum_{\mathbf{q}} (I - 2b_{\mathbf{q}}^{\dagger}b_{\mathbf{q}}).$

Magnetic field

• breaks parity invariance and time-reversal symmetry

• opens a gap in phase B and turns it into non-abelian topological phase of Ising type

$$H_1 = -\kappa \sum_{\boldsymbol{q}} \sum_{l=1}^6 P(\boldsymbol{q})^{(l)} \sum_{l=1}^6 P(\boldsymbol{q})^{(l)} = \sigma_1^x \sigma_6^y \sigma_5^z + \sigma_2^z \sigma_3^y \sigma_4^x + \sigma_1^y \sigma_2^x \sigma_3^z + \sigma_4^y \sigma_5^x \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^x + \sigma_2^z \sigma_3^y \sigma_4^z + \sigma_1^y \sigma_2^z \sigma_3^z + \sigma_4^y \sigma_5^z \sigma_6^z + \sigma_3^x \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^x + \sigma_2^y \sigma_3^z \sigma_4^z + \sigma_1^y \sigma_2^z \sigma_3^z + \sigma_4^y \sigma_5^z \sigma_6^z + \sigma_3^y \sigma_4^z \sigma_5^y + \sigma_2^y \sigma_1^z \sigma_6^x + \sigma_2^y \sigma_3^z \sigma_4^z + \sigma_1^y \sigma_2^z \sigma_3^z + \sigma_4^y \sigma_5^z \sigma_6^z + \sigma_3^y \sigma_4^z + \sigma_2^y \sigma_5^z \sigma_6^z + \sigma_3^y \sigma_4^z + \sigma_2^y \sigma_5^z \sigma_6^z + \sigma_3^y \sigma_4^z + \sigma_2^y \sigma_5^z + \sigma_3^y \sigma_4^z + \sigma_3^y \sigma_5^z + \sigma_3^y \sigma_4^z + \sigma_3^y \sigma_5^z + \sigma_$$

• H_1 commutes with the plaquette operators, so stabilizer formalism can still be used

G. Kells, J.K. Slingerland, J. Vala, Phys. Rev. B **80**, 125415 (2009) Transformation to the momentum representation

$$c_{\boldsymbol{q}} = M^{-1/2} \sum c_{\boldsymbol{k}} e^{i\boldsymbol{k}\cdot\boldsymbol{q}}$$
$$H = \sum_{\boldsymbol{k}} \left[\xi_{\boldsymbol{k}} c_{\boldsymbol{k}}^{\dagger} c_{\boldsymbol{k}} + \frac{1}{2} (\Delta c_{\boldsymbol{k}}^{\dagger} c_{-\boldsymbol{k}}^{\dagger} + \Delta^{*} c_{-\boldsymbol{k}} c_{\boldsymbol{k}}) \right] - M J_{z}$$

$$\begin{aligned} \xi_{\mathbf{k}} &= \varepsilon_{\mathbf{k}} - \mu \\ \Delta_{\mathbf{k}} &= \alpha_{\mathbf{k}} + i\beta_{\mathbf{k}} \\ \mu &= -2J_z \\ \varepsilon_{\mathbf{k}} &= 2J_x \cos(k_x) + 2J_y \cos(k_y) \\ \alpha_{\mathbf{k}} &= 4\kappa(\sin(k_x) - \sin(k_y) - \sin(k_x - k_y)) \\ \beta_{\mathbf{k}} &= 2J_x \sin(k_x) + 2J_y \sin(k_y). \end{aligned}$$

The effect of the magnetic field is contained fully in the α_k term.

G. Kells, J.K. Slingerland, J. Vala, Phys. Rev. B **80**, 125415 (2009)

The Hamiltonian can be diagonalized by Bogoliubov transformation:

$$\gamma_{k} = u_{k}c_{k} - v_{k}c_{-k}^{\dagger} \qquad |u_{k}|^{2} + |v_{k}|^{2} = 1$$

resulting in the BCS Hamiltonian

$$\mathbf{H} = \sum_{n=1}^{M} E_n(\gamma_n^{\dagger} \gamma_n - 1/2)$$

$$E_k = \sqrt{\xi_k^2 + |\Delta_k|^2}$$

$$u_k = \sqrt{1/2(1 + \xi_k/E_k)}$$

$$v_k = i\sqrt{1/2(1 - \xi_k/E_k)}$$

the ground state is BCS state with the vacuum given here explicitly in terms of toric code stabilizers

$$|gs\rangle_{HC} = \prod \left(u_{\mathsf{k}} + v_{\mathsf{k}} c_{\mathsf{k}}^{\dagger} c_{-\mathsf{k}}^{\dagger} \right) |\{Q_{\mathsf{q}}\}, \{\emptyset\}\rangle |\{1,1,\ldots,1\}, \{0\}\rangle$$

