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ABSTRACT

A study is made of the limits imposed on variational assimilation of observations by the chaotic
character of the atmospheric flow. The primary goal of the study is to determine to which degree,
and how, the knowledge of past noisy observations can improve the knowledge of the present
state of a chaotic system. The study is made under the hypothesis of a perfect model. Theoretical
results are illustrated by numerical experiments performed with the classical three-variable
system introduced by Lorenz. Both theoretical and numerical results show that, even in the
chaotic regime, appropriate use of past observations improves the accuracy on the estimate of
the present state of the flow. However, the resulting estimation error mostly projects onto the
unstable modes of the system, and the corresponding gain in predictability is limited. Theoretical
considerations provide explicit estimates of the statistics of the assimilation error. The error
depends on the state of the flow over the assimilation period. It is largest when there has been
a period of strong instability in the very recent past. In the limit of infinitely long assimilation
periods, the behaviour of the cost-function of variational assimilation is singular: it tends to fold
into deep narrow “valleys” parallel to the sheets of the unstable manifold of the system. An
unbounded number of secondary minima appear, where solutions of minimization algorithms
can be trapped. The absolute minimum of the cost-function always lies on the sheet of the
unstable manifold containing the exact state of the flow. But the error along the unstable
manifold saturates to a finite value, and the absolute minimum of the cost function does not, in
general, converge to the exact state of the flow. Even so, the absolute minimum of the cost func-
tion is the best estimate that can be obtained of the state of the flow. An algorithm is proposed,
the quasi-static variational assimilation, for determining the absolute minimum, based on
successive small increments of the assimilation period and quasi-static adjustments of the
minimizing solution. Finally, the impact of assimilation on predictability is assessed by forecast
experiments with that system. The ability of the present paper lies mainly in the qualitative
results it presents. Qualitative estimates relevant for the atmosphere call for further studies.

1. Introduction

It is now well established that the quality of
weather forecasts is highly dependent on the
quality of the initial conditions. This sensitivity
imposes an ultimate limit to deterministic weather
prediction, estimated to be about two weeks,
which no conceivable observing and forecasting
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system will ever allow to cross. But present perfor-
mance of numerical weather prediction shows that
this ultimate limit is far from being reached, and
that substantial gain can still be obtained, both in
the quality of short-range forecasts and in the
extension of the range of useful forecasts, through
more accurate specification of the initial condi-
tions. This can be obtained, not only through
improvement of the observing system itself,
but also through improvement of the complex
sequence of operations which, starting from the
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raw observations, leads to the initial conditions of
the forecasts. Assimilation of meteorological obser-
vations is that sequence of operations.

The accurate determination of the current state
of the flow usually requires the use of observations
distributed over a recent-past period. In fact, the
available relevant information consists not only of
the observations proper, but also of the physical
laws which govern the temporal evolution of the
flow, which are generally available under the
form of a numerical model, and assimilation of
observations is an appropriate combination of the
two information sources. It must take into account
their uncertainty, since neither source can be
expected to be exact. In addition to an estimate of
the state of the flow, it must also produce an
estimate of the resulting estimation error.

Assimilation of observations, originating from
the needs of numerical prediction is now extending
to other domains of application. First, the rapid
progress in dynamical oceanography, particularly
in general circulation models development and
new observing systems, has stimulated the assimi-
lation of oceanographic data (see, e.g., Ghil and
Malanotte-Rizzoli, 1991, and references therein).
Secondly, the development of climatic studies
makes it desirable to build as accurate and as
homogeneous as possible descriptions of the
atmospheric flow over long periods of time. To
that end, several major meteorological centres are
involved in the “reanalysis” of past data. There
exists a fundamental difference between assimila-
tion performed for the purpose of weather predic-
tion or for the purpose of reanalysis of past data.
In the former case, the model is to be run into
the future from the initial conditions produced by
the assimilation of past observations. In the latter
case, observations performed both before and after
estimation time are available, and it is a priori
preferable to develop algorithms capable of using
all these observations.

A detailed description of the state of develop-
ment of the theory of assimilation, and of the
associated numerical algorithms, has been given by
Daley (1991) (for other basic references on assimi-
lation, see Lorenc, 1986; Ghil and Malanotte-
Rizzoli, 1991; Talagrand, 1992; Bennett, 1992).
Even though the atmosphere and the ocean are
highly nonlinear—actually chaotic—systems,
most, if not all, numerical algorithms that have
been used either for operational assimilation or for
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research purposes can be described as more or less
simplified forms of statistical linear estimation.
Statistical linear estimation (Jazwinski, 1970)
determines the Best Linear Unbiased Estimator, or
BLUE, of the state of the flow, i.e., the linear com-
bination of the observations (in the broad sense of
all the known quantities from which the estimation
is to be made) that minimizes the variance of
the corresponding estimation error. The explicit
determination of the BLUE requires the prior
knowledge of the first- and second-order statistical
moments of the errors affecting the various sources
of information, i.e., the observations proper on the
one hand and the assimilating model on the other.
Mathematically, the BLUE can also be deter-
mined as the minimizer of the sum of the squared
observations-minus-estimated-values differences,
weighted by the inverse of the observation error
covariance matrix.

From a practical point of view, two broad
classes of algorithms have been defined for
assimilation: sequential and variational algorithms.
In sequential algorithms, the model is integrated
forward in time over the assimilation period.
Whenever the model time reaches an instant at
which observations are available, the state pre-
dicted by the model, usually called the first-guess
in that context, is corrected with the new observa-
tions. The corrected state is obtained as a linear
combination of the first-guess and the observa-
tions, weighted according to their respective
assumed accuracies. All assimilation algorithms
which have been used so far in operational numeri-
cal weather prediction are of the sequential type.
They can be described as more or less simplified
forms of Kalman filtering (Kalman, 1960;
Jazwinski, 1970; Ghil and Malanotte-Rizzoli,
1991). At any stage, Kalman filtering produces the
BLUE of the state of the system, taking into
account all observations performed before this
stage. However, the numerical cost of exact Kalman
filtering, in a meteorological or oceanographical
context, and with present dynamical models and
computers, would be totally prohibitive. That is,
among others, one very good reason why present
operational algorithms for assimilation, often of
the form called optimal interpolation (Lorenc,
1981), are only simplified forms of Kalman filtering.

