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The Hubbard model on bipartite lattices

Ĥ = T̂ +
U
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[ND

a − Q̂]

T̂ = −t
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σ=↑,↓
[c†�rjσ c�rj�σ + h.c.]

Q̂ =
ND

a�

j=1

�

σ=↑,↓
n̂�rjσ (1− n̂�rj−σ)

The global symmetry of the model is known to contain two SU(2) symmetries  
OJ Heilmann, EH Lieb,  Ann. NY Acad. Sci. 172, 583 (1973)

EH Lieb, Phys. Rev. Lett. 62, 1201 (1989)

A trivial result is that at U=0 the Hubbard model global symmetry is:

Here the Z2 factor is associated with the Shiba particle-hole symmetry on a 
single spin under which the interacting Hamiltonian term is not invariant. In 
turn, the SO(4) symmetry survives at U>0.

O(4) = SO(4)× Z2
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It may be written as SO(4) = [SU(2)xSU(2)]/Z2. Here the Z2 denominator implies 
that, in contrast to the group SU(2)xSU(2), only state representations for which 

is an integer number are allowed. The corresponding projections read:

The question is then whether for U>0 the symmetry of the Hubbard model on 
bipartite lattices is SO(4) or higher. CN Yang and SC Zhang considered it to be 
only SO(4). 

CN Yang, SC Zhang, Mod. Phys. B 4, 759 (1990)

SC Zhang, Phys. Rev. Lett. 65, 120 (1990)

The model is one of the most studied many-particle quantum problems, yet 
except in one-dimension it has no exact solution. Any new exact result for 
instance concerning its global symmetry is of interest for the further 
understanding of the effects of correlations in several systems. Indeed, 
symmetry plays an important role in physics and often can be used to extract 
useful information on unsolved non-perturbative quantum problems.

(Ss + Sη)

Sz
s = −1

2
(N↑ −N↓) ; Sz

η = −1
2
(ND

a −N)
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JMPC, Stellan Östlund, MJ Sampaio, Ann. Phys. 325, 1550 (2010)

Here we briefly report the result of a recent study, according to which there is 
a hidden U(1) symmetry beyond SO(4), so that for U>0 the global symmetry of 
the Hubbard model on bipartite lattices is higher and given by: 

The Z2xZ2 denominator in the latter expression implies that, in contrast to the 
group SU(2)xSU(2)xU(1), only state representations for which 

is an integer number are allowed. Here Sc is a quantum number associated with 
the new found U(1) hidden symmetry whose physical meaning is given below. Its 
allowed values are zero and all positive half-odd integer and integer numbers.

Text

The derivation of this extended global symmetry is presented in:

(Ss + Sη + Sc)

[SO(4)× U(1)]/Z2 = SO(3)× SO(3)× U(1) = [SU(2)× SU(2)× U(1)]/Z2
2
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The local SU(2)xSU(2)xU(1) gauge symmetry for U>0 and t=0

The new found global

symmetry is closely related to the local SU(2)xSU(2)xU(1) gauge symmetry of 
the model for U>0 and t=0 reported in:

Stellan Östlund, Eugene Mele, Phys. Rev. B 44, 12413 (1991)

The seven local generators of such a SU(2)xSU(2)xU(1) gauge symmetry read:

Ŝz
η,j = −1

2
(1− n̂�rj↑ − n̂�rj↓) ; Ŝz

s,j = −1
2
(n̂�rj↑ − n̂�rj↓)

Ŝ†
η,j = ei�π·�rj c†�rj↓ c†�rj↑ ; Ŝη,j = e−i�π·�rj c�rj↑ c�rj↓

Ŝ†
s,j = c†�rj↓ c�rj↑ ; Ŝs,j = c†�rj↑ cj, ↓

Ŝc,j =
1
2

�

σ=↑,↓
n̂�rjσ (1− n̂�rj−σ) , j = 1, ..., ND

a

[SO(4)× U(1)]/Z2 = SO(3)× SO(3)× U(1) = [SU(2)× SU(2)× U(1)]/Z2
2
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The six generators of the global SO(4)=[SU(2)xSU(2)]/Z2 symmetry are simply 
obtained from those of the corresponding local SU(2)xSU(2) gauge symmetry by 
summing over the number of lattice sites:

However, for finite U/t values the operator obtained by summing over the 
number of lattice sites the local U(1) gauge symmetry generator,
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ND
a�
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2
[ND
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ND
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2
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ND

a�

j=1

Ŝη,j =
ND

a�

j=1

e−i�π·�rj c�rj↑ c�rj↓

Ŝ†
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ND
a�

j=1

Ŝ†
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ND
a�

j=1

c†�rj↓ c�rj↑ ; Ŝs, =
ND

a�

j=1

Ŝs,j =
ND

a�

j=1

c†�rj↑ c�rj↓

does not commute with the Hamiltonian. 
Does this then imply that the global symmetry is indeed SO(4)? Not 
necessarily.