Outline

Topological phases and lattice models

• Toric code

• Kitaev honeycomb lattice model

Novel exact solution of the Kitaev model

Exact solution on torus and topological phase transition

topological degeneracy on torus

Other applications

- vortex and edge modes
- non-Abelian statistics

• novel solution of Yao-Kivelson model

.....

References

Phys. Rev. B (2010), arXiv:1009.4951 Phys. Rev. B 81, 104429 (2010) **Phys. Rev. B 80, 125415 (2009)** Phys. Rev. Lett. 101, 240404 (2008)

Other vortex sectors on torus

To address an arbitrary vortex configuration we rewrite the general Hamiltonian

$$\mathsf{H} = \frac{1}{2} \sum_{\mathsf{q}\mathsf{q}'} \begin{bmatrix} c_{\mathsf{q}}^{\dagger} & c_{\mathsf{q}} \end{bmatrix} \begin{bmatrix} \xi_{\mathsf{q}\mathsf{q}'} & \Delta_{\mathsf{q}\mathsf{q}'} \\ \Delta_{\mathsf{q}\mathsf{q}'}^{\dagger} & -\xi_{\mathsf{q}\mathsf{q}'}^T \end{bmatrix} \begin{bmatrix} c_{\mathsf{q}'} \\ c_{\mathsf{q}'}^{\dagger} \end{bmatrix}$$

To specify a particular vortex sector, the operators X_q and Y_q are replaced by their eigenvalues in that sector; for example for H₀ we obtain

$$\begin{aligned} \xi_{\boldsymbol{q}\boldsymbol{q}'} &= 2J_z \delta_{\boldsymbol{q},\boldsymbol{q}'} + J_x \boldsymbol{X}_{\boldsymbol{q}} (\delta_{\boldsymbol{q},\boldsymbol{q}'-\boldsymbol{n}_x} + \delta_{\boldsymbol{q}-\boldsymbol{n}_x,\boldsymbol{q}'} \\ &+ J_y \boldsymbol{Y}_{\boldsymbol{q}} (\delta_{\boldsymbol{q},\boldsymbol{q}'-\boldsymbol{n}_y} + \delta_{\boldsymbol{q}-\boldsymbol{n}_y,\boldsymbol{q}'}) \\ \Delta_{\boldsymbol{q}\boldsymbol{q}'} &= J_x \boldsymbol{X}_{\boldsymbol{q}} (\delta_{\boldsymbol{q},\boldsymbol{q}'-\boldsymbol{n}_x} - \delta_{\boldsymbol{q}-\boldsymbol{n}_x,\boldsymbol{q}'}) \\ &+ J_y \boldsymbol{Y}_{\boldsymbol{q}} (\delta_{\boldsymbol{q},\boldsymbol{q}'-\boldsymbol{n}_y} - \delta_{\boldsymbol{q}-\boldsymbol{n}_y,\boldsymbol{q}'}). \end{aligned}$$

On torus, these terms include **periodicity**, i.e. the terms connecting the sites $(0, q_y)$ and $(N_x - 1, q_y)$, and $(q_x, 0)$ and $(q_x, N_y - 1)$, and thus the **homologically nontrivial symmetries**

$$\begin{aligned} X_{q_x,q_y} &= \prod_{q'_y=0}^{q_y-1} W_{q_x,q'_y} & (q_y \neq 0 \text{ and } q_x \neq N_x - 1) & Y_{q_x,q_y} = 1 & (q_y \neq N_y - 1) \\ X_{q_x,q_y} &= 1 & (q_y = 0 \text{ and } q_x \neq N_x - 1) & Y_{q_x,q_y} = -l_{q_x}^{(y)} & (q_y = N_y - 1) \\ X_{q_x,q_y} &= -l_0^{(x)} \prod_{q'_y=0}^{q_y-1} W_{q_x,q_y} & (q_y \neq 0 \text{ and } q_x = N_x - 1) \\ X_{q_y,q_x} &= -l_0^{(x)} & (q_y = 0 \text{ and } q_x = N_x - 1) & l_{q_x}^{(y)} = l_0^{(y)} \prod_{q_y=0}^{N_{y-1}} \prod_{q'_x=0}^{q_{x-1}} W_{q'_x,q_y} \end{aligned}$$