Variational algorithms determine a nonlinear
best estimate of the flow through direct explicit
minimization of the scalar function measuring the
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misfit between the observations and the estimated
values. If, as will be done in this paper, the model
is assumed to be perfect, the misfit function, or cost
Jfunction, to be minimized is the sum of the squared
observation-minus-model differences, weighted by
the inverse covariance matrix of the observational
errors. Variational assimilation globally adjusts a
model solution to the observations available over
the entire assimilation period. It thus ensures that
the information contained in the observations is
propagated both forward and backward in time,
and the assimilated state at any instant within the
assimilation period depends on the observations
performed over the entire period. In the case of
a linear system, the sequence of state produced
by variational assimilation is identical with the
sequence of states that would be obtained from
Kalman smoothing (Bennett and Budgell, 1989;
Gaspar and Wunsch, 1989), an extension of
Kalman filtering taking into account all observa-
tions over the assimilation period.

From a practical point of view, variational
assimilation is implemented through iterative
minimization with respect to the state of the model
at the initial time of the assimilation period. This is
possible through the use of the adjoint equations of
the model, which allow to explicitly compute, at a
non-prohibitive computational cost, the gradient
of the cost-function with respect to the state of the
model at the beginning of the assimilation period
(Le Dimet and Talagrand, 1986; Talagrand and
Courtier, 1987). It has also been found profitable
to add to the cost function a background term con-
taining the estimation of the flow at the initial time
of the assimilation period, obtained from the pre-
vious assimilation cycles. Under these conditions,
variational assimilation is much more economical
than Kalman filtering. Numerous studies have
now been performed on variational assimilation,
in both the meteorological and oceanographical
contexts (Lewis and Derber, 1985; Thacker and
Long, 1988; Courtier and Talagrand, 1990;
Sheinbaum and Anderson, 1990a and b; Zou et al.,
1992; Thépaut et al., 1993; see also the references in
Courtier et al, 1993). The results are promising
enough so that several major meteorological
centers have decided to develop variational assimi-
lation for operational purposes (Courtier et al.,
1994).

The theory of BLUE, being a linear regression in
essence, assumes that the model equations be

linear, and that the observations proper be linear
functions of the model variables. In practice, infor-
mation is available that is much more accurate
than relationships based on statistical linear
regression. The models of the dynamics of the
atmospheric or oceanic flows, built on the physical
principles of conservation of mass, energy and
momentum, are indeed nonlinear. A similar
remark applies, for instance, to the infra-red
radiances measured by satellites, which are related,
through the strongly nonlinear (and explicitly
known) radiative transfer equation, to the corre-
sponding atmospheric temperature and humidity
fields. The question is therefore whether it is
legitimate to use linear algorithms in order to solve
intrinsically nonlinear estimation problems. The
important point is that assimilation methods
always use a first approximation of the state of the
flow to be estimated, under the form of a “first-
guess”. What must in effect be estimated is the
deviation of the state of the flow from that first
approximation. The cost function used in varia-
tional assimilation can be formulated in terms
of this departure by using the tangent linear
approximation, in which case the BLUE theory is
also valid. In that case only, the cost-function is
quadratic, with a unique minimum that can be
determined through standard minimization algo-
rithms. Within the tangent linear approximation,
an appropriate sequential algorithm is the
extended Kalman filter (Budgell, 1986).

In the meteorological context, the validity of the
tangent linear approximation has been explicitly
verified by various authors, for large-scale flows
and assimilation periods of two or three days
(Lacarra and Talagrand, 1988; Rabier and
Courtier, 1992), and for mesoscale flows, with
shorter periods of the order of 36 hours (Errico
and Vukicevic, 1992). This difference is due to the
existence of strongly nonlinear processes such as
convection (Parrish and Derber, 1992; Courtier
et al., 1994). The validity of the linear tangent
approximation in the assimilation of oceano-
graphic data has apparently not been checked so
far. Budgell (1986) has found that the extended
Kalman filter, used in simplified but realistic con-
ditions, was able to properly assimilate synthetic
data, thus supporting the validity of the tangent
linear hypothesis. On the other hand, Evensen
(1992), also in simplified (but no less realistic) con-
ditions, has observed numerical divergence of the

Tellus 48A (1996), 1



ON EXTENDING THE LIMITS OF VARIATIONAL ASSIMILATION 99

extended Kalman filter, as confirmed by later tests
(Evensen, 1994), that divergence was due to
neglect of nonlinear saturation processes. In any
case, the tangent linear approximation becomes
invalid when the assimilation period is extended
over long periods, typically more than 3 days for
large scale meteorological flow. For long assimila-
tion periods, the chaotic character of the flow will
progressively become more and more important,
and it is necessary to determine the resulting
implications for assimilation. The purpose of our
article is precisely to determine the impact of
taking long assimilation periods.

Assimilation with nonlinear chaotic systems has
already been studied by several authors. Gauthier
(1992), Stensrud and Bao (1992), and Miller et al.
(1994) have performed experiments with the classi-
cal three-parameter system introduced by Lorenz
(1963), using either sequential or variational
algorithms. All these authors have found that
performance of assimilation varies significantly
depending on the period of time over which it is
implemented, and that assimilation is particularly
difficult at times when the system experiences
“transitions” between the two lobes of the Lorenz
attractor. They have also observed that extension
of variational algorithms over long periods raises
difficulties due to the occurrence of multiple
minima in the cost-function. In the presence of
multiple minima, the result of the minimization
will depend on the starting point of the minimi-
zation.