1
2
Q̂ =

ND
a�

j=1

Ŝc,j =
1
2

ND
a�

j=1

�

σ=↑,↓
n̂�rjσ (1− n̂�rj−σ)
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The electron - rotated-electron unitary transformations

J Stein, J. Stat. Phys. 88, 487 (1997)

c̃†�rj ,σ = V̂ † c†�rj ,σ V̂ ; c̃�rj ,σ = V̂ † c�rj ,σ V̂

There is an infinite number of unitary transformations that map electrons 
onto rotated electrons, such that for rotated electrons double and single 
occupancy are good quantum numbers for U>0:

An important property is that for any of such transformations the unitary 
operator expression only involves the following three kinetic operators,

T̂ = t (T̂0 + T̂+1 + T̂−1)in terms of which the kinetic operator may be written as

T̂0 = −
�

��rj�rj� �

�

σ

n̂�rj ,−σ c†�rj ,σ c�rj� ,σ n̂�rj� ,−σ + (1− n̂�rj ,−σ) c†�rj ,σ c�rj� ,σ (1− n̂�rj� ,−σ)

T̂+1 = −
�

��rj�rj� �

�

σ

n̂�rj ,−σ c†�rj ,σ c�rj� ,σ (1− n̂�rj� ,−σ)

T̂−1 = −
�

��rj�rj� �

�

σ

(1− n̂�rj ,−σ) c†�rj ,σ c�rj� ,σ n̂�rj� ,−σ
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Any operator can be written in terms of rotated-electron creation and 
annihilation operators as,

Ô = V̂ Õ V̂
† = Õ + [Õ, Ŝ ] +

1
2

[[Õ, Ŝ ], Ŝ ] + ...

= Ṽ Õ Ṽ
† = Õ + [Õ, S̃ ] +

1
2

[[Õ, S̃ ], S̃ ] + ...

V̂ † = eŜ ; V̂ = e−Ŝ ; V̂ = Ṽ ; Ŝ = S̃

where

To leading order in t/U, the unitary operator associated with any of the 
transformations under consideration has a universal form such that:

Ŝ = −
t

U

�
T̂+1 − T̂−1

�
+O(t2/U2) = S̃ = −

t

U

�
T̃+1 − T̃−1

�
+O(t2/U2)

The higher order terms are different for each unitary transformation. 
However, the corresponding rotated-electron operators are connected by an 
additional unitary transformation whose generator is given explicitly up to 
fourth order in t/U in: 

AL Chernyshev, D Galanakis, P Philips, AV Rozhkov, AMS Tremblay, Phys. Rev. B 70, 235111 (2004)
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An important property is that independently of the unitary transformation 
and thus of the chosen rotated-electron operators, the following expression 
refers to the same operator:

S̃c =
1
2

V̂ † Q̂ V̂ =
1
2

ND
a�

j=1

�

σ=↑,↓
ñ�rjσ (1− ñ�rj−σ)

Indeed, this operator counts the number of rotated-electron single occupied 
sides, which is the same for any choice of the unitary transformation. 

This operator commutes with the model Hamiltonian and is the 
generator of the hidden global U(1) symmetry of the Hubbard model on a 
bipartite lattice. Its eigenvalue is the above considered number Sc.

Since at finite U that generator does not commute with the unitary operator, 
its expression is involved in terms of electron creation and annihilation 
operators:

Consistently, for U finite this operator is different from that which counts 
the number of electron singly occupied sites.

S̃c =
1
2
V̂ † Q̂ V̂ =

�
1
2
Q̂ + [

1
2
Q̂, Ŝ† ] +

1
2

[[
1
2
Q̂, Ŝ† ], Ŝ† ] + ...