In order to include the magnetic field H_1 we have to add also

$$\begin{aligned} X_{q_x,q_y+1} &= -l_{q_{x+1}}^{(y)} \quad (q_x \neq N_x - 1) \\ X_{q_x,q_y+1} &= l_0^{(x)} l_0^{(y)} \quad (q_x = N_x - 1), \end{aligned} \qquad \begin{aligned} X_{q_x,q_y} &= l_{q_x}^{(y)} \prod_{q'_y=0}^{q_y-1} W_{q_x,q'_y} \quad (q_x \neq N_x - 1) \\ X_{q_x,q_y} &= l_0^{(x)} l_0^{(y)} W_{q_x,q_y} \quad (q_x = N_x - 1). \end{aligned}$$

Role of symmetries

On a torus, the system has N/2+1 loop symmetry generators from which all other loop symmetries can be obtained. We can specify a particular sector of the Hamiltonian by specifying the eigenvalues of the N/2-1 plaquette symmetries and 2 homologically nontrivial symmetries.

Fermionization on torus

The general Hamiltonian for an arbitrary vortex configuration

$$\mathsf{H} \ = \frac{1}{2} \sum_{\mathsf{q}\mathsf{q}'} \left[\begin{array}{cc} c_{\mathsf{q}}^{\dagger} & c_{\mathsf{q}} \end{array} \right] \left[\begin{array}{cc} \xi_{\mathsf{q}\mathsf{q}'} & \Delta_{\mathsf{q}\mathsf{q}'} \\ \Delta_{\mathsf{q}\mathsf{q}'}^{\dagger} & -\xi_{\mathsf{q}\mathsf{q}'}^T \end{array} \right] \left[\begin{array}{c} c_{\mathsf{q}'} \\ c_{\mathsf{q}'}^{\dagger} \end{array} \right]$$

presents the Bogoliubov-de Gennes eigenvalue problem

$$\begin{bmatrix} \xi & \Delta \\ \Delta^{\dagger} & -\xi^T \end{bmatrix} = \begin{bmatrix} U & V^* \\ V & U^* \end{bmatrix} \begin{bmatrix} E & \mathbf{0} \\ \mathbf{0} & -E \end{bmatrix} \begin{bmatrix} U & V^* \\ V & U^* \end{bmatrix}^{\dagger}$$

with quasiparticle excitations

$$\left[\begin{array}{cc}\gamma_1^{\dagger},...,\gamma_M^{\dagger}, & \gamma_1,...,\gamma_M\end{array}\right] = \left[\begin{array}{cc}c_1^{\dagger},...,c_M^{\dagger}, & c_1,...,c_M\end{array}\right] \left[\begin{array}{cc}U & V^*\\V & U^*\end{array}\right]$$

and the system thus reduces to free fermion Hamiltonian

$$\mathsf{H} = \sum_{n=1}^{M} E_n (\gamma_n^{\dagger} \gamma_n - 1/2)$$

Valid for

- all vortex sectors
- all homology sectors on torus

with the ground state (in momentum representation)

Topological phase transition: change of degeneracy on torus

The allowed values of momentum k_{α} in the various homology sectors on torus are given as

$$k_{\alpha} = \theta_{\alpha} + 2\pi n_{\alpha}/N_{\alpha} \qquad \qquad \theta_{\alpha} = (l_{\alpha} + 1)/2N_{\alpha} \qquad \qquad n_{\alpha} = 0, 1, ..., N_{\alpha} - 1$$

So thus only one of the four configurations, $(l_x = -1, l_y = -1)$, permits the momentum to be exactly (π, π) :

$$\Delta_{\pi,\pi} = \alpha_k + i \beta_k = 0 \quad \text{and thus} \quad E_{\pi,\pi} = (\xi_{\pi,\pi}^2 + |\Delta_{\pi,\pi}|^2)^{1/2} = |\xi_{\pi,\pi}|^2$$

 $\alpha_k = 4\kappa(\sin(k_x) - \sin(k_y) - \sin(k_x - k_y)) = 0 \text{ and } \beta_k = 2J_x(\sin(k_x) + 2J_y(\sin(k_y)) = 0$