The present paper is a further step in the study
of assimilation with chaotic systems. Our goal is to
investigate quantitatively the performance of fully-
nonlinear variational assimilation, and to deter-
mine its theoretical limits, as well as the ensuing
implications for deterministic predictability. We
shall consider only a highly idealized situation,
where

(i) The model is perfect, that is, we know the
exact evolution equations of the dynamical system
under observation. This hypothesis is made for the
sake of simplicity. This simplification will be dis-
cussed in Section 6.

(ii) Observations of the complete state of the
system are available at regularly spaced intervals
of time. These observations are contaminated by
observational noise, but are available over
arbitrary long periods in the past.
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The main question we address is: what accuracy
can be obtained through variational assimilation,
from the information contained in (i) and (ii), on
the state of the system and on its subsequent evolu-
tion? This question raises a number of subsidiary
points. For instance, how does the accuracy of the
assimilated initial state vary when one uses
progressively longer assimilation periods, even-
tually going back to infinity? In other words,
what is the information content of remote past
observations? Finally, how 1is it practically
possible to find the absolute minimum of the cost
function and what is its relevance relative to other
minima?

Since our goal is primarily theoretical, we shall
illustrate our purpose on a low-dimensional
dynamical system: the already-mentioned classical
three-dimensional differential system of Lorenz
(1963) and the two-dimensional mapping intro-
duced by Hénon (1976). Both systems, like the
atmosphere, are dissipative and chaotic, and there-
fore possess a “strange attractor” to which the
orbits converge over long periods. The low dimen-
sionality of these systems allows not only easy
numerical experimentation, but also relatively
easy “understanding” of the chaotic character
of the corresponding dynamics. It must be
emphasized however, that the applicability of the
results presented below to more complicated
systems as general circulation models requires
further testing.

In Section 2, we study qualitatively on several
examples the behaviour of the cost-function when
the length of the assimilation period increases to
infinity, and we suggest how the corresponding
absolute minimum can be tracked by progressively
increasing, through successive small increments,
the length of the assimilation period. In Section 3
we present the statistical properties of the absolute
minimum, and of the covariance matrix of the
associated estimation error. We estimate also the
past time beyond which the information content of
observations becomes negligible. We develop in
Section 4 the quasi-static variational assimilation
(QSVA), through which the absolute minimum of
the cost-function can be tracked over assimilation
periods of increasing length. It is applied to the
Lorenz system. Section 5 is devoted to the quan-
tification of the predictability gain brought by
assimilation over long periods. Conclusions follow
in Section 6.
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2. Behaviour of the cost function in chaotic
systems

2.1. The stable manifold, the unstable manifold and
the cost function

We consider a dynamical system described by a
state vector x(¢) whose time evolution is given by
a finite set of m autonomous differential equations
of the form
dx

— = F(x).

< (2.1)

Unless specified otherwise, we assume for the sake
of simplicity that observations %(¢;) have been
taken at a constant sampling rate dz (¢,= —idt).
The observation error, &(t;)=X(#;)—x(t;), 1is
assumed to be random, uncorrelated in time, and
independent of both the time of the observation
and the observed state x(z;,). Without loss of
generality, we can assume that the error is
isotropic, with variance ¢* along any direction.
This hypothesis may require a prior linear trans-
formation on the state vector, which does not
change any of the topological properties of the
dynamical system, but renders the calculations
much easier.

We consider assimilations performed on the
latest N + 1 observations, that is, over an assimila-
tion period of length t = N dt. In general, the final
time ¢, of the assimilation period will be kept the
same (and will sometimes be called, in reference to
the situation where one wants to predict the future
evolution of the system, the present time), while
the initial time ¢, will vary. In particular, we will
consider the behaviour of the assimilation in the
limit N — co. o

Given a solution £(z) of (2.1), and given our
assumptions on the noise, the cost-function reads

J(z, %(0), x(0)) Z R, — x(t,) —e(2) >
-’ (2.2)
where ||-|| denotes the norm associated to a

scalar product denoted {-,-> in the following.
J measures the misfit between the solution £(#) and
the observations X(¢;) = x(t;) + ¢&(¢;). The purpose
of variational assimilation is to determine the solu-
tion of (2.1) which minimizes J. In (2.2), J is con-
sidered as a function of the estimated state vector
%(0) (denoted hereafter £) at the present time, of
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the real state vector x(0) (denoted hereafter x) at
the same time, and of the length 7 of the assimila-
tion period. Since the system is assumed to be
entirely deterministic, the cost function can alter-
natively be expressed in terms of the real and
estimated state vectors at the initial time ¢, of the
assimilation period, rather than at the final time,
J'(z, 2(tx), x(ty)) = J(z, £, x). (2.3)
The cost-function J defined by (2.2) will be called
the backward cost-function, while the cost-func-
tion J’ defined by (2.3) will be called the forward
cost-function.

In practice, explicit computation of the back-
ward cost function would require backward
integrations of the model. For a system which con-
tains dissipative processes, numerical errors are
strongly amplified by dissipation in a backward
integration, leading to rapid numerical divergence.
Therefore, variational assimilation is implemented
in practice on the forward cost function J', and the
minimization is performed on the estimated state
vector £(f,) at the beginning of the assimilation
period. It will nevertheless be convenient for the
theoretical developments which will follow to
consider the backward cost-function (2.2).

Eq. (2.2) can be decomposed into

e % x) == 3 18000 — x(0)
N+1 %
1 N
TN g le(2)11?
2 N
_N—'Hi;o CR(t) —x(2,), &(2,)). (24)

The first term on the right-hand side of (2.4) is the
error-free cost-function J(t, %, x), that we would
obtain in the absence of observational error. The
second term is the average of the squared observa-
tional error over the assimilation period, and the
third term is a cross-product between the dif-
ference X(¢;) — x(¢;) and the observational error.
When 7 goes to infinity, the second term con-
verges to the total variance of the observation
error, E2=ma?, independently of the two model
trajectories x(¢) and £(¢). In the same limit, the last
term goes to zero if we make the assumption that
there is no correlation between the observation
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error and the dynamical variables, since £(¢;) —
x(t;) is bounded. For large values of N, the
variations of J with £ will be dominated by the
variations of J,. In particular, for long assimilation
periods, low values of J should coincide with low
values of J,.