�
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For finite U also the Hamiltonian does not commute with the unitary operator. 
In contrast to the generator of the new found symmetry, its expression is 
simple in terms of electron creation and annihilation operators. Hence it is 
involved in terms of rotated-electron creation and annihilation operators:

Ĥ = V̂ H̃ V̂
† = Ṽ H̃ Ṽ

† = H̃ + [H̃, S̃ ] +
1
2

[[H̃, S̃ ], S̃ ] + ...

Importantly, the following commutators, which involve the six generators of 
the SO(4) algebra and the momentum operator, vanish:

[Ŝz
α, T̂l] = [Ŝ†

α, T̂l] = [Ŝα, T̂l] = [P̂ , T̂l] = 0 ; α = η, s , l = 0,±1

This implies that,

and thus that,

[Ŝz
α, V̂ ] = [Ŝ†

α, V̂ ] = [Ŝα, V̂ ] = [P̂ , V̂ ] = 0 ; α = η, s

[Ŝz
α, Ŝ] = [Ŝ†

α, Ŝ] = [Ŝα, Ŝ] = [P̂ , Ŝ] = 0 ; α = η, s

Hence the six generators of the SO(4) algebra and the momentum operator 
have the same expression in terms of electron and rotated-electron creation 
and annihilation operators.
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In contrast, that for U finite one has that,

is the reason why the new found global U(1) symmetry remained hidden. Indeed, 
for finite U its generator can be written in terms of the corresponding 
generator of the local U(1) gauge symmetry, expressed in terms of rotated-
electron operators rather than of electron operators,

S̃c,j =
1
2

�

σ=↑,↓
ñ�rjσ (1− ñ�rj−σ)

S̃c =
ND

a�

j=1

S̃c,j =
1
2

ND
a�

j=1

�

σ=↑,↓
ñ�rjσ (1− ñ�rj−σ)

Hence while the generators of the SO(4) symmetry, which is contained in [SO
(4)xU(1)]/Z2, have the same expression in terms of both electron and rotated-
electron creation and annihilation operators, that of the new found hidden U
(1) symmetry does not. Indeed, it does not commute with the electron - 
rotated-electron unitary operator.

[S̃c, V̂ ] �= 0 ; S̃c �= Ŝc
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Consistency with the Hilbert space dimension

Addition of chemical-potential and magnetic-field operator terms to the 
Hubbard Hamiltonian lowers its symmetry. However, such terms commute 
with it. Hence, the number of state representations of its symmetry group 
must equal the Hilbert space dimension. In,

JMPC, Stellan Östlund, MJ Sampaio, Ann. Phys. 325, 1550 (2010)

it is shown that if the model global symmetry was SO(4), the corresponding 
number of state representations would be smaller than that dimension,

ND
a /2�

Sc=0

(ND
a /2−Sc)�

Sη=0

Sc�

Ss=0

�

α=η,s

[1 + (−1)(2Sα+2Sc)]
2

N (Sα,Mα) < 4ND
a

Here,
N (Sα,Mα) = (2Sα + 1)

��
Mα

Mα/2− Sα

�
−

�
Mα

Mα/2− Sα − 1

��
, α = s, η

Mη = ND
a − 2Sc ; Ms = 2Sc

In turn, in the case of the global SO(3)xSO(3)xU(1) symmetry, the number of 
state representations is found to exactly equal the Hilbert space dimension.
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EH Lieb, FY Wu, Phys. Rev. Lett. 20, 1445 (1968)

The model exact solution was first reached by the so called coordinate Bethe  
ansatz.

An important result is that the imaginary part of the Bethe-ansatz complex 
rapidities simplifies for very large number of lattice sites.

M Takahashi, Prog. Theor. Phys. 47, 69 (1972)

Consistency with the exact solution of the 1D Hubbard model 

The Hubbard model has an exact solution on the one-dimensional lattice, 
which is a bipartite lattice. Is the new found hidden global U(1) symmetry 
consistent with that solution?

The one-dimensional Hubbard model was solved by the inverse-scattering 
method  thirty years after its solution by the coordinate Bethe-ansatz.

MJ Martins, PB Ramos, Nucl. Phys. B 522, 413 (1998)
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Why was the solution of the problem by the algebraic scattering method  
achieved only thirty years after that of the coordinate Bethe ansatz?
The point is that it was expected that the charge and spin monodromy 
matrices had the same traditional ABCD form, found previously for the 
related one-dimensional isotropic Heisenberg model. 