At the phase transition, where $J_z = J_x + J_y$,

 $\xi_{\pi,\pi} = \mathbf{\mathcal{E}}_{k} - \mu = 2J_{x}\cos(k_{x}) + 2J_{y}\cos(k_{y}) - (-2J_{z}) = [-2(J_{x} + J_{y})] + 2J_{z} \text{ changes the sign, giving}$

$$\xi_{\pi,\pi} / E_{\pi,\pi} = \xi_{\pi,\pi} / |\xi_{\pi,\pi}| = -1 \text{ and thus } u_{\pi,\pi} = [1/2 (1 + \xi_{\pi,\pi} / E_{\pi,\pi})]^{1/2} = 0$$

$$c^{+}_{\pi,\pi} c^{+}_{-\pi,-\pi} = (c^{+}_{\pi,\pi})^{2} = 0$$

$$|g.s.\rangle = \Pi_{k} v_{k} + v_{k} c^{+}_{\kappa} c^{+}_{-k} |\{Q_{q}\}, l_{x}^{(0)}, l_{y}^{(0)}, \{0\}\rangle$$

One of the four BCS states on torus vanishes at transition to Ising phase

Non-Abelian phase **3-fold degenerate** ground state on torus

G. Kells, J.K. Slingerland, J. Vala, Phys. Rev. B **80**, 125415 (2009)

Abelian phases 4-fold degenerate ground state on torus

Outline

Topological phases and lattice models

• Toric code

• Kitaev honeycomb lattice model

Novel exact solution of the Kitaev model

Exact solution on torus and topological phase transitiontopological degeneracy on torus

Other applications

- vortex and edge modes
- non-Abelian statistics
- novel solution of Yao-Kivelson model

.....

References Phys. Rev. B (2010), arXiv:1009.4951 Phys. Rev. B 81, 104429 (2010) Phys. Rev. B 80, 125415 (2009) Phys. Rev. Lett. 101, 240404 (2008)

Vortices and zero energy modes

$$\begin{split} H &= H_{0} + \sum_{q} \sum_{l} P_{q}^{(l)} & H_{0} = J_{z} \sum_{q} X_{q}(c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} Y_{q}(c_{1}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} Y_{q}(c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} + c_{q-}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})(c_{q+}^{\dagger} - c_{q}) \\ &+ J_{z} \sum_{q} (c_{q+}^{\dagger} - c_{q})$$

Edges and their modes

The non-Abelian phase of Kitaev models is topological insulator of the Bogoliubov-de Gennes class i.e. it is bulk insulator with conducting edges

$$a_n^{\dagger} = \mathcal{N} \sum_{\boldsymbol{q}} f(y - y_0) e^{\pm i k_x x} (e^{-i\theta/2} c_{\boldsymbol{q}}^{\dagger} + e^{+i\theta/2} c_{\boldsymbol{q}})$$

A non-Abelian domain surrounded by an Abelian domain:

$$\frac{\text{Non-Abelian fractional statistics: Berry phase}}{\mathcal{P} \exp\left\{i \oint \mathcal{A}(\lambda') d\lambda'\right\} := \lim_{M \to \infty} e^{i\mathcal{A}(\lambda_{M-1})\Delta\lambda} e^{i\mathcal{A}(\lambda_{M-2})\Delta\lambda} \cdots e^{i\mathcal{A}(\lambda_{0})\Delta\lambda} \qquad \begin{array}{l} \lambda_{M} = \lambda_{1} = \lambda(0) \\ \Delta\lambda = \frac{i\lambda_{M} - \lambda_{1}}{M} \end{array}$$
$$[\mathcal{A}]^{ba}(\lambda')\Delta\lambda = i\langle \phi^{b}(\lambda) | \frac{d}{d\lambda} \phi^{a}(\lambda) \rangle \Delta\lambda = i \frac{\langle \phi^{b}(\lambda) | \phi^{a}(\lambda + \Delta\lambda) \rangle - \langle \phi^{b}(\lambda) | \phi^{a}(\lambda - \Delta\lambda) \rangle}{2}$$
Overlap calculations

 $|\phi(i)\rangle$ and $|\phi(0)\rangle$ are the fermionic ground states with vortex at the positions *i* and 0 (reference) resp.