J. measures the mean square distance, accu-
mulated over the assimilation period, between the
two model solutions x(z) and X(¢). Two model
solutions cannot generally remain close to each
other in the remote past, even if they are very close
at time 0, owing to the fact that in chaotic dis-
sipative systems, sensitivity to initial conditions
acts both forward and backward in time. Hence,
for most trajectories, the cost function J, tends, as
7 goes to infinity, to a non-zero or infinite limit.
However, some trajectories X(f) converge, as
t — — o0, to the real trajectory x(¢). These are the
trajectories originating at time O from the unstable
manifold of x = x(0) (Guckenheimer and Holmes,
1983).

The unstable manifold W(x) of x is defined as
the set of state vectors X = £(0) of the phase space
verifying the condition:

e Wyx)<« lim |£(¢)—x(2)]|=0. (2.5a)

1= —

The stable manifold W(x) is defined in a similar
manner:

lim ||£(z) —x(2)|| =0. (2.5b)

t— + oo

e W(x)<=

It has been proven that these manifolds exist
(Hirsch and Pugh, 1970) for a special class of
systems, the hyperbolic systems. In fact, for such
systems, there are constants C>0 and 7z
(0 <7 <1) such that, when x lies on the attractor
of the system,

[£(5) = x()| < CyM,  for £e W(x)

and ¢ <0, (2.6a)
12(5) —x()| S CpMl,  for %e W(x)

and ¢t > 0. (2.6b)

Since |n| <1, the cost-function J (7, £, x) con-
verges exponentially to zero, when 7 goes to
infinity, if £ lies on the unstable manifold. Thus,
the limit cost function J/ is somewhat singular: it
vanishes along the unstable manifold, while it is
constant elsewhere, equal to the average square
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distance between two random points in the attrac-
tor. In the presence of observation errors, the limit
cost function is also singular: it reaches its minimal
value, E?, everywhere along the unstable manifold.
For finite values of 7, however, the absolute mini-
mum of J, is always obtained for £=x=x(0).
Intuitively, one easily understands that the point
in phase space corresponding to the absolute mini-
mum of the complete cost function J (2.4) must
rapidly converge, for large 7, to the unstable
manifold. Along this manifold, the fluctuations of
the last two terms in (2.4) dominate the fluctua-
tions of J. As will be shown in Section 3, the point
in phase space corresponding to the absolute mini-
mum does not generally converge to the exact
initial condition x, but to a point lying on the
unstable manifold.

A dual situation occurs for the forward cost
function, J', the stable manifold simply playing the
role played by the unstable manifold in the back-
ward mode. When the assimilation period is
extended both backward and forward in time, the
point in phase space corresponding to the absolute
minimum of the cost function converges to the
exact vector state x. This may have useful conse-
quences for the reanalysis of past observations.
For the same length of the assimilation period, and
for the same accuracy and spatio-temporal dis-
tribution of observations, the state of the atmo-
sphere at time ¢ should be reconstructed much
more accurately if one considers an assimilation
period containing past and future observations
than only past observations. This is in agreement
with the fact that assimilation error is minimal
inside the assimilation period (Derber, 1987). In
schematic terms, past observations provide
accuracy about the present state along its stable
modes, while future observations provide accuracy
along its unstable modes.

These results are illustrated by Fig. 1, for to the
two-dimensional discrete mapping introduced by
Hénon (1976)

(2.7a)
(2.7b)

2
xn+1=1+yn_axn9
yn+1=bxn9

where x, and y, are the coordinates of the nth
iterate of the mapping (x here denotes here a scalar
component, and no more a complete state vector).
Fig. 1 has been obtained for the values a = 1.4 and
b=10.3, for which system (2.7) is chaotic and dis-
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Fig. 1. Panel (a). Schematic representation of the stable and unstable manifolds of the Hénon mapping at point P
(0.25; -0.25) (after Ruelle, 1989). See details in the text. Panels (b) and (c). Variations of the error-free backward cost
function J., for assimilation periods of length = = 2 and 4, respectively. The cost-function is relative to an orbit going
through the same point P as in panel (a). The contour lines are in decimal logarithms. Panel (d). Same as in panels
(b) and (c), but for the error-free forward cost function J,, (and t=4).

d)
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sipative. Panel (a), borrowed from Ruelle (1989),
is a schematic representation of the stable and
unstable manifolds of the point P (0.25, —0.25).
The unstable manifold is the crescent-shaped
structure in the middle of the panel. It is entirely
contained in the region of the (x, y)-plane shown
in the panel. The stable manifold of P is the multi-
ply folded curve. It extends to infinity, and only
part of it is represented in the panel (the difference
between the spatial extensions of the two
manifolds is due to the dissipative character of the
mapping). The representation is schematic in that
both manifolds are not ordinary curves, but fractal
sets consisting of an infinite number of foliations.

Panels (b) and (c) of Fig. 1 represent the varia-
tions, as a function of the estimated state at time 0
(the analog of £(0) of eq. (2.2)), of the error-free
backward cost function J,. The real state of the
system at time 0 is the same point P as before, and
panels (b) and (c) correspond to the respective
values N=2 and 4 (here ¢ =1). In both panels,
regions of low cost values stretch along the
foldings of the unstable manifold. The stretching is
much more pronounced for N =4 (panel 1(c)). In
the vicinity of point P, J, varies much more slowly
along the direction of the unstable manifold W, (P)
than along the orthogonal direction. Panel (d) of
Fig. 1 represents the variations of the forward cost
function J., for the same point P and for N=4. It
is now along the direction of the stable manifold
W(P) that the cost function varies slowly. We
verified that, as N goes to infinity, and for both the
forward and the backward cost functions, the
isocontours experience repeated foldings which
can be described by a binary scheme. This is a con-
sequence of the existence in the Hénon map of an
invariant set called a Smale horseshoe (Devaney
and Nitecki, 1979). This situation shows a close
relationship between the shape of the cost-function
and the symbolic dynamics of the system (see Sub-
section 2.2 below). This folding mechanism is
responsible for the occurrence of multiple minima,
as observed from the experiments performed with
the Lorenz system by Gauthier (1992) and
Stensrud and Bao (1993).