EK Sklyanin, LA Takhtadzhan, LD Faddeev, Theor. Math. Phyz. 40, 194 (1979)

Such an expectation was that consistent with a spin SU(2) symmetry and a 
charge SU(2) symmetry, associated with the model global SO(4) = [SU(2)xSU
(2)]/Z2 symmetry.

Fortunately, in their 1998 paper Martins and Ramos used an appropriate 
representation of the charge and spin monodromy matrices, which allows 
for possible hidden symmetries.

Our studies reveal that for U>0 the model charge and spin degrees of freedom 
are associated with U(2)=SU(2)xU(1) and SU(2) symmetries, rather than with 
two SU(2) symmetries, respectively.

This is behind the ABCDF and ABCD forms of the charge and spin monodromy 
matrices, respectively, found by Martins and Ramos to achieve the model 
exact solution by the inverse scattering method.
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Physical consequences of the model extended global symmetry? 

The search of the physical consequences of the new found extended symmetry 
of the Hubbard model on bipartite lattices in a scientifically interesting 
problem.

On the one-dimensional and square lattices the model is expected to describe 
the effects of correlations in several types of materials such as quasi-one-
dimensional conductors and high-temperature superconductors, respectively. 
However, the model on the square lattice remains poorly understood.

The relation of the new found global U(1) symmetry with spontaneously broken 
symmetries in the case that in the thermodynamic limit the ground state of 
the Hubbard model on a given bipartite lattice goes superconducting is an issue 
that deserves investigations. 

Another interesting problem is the role of symmetry in the possible connection 
of the Hubbard model on the bipartite honey-comb lattice to the correlation 
effects in graphene. Recently, Monte Carlo simulations by Muramatsu’s group 
revealed that a quantum spin liquid emerges between the state described by 
massless Dirac fermions and an antiferromagnetic ordered Mott insulator. 

ZY Meng, TC Lang, S Wessel, FF Assad, A Muramatsu, Nature 464, 847 (2010)
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A preliminary application of the new found extended symmetry:
Objects whose occupancies generate its state representations   

Stellan Östlund, Mats Granath, Phys. Rev. Lett 96, 066404 (2006)

JMPC, Nucl. Phys. B 824, 452 (2010); Nucl. Phys. B 840, 553 (2010)

A preliminary application of the extended symmetry is the description of the 
Hubbard model on the square lattice in terms of operators associated with 
three types of quantum objects.

For very large U/t values they become the quasicharge, spin, and pseudospin 
operators considered in:

Such quantum object operators have simple expressions in terms of the 
rotated-electron creation and annihilation operators generated by a suitably 
chosen unitary transformation.

The occupancy configurations of the three types of objects generate state 
representations of the two SU(2) symmetries and hidden U(1) symmetry, 
respectively, contained in the model extended global symmetry.
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Specifically, the representation involves c fermions operators associated with 
the new found U(1) symmetry. In terms of rotated-electron operators, their 
operator expression reads,

f†
�rj ,c = c̃†�rj ,↑ (1− ñ�rj ,↓) + ei�π·�rj c̃�rj ,↑ ñ�rj ,↓

Moreover,

ql
�rj

= sl
�rj

+ pl
�rj

; l = +,−, z

q+
�rj

= (c̃†�rj ,↑ − ei�π·�rj c̃�rj ,↑) c̃�rj ,↓

q−�rj
= (q+

�rj
)† , qz

�rj
= 1

2 − ñ�rj ,↓

sl
�rj

= n�rj ,c ql
�rj

; pl
�rj

= (1− n�rj ,c) ql
�rj

, l = ±, z

n�rj ,c = f†
�rj ,c f�rj ,c

Moreover, it involves spinon operators and η-spinon operators associated with 
the two corresponding SU(2) symmetries. Their operators are given by,

respectively. The rotated quasi-spin operators appearing here read in terms 
of rotated-electron creation and annihilation operators,
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It turns out that in the half-filling ground state and its spin-triplet excited 
states there are only c fermions and s1 fermions. The latter are spin-neutral 
two-spinon composite objects. (In s1, 1 denotes the number of spinon pairs, 
which is one.) Indeed, the spinons that are not invariant under the electron - 
rotated-electron unitary transformation are confined within such composite 
objects. The corresponding confining order is an example of those considered in:

∆E(�k) = −�s1(�q)− �s1(�q �)

The spin-triplet excitation spectrum is generated by the emergence of two 
holes in the s1 fermion momentum band. It has a simple expression in terms 
of the corresponding s1 energy dispersion: 

�k = �π − �q − �q �

The spin-wave coherent spectral weight corresponds to processes where one of 
the s1 holes is created at the s1 boundary line and the other at a s1 band nodal 
direction. For such processes, the above general spectrum simplifies to:

ωSW (�k) = [µ0/2]| sin([kx1 + kx2]/2)|
+ W 0

s1| sin([kx1 − kx2]/2)|

T Senthil, A Vishwanath, L Balents, S Sachdev, MPA Fisher, Science 303, 1490 (2004)
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ωΓO(�k) =
µ0

2
sin(ki)

�k = [π,−π]− [π/2− ki,−π/2− ki]− [π/2,−π/2]
= [ki, ki] ; ki = kx = ky ∈ (0,π/2)

ωMO(�k) =
µ0

2
sin(ki)

�k = [π,π]− [π/2− ki, 3π/2− ki]− [π/2,−π/2]
= [ki, ki] ; ki = kx = ky ∈ (π/2,π)

ωΓX(�k) =
�
µ0

2
+ W 0

s1

�
sin(kx/2)

�k = [π,−π]− [π/2− kx/2,−π/2− kx/2]
− [π/2− kx/2,−π/2 + kx/2]
= [kx, 0] ; kx ∈ (0,π)

In the high symmetry directions connecting the momentum points,

M = (π,π) , O = (π/2,π/2) , Γ = (0, 0) , X = (π, 0)

the latter energy spectrum reads:
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ωXM (�k) =
�
µ0

2
+ W 0

s1

�
cos(ky/2)

�k = [π,π]− [−ky/2,π − ky/2]− [ky/2,−ky/2]
= [π, ky] ; ky ∈ (0,π)

ωXO(�k) =
µ0

2
−W 0

s1 cos(kx)

=
µ0

2
+ W 0

s1 cos(ky)

�k = [π,−π]− [0,−π]− [π − kx,−π + kx]
= [π,π]− [0,π]− [ky,−ky]
= [kx,π − kx] ; kx ∈ (π/2,π)
= [π − ky, ky] ; ky ∈ (0,π/2)

 Here:

µ0 ≈ 565.6 meV and W 0
s1 ≈ 49.6 meV for U/4t = 1.525 and t = 0.295 meV
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R Coldea, SM Hayden, G Aeppli, TG Perring TE Manson, 
SW Cheong, Z Fisk, Phys. Rev. Lett 86, 5377 (2001)                        

The theoretical spin spectra for the high symmetry 
directions (solid lines), U/4t= 1.525 eV, and t= 0.295 eV 
and experimental data (circles) of the parent compound 
La(2)CuO(4) in meV measured by inelastic neutron 
scattering. Experimental points from:

Such a theoretical spectrum for 
the high symmetry directions of 
the Brillouin zone is plotted here. It 
is very similar to that obtained by 
the standard formalism of many-
body physics for the same U and t 
values, which involves summing up 
an infinite number of  ladder 
diagrams.

NMR Peres, MAN Araújo, Phys. Rev. B 65,  
132404 (2002)

The use of this object operator 
description becomes more complex 
away from half filling. The study 
of that problem is in progress.
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Conclusions

What are the physical consequences of such an extended global symmetry 
is an interesting scientific problem, which deserves further studies about 
the Hubbard model on several bipartite lattices.

The global symmetry of the Hubbard model on a bipartite lattice is larger 
than SO(4) and given by SO(3)xSO(3)xU(1).

Whether the ground state of the model on a given bipartite lattice is for 
some parameter-space region superconducting and what is the relation of 
the new found global U(1) symmetry to the spontaneously broken 
symmetries is an issue to be investigated.

A preliminary application of the extended global symmetry to the 
Hubbard model on the square lattice includes a representation in terms 
of c fermions, spinons, and η-spinons, whose occupancy configurations 
generate state representations of the U(1), spin SU(2), and η-spin SU(2) 
symmetries, respectively.
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