 $\begin{bmatrix} \gamma_{\leftrightarrow}^{\dagger}(i) & \gamma_{\leftrightarrow}(i) \end{bmatrix} := \begin{bmatrix} c_{\leftrightarrow}^{\dagger} & c_{\leftrightarrow} \end{bmatrix} \begin{bmatrix} U(i) & V^{*}(i) \\ V(i) & U^{*}(i) \end{bmatrix} \qquad \begin{bmatrix} \gamma_{\leftrightarrow}^{\dagger}(0) & \gamma_{\leftrightarrow}(0) \end{bmatrix} := \begin{bmatrix} c_{\leftrightarrow}^{\dagger} & c_{\leftrightarrow} \end{bmatrix} \begin{bmatrix} U(0) & V^{*}(0) \\ V(0) & U^{*}(0) \end{bmatrix}$

$$\begin{bmatrix} \gamma_{\leftrightarrow}^{\dagger}(i) & \gamma_{\leftrightarrow}(i) \end{bmatrix} = \begin{bmatrix} \gamma_{\leftrightarrow}^{\dagger}(0) & \gamma_{\leftrightarrow}(0) \end{bmatrix} \begin{bmatrix} U(0,i) & V^{*}(0,i) \\ V(0,i) & U^{*}(0,i) \end{bmatrix} \qquad \qquad U(i,0) = U^{\dagger}(0) U(i) + V^{\dagger}(0) V(i) \\ V(i,0) = V^{T}(0) U(i) + U^{T}(0) V(i)$$

Thouless theorem

$$|\phi(i)\rangle = \sqrt{||\det U(i,0)||} \exp\left\{\frac{1}{2}\sum_{k,k'} Z_{kk'}(i,0)\gamma_k^{\dagger}(0)\gamma_{k'}^{\dagger}(0)\right\} |\phi(0)\rangle$$

where Z(i,0) is a skew-symmetric matrix given as

$$Z(i,0) = \left(V(i,0)U^{-1}(i,0) \right)^*$$

and the overlap between two ground states is

$$\langle \phi(i) | \phi(i+1) \rangle = \Pr\left(\begin{bmatrix} Z(i,0) & -I \\ I & -Z^*(i+1,0) \end{bmatrix} \right)$$

Braiding non-Abelian anyons

Vortices are non-Abelian anyons that can be continuously moved between lattice plaquettes by varying the spin interactions

Calculation of the braiding matrix

basis: two states corresponding to two fusion channels of four vortices

$$|\psi_1^{\sigma\sigma}\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \quad |\psi_{\varepsilon}^{\sigma\sigma}\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Expectation

(pure Ising theory) $R = \begin{pmatrix} \exp\{i\frac{\pi}{8}\} & 0\\ 0 & \exp\{-i\frac{3\pi}{8}\} \end{pmatrix} \cong \begin{pmatrix} 0.9239 + 0.3827i \\ 0.3827 - 0.9239i \end{pmatrix}$

calculation (50000 steps)

$$\operatorname{Eig}(B) = \begin{pmatrix} 0.9233 + 0.3841i \\ 0.3833 - 0.9236i \end{pmatrix}$$

<section-header>

$$||R - \text{Eig}(B)||_F = 3.7907 \times 10^{-6}$$

Conclusions

Novel solution of the Kitaev honeycomb lattice model was presented which combines powerful wavefunction descriptions:

- BCS product
- stabilizer formalism

The novel solution represents a microscopic model of non-Abelian topological phase which

• provides closed expression for the ground state with the vacuum etate xplicitely given

$$|gs\rangle_{HC} = \prod \left(u_{\mathsf{k}} + v_{\mathsf{k}} c_{\mathsf{k}}^{\dagger} c_{-\mathsf{k}}^{\dagger} \right) |\{Q_{\mathsf{q}}\}, \{\emptyset\}\rangle$$
$$|gs\rangle_{HC} = \prod_{\mathsf{k}} \left(u_{\mathsf{k}} + v_{\mathsf{k}} c_{\mathsf{k}}^{\dagger} c_{-\mathsf{k}}^{\dagger} \right) |\{Q_{\mathsf{q}}\}, l_x^{(0)}, l_y^{(0)}, \{\emptyset\}\rangle$$

- yields important insighst into the relatins between the toric code and the Ising non-Abelian phase
- generalizes to other models, e.g. Yao-Kivelson model
- allows calculation of the vortex states and edge states
- allows direct calculation of the non-Abelian fractional statistics

Acknowledgments

Postdoc Graham Kells (Dahlem Center for Complex Systems, Berlin)

PhD students Ahmet Bolukbasi Niall Moran Glen Burella

<u>Collaborators:</u> Joost Slingerland Dhagash Mehta Steve Simon (Oxford/ETS Walton Fellow at NUIM)