2.2. The foldings of the cost function and the
symbolic dynamics

We show now some other important features of
the cost function using the well known Lorenz
system (1963). The advantage of using this
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system as a prototype for atmospheric studies is
that, in addition to being chaotic and dissipative,
it shares with the atmospheric system some
dynamical features, such as the existence of
multiple “regimes”, called weather regimes in the
atmospheric context (Legras and Ghil, 1985;
Vautard, 1990), separated by abrupt transitions
during which predictability can be poor (Tibaldi
and Molteni (1990); Palmer (1993)). The Lorenz
system is described by a set of differential non-
linear coupled equations in the three variables:
(x, y,z)eR*

dx
5=0(y—x), (2.8a)
dy
5 =Py xE (2.8b)
- —pz+xy. (2.8¢)

All the experiments discussed below are based on
the reference trajectory presented in Fig. 2, which
shows the time evolution of the variable x(¢) in
some time interval (—15,25), for the classical
parameter values g = 10, p =28, f = 8/3 leading to
a chaotic attractor (Sparrow, 1982). The system is
integrated using the predictor-corrector scheme
with a time-step of 0.02 units, starting from
the initial conditions (—4.62, —6.61,17.94) at
t= —15 (lying in the attractor, chosen after a
long numerical integration). In all experiments
described in this paper, synthetic “observations”
are constructed from the reference trajectory of
Fig. 2 by addition of random noise. Assimilation
experiments are designed to reconstruct the
reference trajectory from the noisy observations.

15+
10 H 11
5
0 -
-5 —
-10 i}

x(t)

.15 -

TTTT I rrrT | TTT1T | TTTT I TTTT I L I LILELL I LIRELEL ]
-15 -10 -5 0 5 10 15 20 25
Time
Fig. 2. Time variations, along the reference solution, of
the variable x(¢) of the Lorenz system.
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The two regimes of the Lorenz system corre-
spond to oscillations around either one of two
unstable fixed points of the system, which are
symmetrical about the axis x = y =0. The oscilla-
tions around one fixed point, during which the
variable x keeps the same sign, are clearly visible in
Fig. 2. They have a period of typically 1 time unit,
and their amplitude progressively increases until,
after a few oscillations, a transition occurs to the
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other fixed point. The transitions correspond to
changes in the sign of x. Since the Lorenz system
consists in a set of three differential equations, it
has three Lyapunov exponents: one is positive,
A, =1, another is zero, A, =0, and the third one
is negative, A; ~ — 14 (Sparrow, 1982; Nese et al.,
1987). The dimension of both the local stable and
unstable manifolds is therefore 1, and there is a
neutral manifold, spanned locally by the instan-

/
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Fig. 3. Variations of the error-free forward cost-function Ji(z, £, x) (Lorenz system ) in the plane spanned by the stable
and unstable directions, as determined from the tangent linear system (see text), and for 7 =6 (panel (a)) and =8
(panel (b)) respectively. The metric has been distorted in order to make the stable and unstable manifolds orthogonal
to each other in the figure. The scale on the contour lines is logarithmic (decimal logarithm). Contour interval:
0.1. For clarity, negative contours, which would be present only in the central “valley” directed along the stable

manifold, have not been drawn.
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taneous time-derivative vector (dx/d:z, dy/d:,
dz/dt). In practice, this neutral manifold disap-
pears with time discretization, but the associated
exponent remains very small. Errors diverge
exponentially forward in time along the unstable
manifold with an e-folding time 1/A, (for
infinitesimal errors and infinite time) and converge
to zero along the stable manifold with an e-folding
time — 1/A; (Ruelle, 1989).

We shall hereafter study the behaviour of the
cost function in a plane tangent to the local stable
and unstable manifolds. The direction of the
unstable manifold at time ¢ =0 can be determined
by simply integrating the tangent linear system (see
Section 3 below) forward from some negative time
t=—T,, from a randomly chosen perturbation
and renormalizing the vector at each regular short
time intervals. The unstable direction is the direc-
tion of the resulting vector at time t=0. In a
similar manner, the direction of the stable
manifold at z=0 is defined by backward integra-
tion of the tangent linear system from a positive
time t = + T. Here, we take 7, =2 and T, =04.
We focus here on the error-free forward cost func-
tion J., keeping in mind the duality between
unstable and stable manifolds, since long back-
ward integrations of the dissipative system are
numerically impossible.

Fig. 3, built in the same manner as Figs. 4 and 8
of Gauthier (1992), shows the variations of
Ju(z, X, x), for t=6 and =28 (panels (a) and (b)
respectively), and for an observation sampling rate
ot =0.1. The variations of J;, are represented in the
neighbourhood of the state vector at time ¢ = 0 (see
Fig. 2), corresponding to the approximate values
(x, y, z) =(6.55; 10.60; 16.62), and chosen as the
origin in Fig. 3. Note that in both panels, in order
to resolve the fine structure of the cost-function,
the coordinate along the unstable direction (the
horizontal coordinate) is magnified by a factor 10
with respect to the coordinate along the stable
direction. The contours of J; tend to stretch along
the stable manifold. The variations of J, in the
unstable direction become sharper and sharper as
7 increases. This is associated with foliations of the
isocontours of J, along the stable direction, and
the occurrence of a large number of secondary
minima, visible in panel (b).

Fig. 4a shows cross-sections of the cost function
J. along the horizontal axis of Fig. 3 (the unstable
direction), for =8, 9 and 9.7 (note the magnifica-
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tion of the horizontal axis in comparison with
Fig. 3). For =8, the cost function exhibits a
parabolic shape centered at the origin. For t=9,
the parabola has changed into a pair of two new
parabolas separated by a cusp. This changing
pattern is repeated in a self-similar manner when 7
grows from 9 to 9.7.

The solid curve of Fig. 4b, which also
corresponds to 7 =9.7, shows the variations of J;
along the unstable direction (the dashed curve will
be discussed later). The number of secondary min-
ima has become very large (note that the range of
variation along the unstable direction is ten times
as large in Fig. 4b asin Fig. 4a). In order to under-
stand better the creation of cusps and secondary
minima as 7 increases, we display next in Fig. 5 the
time evolution of the coordinate x for the orbits
originating from the absolute minimum, P (the
origin), and from the three local minima A, B and
C indicated in Fig. 4b. The trajectory originating
from A, the secondary minimum closest to P,
sticks to the reference trajectory originating from P

160 -
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1
0.04

Fig. 4. Panel (a): Cross-section of the error-free forward
cost-function J¢(1, £, x) along the unstable manifold, for
various values of 7. Panel (b). As in panel (a), for 1 =9.7,
and with a display interval ten times as large, respectively
for the error-free forward cost-function J(z, £, x) (solid
curve) and for the error-contaminated cost-function
Jo(7, £, x) (dashed curve). In the latter case, the total
variance of the observational noise is E2 = 75.
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Fig. 5. Variations of the coordinate x along the orbits originating from the minima P, 4, B, C (indicated in Fig. 4b)

of the error-free cost-function.

up to about 8 time units, and thereafter undergoes
an “erroneous” regime transition. The orbit
emanating from the next closest secondary mini-
mum B fails the transition near ¢ = 6.5, while the
orbit emanating from the farthest local minimum
C misses a regime transition of the reference orbit
at t=>5.8. In all three cases, the perturbed orbits
shift back to the reference orbit one oscillation
after they have left it.

These results suggest a simple interpretation
for the fluctuations of the cost-function. Each
secondary minimum corresponds to an orbit
which follows the same sequence of oscillations as
the reference orbit around one of the two fixed
points of the system, before missing a transition
(or undergoing an erroneous transition) and
possibly shifting back at a later time to orbiting the
same fixed point on the reference orbit. The lower
the secondary minimum, the smaller the number of
oscillations missed by the corresponding orbit. For
instance, the three minima A, B, C of Fig. 4b
correspond to orbits that miss only one oscillation
of the actual orbit. As for the position of the
secondary minimum along the unstable direction,
the closer it is to the absolute minimum, the later
the first “miss” occurs in the corresponding orbit.

More precisely, following Sparrow (1982), the
sequence of oscillations of the cost function around

the two fixed points of the system can be described
by an infinite string of binary characters of the
form XXYXYY.., where each symbol represents
one oscillation around either one of the fixed
points. Each secondary minimum, together with
its basin of attraction, corresponds to orbits which
are all described by the same string of characters
over the period 7. Each time the assimilation
period includes one more oscillation (the period of
an oscillation varies itself with time), thereby
opening one more possibility for one additional
miss, the number of secondary minima is multi-
plied by two. All orbits originating from the attrac-
tion basin of the absolute minimum, and those
orbits only, possess the same character string, over
the entire assimilation period, as the reference
orbit.

In a practical situation, it will be very important
to ensure that the starting point of the minimiza-
tion of the cost-function is located within the
attractive basin of the absolute minimum, which
guarantees that the string is correctly reproduced.
One possible procedure for doing so is to increase
stepwise the length of the assimilation period, to
determine at each step the orbit minimizing the
corresponding cost-function, and to use that orbit
as starting point for the minimization at the next
step. These quasi-static adjustments of the solution
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thus help to control the assimilation process in the
case of long assimilation periods. This method is
developed in Section 4.

Coming back now to Fig. 4b, the dashed curve
shows the variations of the error-contaminated
forward cost-function J' (see eq. 2.3-4). The
“observational noise” used to obtain J' was white
in time and isotropic in space, with o2 = 25 along
each direction, corresponding to a total variance
E?="75.1tis seen that J' differs from the error-free
cost-function J by approximately that amount,
and that the positions of the minima along the
unstable direction are the same for both cost-
functions. This is in agreement with what was
anticipated from eq. (2.4), and strongly suggests
that the position in phase space of the absolute
minimum of J' must be a good approximation of
the actual state of the system.

This “binary” description of the fluctuations of
the cost-function is somewhat tentative, but
corresponds to what has also been observed with
the two-dimensional Hénon mapping (not shown).
1t clearly has limitations. It can be valid only if the
sampling period d¢ is small enough to resolve each
oscillation of the actual orbit. Also, it can apply
only to orbits which oscillate in phase with the
reference orbit, so that transition times occur
simultaneously for the reference and perturbed
orbits. In this sense, it can be valid only in some
neighborhood of the absolute minimum, and cer-
tainly not over the whole phase space.

3. The error on the assimilated states

3.1. The tangent linear assumption and the estima-
tion error covariance matrix

We have anticipated in the previous section that
it should be possible, when using progressively
older observations, and through a quasi-static
control of the minimization procedure, to keep
solutions in the basin of the absolute minimum of
the cost function. We have also shown that the
trajectories associated with such solutions remain
close to the actual trajectory over the whole
assimilation period. Provided that type of control
is possible, the evolution of associated errors,
ox(t)=%(¢t) —x(t) is approximately governed by
the tangent linear equations resulting from the
linearisation of eq. (2.1):
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d(dx(z))
dr

=g—f:(x(t))6x(t). (3.1)

This system is linear with variable coefficients, so
that the transformation of any initial vector 6x(0)
into Jx(¢) by the tangent flow is given by a linear
operator H(t, x), called the resolvent of system
(3.1) between times 0 and 1.

ox(ty= H(t, x) 6x(0). (3.2)
Using these notations, the backward cost function
(2.4) can be rewritten as a function of dx = dx(0),

z

J(z, x, 6x) =vii Z ox(2;) —e(2,)11%

(3.3)

Decomposing the right-hand side as in eq. (2.4)
yields

1
J(7, x,0x) = il {dx, U(z, x) ox)

Z lle(z)11?

N+ l
RS 34)
N+l 7, X), 0X), (3.
where the matrix U(z, x) is defined as
N
Ut,x)= Y H'(t;, x) H(1,, x), (3.5)
i=0
and the vector V(t, x) is defined as
N
V(z, x) = Z T(t;, x) &(ty). (3.6)

In the linear tangent approach, the cost function
defined in eq. (3.3) has a unique minimum ox*.
This minimum can be obtained by differentiating
eq. (3.4) with respect to dx. After a few lines of
algebra, one obtains

Ox* = U, x) "t o(z, x). (3.7)
Considering that the observation error is a
random process, the covariance matrix of the
assimilation error is C(t, x) = E(dx* dx*T), E( )
being the expectation operator. After substitution
of egs. (3.6) and (3.7) into the expression for the
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covariance matrix, one easily obtains, using the
assumption that the observation error &(f) is
uncorrelated in time,

Clz, x)= U(t, x) ™!

N
x < Y H(t,, x) £H(t,, x)> Ur,x)~', (38)

i=0

where Z is the covariance matrix of the observation
error &(¢). Under the above assumption of isotropy
of the error, C(t, x) reduces to

C(t, x)=0?U(z, x) . (3.9)

3.2. The case of a tangent linear model with con-
stant coefficients

Let us consider the simple example of a tangent
linear system with constant coefficients, possessing
one stable and one unstable directions. Denoting
by dx and Jy the components of the state vector
perturbation along the unstable and stable direc-
tions respectively, the system equations read:

d éx/dt =a dx,
d dy/dt= — b 9y,

(3.10a)
(3.10b)

where a and b are positive constants. The matrix
U(z, x) is diagonal, which means that the estima-
tion errors in the directions dx and Jy are
uncorrelated, their variances being equal to:

Eox*h =gt L E T (3.11

(0x**)=0a | _ - 2atz+on’ 11a)

E(6y*?*) = Z—il e 3.11b
(oy*) =0 | — e +on (3.11b)

Simple conclusions can be drawn from these
expressions. First of all, both E(dx*?) and E(5y*?)
decrease as t increases, which means that the inclu-
sion of remote observations in the assimilation
does improve the quality of the estimation. The
asymptotic values of the estimation error variances
are:

m E(6x*?)=c*(1—e 2%, (3.12a)
lim E(Sy*?)=0. (3.12b)

T— 0
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As 7 goes to infinity, the error variance along the
unstable manifold does not converge to zero, a
situation that is not favorable for future prediction.
Yet the error is reduced relative to the case where
no past data are assimilated. The reduction factor
is determined by the density of observations. For
a dt <1 this factor is roughly proportional to the
sampling rate of the observations dz. We now
prove that the same properties hold in the general
case.

3.3. The case of a general tangent linear model

The estimation error covariance C(7,x) is a
symmetric, positive-definite matrix for finite values
of 7. The inner product {dx, C(z, x) dx), where
[6x| =1, is the variance of the assimilation error
along the direction Jx. In the Appendix, we prove
three important properties; the first two are
rigourously true under general assumption, but
the third one can only be proven for uniformly
hyperbolic systems (Guckenheimer and Holmes,
1983). These properties concern the behaviour of
the covariance matrix as 7 goes to infinity:

(i) The function Jx, C(r,x)dx> is a
monotonically decreasing function of z, for any
given direction Jx in the tangent space. This
property implies that, as in the constant-coefficient
case, the variance of the assimilation error always
decreases as the assimilation period is extended
backward in time.

(ii) The error covariance matrix C(z, x) has a
limit matrix C_(x) as 7 — co.

(ii1) C,(x) is a singular non-zero matrix,
meaning that only some components of the
assimilation error tend to vanish as one incor-
porates more and more remote past observations
in the assimilation process. The kernel of C (x) is
the subspace orthogonal to the unstable manifold
of the tangent linear system.

The last property confirms the conclusions drawn
from the phenomenological study of Section 2.
As 7 goes to infinity, the component of the error
orthogonal to the unstable manifold vanishes,
while the component along that manifold does not,
which implies that the assimilated solution does
not as a general rule converge to the exact solution.

These results can be transposed to assimilation
of future observations, for which the projection of
the error onto the subspace orthogonal to the
stable manifold goes to zero. In order to reduce the
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t=0

Unstable Manifold
x(0)

Assimilation Period

Stable Manifold

Fig. 6. Schematic representation, in phase space, and
along the assimilation period, of the dispersion of trajec-
tories associated to the absolute minimum of the cost
function. The heavy solid curve represents the exact
trajectory. The stable and unstable manifolds are shown
at the beginning and at the end of the assimilation period
(note that in general these manifolds are not orthogonal).
The ellipses represent the dispersion of the error
associated to the minimizing trajectories. This error
spreads along the stable manifold at the beginning of the
assimilation period and along the unstable manifold at
the end. In the middle of the period, the error is small in
all directions.

error in all directions and to perform an “optimal
shadowing” of the system’s trajectory at =0,
one has to perform variational assimilation with
both past and future observation (Farmer and
Sidorovich, 1991). The schematic diagram of Fig. 6
illustrates the behaviour of the estimation error
along the assimilation period. The assimilation
error concentrates along the stable manifold at the
beginning of the assimilation period, and along the
unstable manifold at the end of the period.

3.4. Upper bounds for the assimilation error

The direction in which the assimilation error
dx* has the largest variance is the eigendirection
associated to the largest eigenvalue of C(z, x). This
eigenvalue is by definition the spectral radius of
C(z, x) and will be denoted u(C(z, x)). We now
attempt to determine bounds for that quantity. We
shall denote (A4 ) and v(A) the largest and smallest
eigenvalues of a symmetric non-negative matrix 4.
From eq. (3.9), u(C(z, x)) =a?/v(U(x, x)). It is
easy to deduce from (3.5) the following inequality:
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N -1
#(C(z, x)) < 0? < > WH(t;, x) H(t,, X))>

i=0

(3.13)

The term with index i in the sum is the smallest
amplification factor (usually less than 1), between
times 0 and ¢;, of a perturbation governed by the
tangent linear model. Hence, it is equal to the
inverse of the growth rate of the fastest growing
mode (see, e.g, Lorenz, 1965; Lacarra and
Talagrand; 1988, Molteni and Palmer, 1993)
between the negative time ¢, and 0. Since it is a
positive number, it can be put into exponential
form,

V(H(1;, x) H(t,, x)) = exp(24,(x) t,), (3.14)
and the inequality (3.13) can be written
N -1
w(C(t, x)) <o < > eu""‘)"'> (3.15)
i=0

The “local” exponents 4,(x) are positive and tend,
as i increases (independently of x) to the largest
positive Lyapunov exponent. This quantity can be
obtained by the asymptotic singular values of the
resolvent matrix (Ruelle, 1989). Thus, the inclu-
sion of remote past data has an exponentially
decreasing impact on the reduction of the error.
The terms contributing most to this reduction are
the first terms of sum in the r.h.s. of (3.15) (the first
term is 1).

Since the exponents 4,(x) are local measures of
the instability, the reduction should be largest just
after the system error has undergone a period
of weak instability, in which case the first few
exponents are small. In the opposite case, when
the system has undergone a period of strong
instability, the reduction is inefficient, since the
first exponents in the series (3.15) are large.
Another conclusion that can be drawn from
inequality (3.15) is that it is important to have a
high density of observations, resulting in many
terms in the sum.

The tail of the sum in (3.15) becomes negligibly
small when, say, exp(24;t;)<0.01. Thus, it is
worthless to take an assimilation period longer
than the efficient assimilation period, t.{x)=
—Ln(0.01)/(2A(x)), where A(x) is a typical value
of the local exponents. The efficient period, which
may vary with time, can be estimated numerically
in the course of the assimilation process, by
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calculating the largest local growth rate, as was
done experimentally in order to determine the
predictability of particular weather situations
(Molteni and Palmer, 1993). A somewhat cruder
estimate can be obtained by replacing 4,(x) by the
largest Lyapunov exponent of the system, A,
leading to 7,,= — Ln(0.01)/(2A ). For the Lorenz
system, A; = 1 and 7=~ 2. Numerical results will
confirm this estimate in the next Sections. If one
assumes for the large-scale atmospheric flow an
average doubling time of small errors of 2.5 days,
as it was diagnosed by Lorenz (1969), the efficient
assimilation period for large-scale flow should be
of the order of a week. However, this estimation
must not be taken too strictly. Many of the
assumptions made here, like, for instance, the
assumption of a perfect model, will not be verified
due to the quality of the atmospheric models in a
more realistic situation.

4. Quasi-static variational assimilation with
the Lorenz system

The goal of this section is two-fold: On the one
hand, it is designed to verify numerically the
statements of the previous section, by performing
assimilation experiments with the Lorenz system.
On the other hand, we develop here the quasi-
static variational assimilation (QSVA) algorithm
proposed in Section 2, which allows to track the
absolute minimum of the cost function over long
assimilation periods. Other interesting efficient
algorithms, such as .the simulated annealing
(Robertson et al., 1989), call for an application to
this highly nonlinear variational problem where
the absolute minimum is sought. However, as we
shall see below, QSVA allows a natural control of
the absolute minimum. By contrast, in the
simulated annealing approach, only prescribed
control parameters decide whether the algorithm
is to be stopped, in which case the solution can fall
off far away from the actual global minimum, even
though the value of the cost function is very low.

The Lorenz system is integrated, as above, with
a predictor-corrector temporal scheme, and a time
step of 0.02. Minimization is achieved by using a
Quasi-Newton algorithm (see Vautard and Legras
(1988) for technical details). The gradient of the
cost function is calculated using the adjoint of
the model (Talagrand and Courtier, 1987). The
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adjoint equations were already used for the Lorenz
system by Gauthier (1992) and Stensrud and Bao
(1992). The reference orbit to be reconstructed
corresponds to the time sequence presented in
Fig. 2. The “present” is time ¢ =0. As above, the
observation error is modeled by an isotropic
Gaussian white noise process with unit covariance
matrix in the coordinates x, y, z (E2=3). All
experiments described hereafter are performed
with an observation sampling rate ér =0.1.

4.1. Quasi-static variational assimilation

For numerical reasons which have already been
explained, the minimization is performed with
respect to the state £( —7) at the initial the time of
the assimilation period. The QSVA algorithm can
be decomposed into three steps:

(1) Initialisation: Use the observation £(® =
X(—1) as starting point for the minimization of
the forward cost function J'(dt, X(—1), x(—1)),
defined over the time interval (—1, —t + 7). The
minimizer thus obtained is denoted 1.

(2) From stage i to stage i+ 1: Use £ as
starting point for the minimization of the cost
function J'((i+1) 7, R(—1), x(—1)), defined
over the interval (—1, —7+ (i + 1) d7). This leads
to the minimizer £“*". Index i varies from 1 to
M — 1, hence 7 = M or.

(3) Final stage: the solution £*’ of the last
minimization is intended to be the absolute mini-
mizer of J'(z, £( —1), x(—1)) = J(t, £(0), x(0)). In
order to obtain the corresponding estimated state
vector £(0) at time 0, the model must be integrated
over the assimilation period, with £ as initial
condition at time —7. Note that M = N d¢/r.

In the experiments to be described now, the
increment is taken as dr =0.2. QSVA is performed
with 100 independent realisations of the observa-
tion error, for =0, 1, 3, and 8. The value =0
corresponds to a case where no assimilation is in
effect performed, the “assimilation” error being
thus identical to the observation error.

In Figs. 7a-d we display the cloud of the 100
assimilated solutions at time 0, for the various
values of 7. As in Fig. 3, the position in phase space
is defined by a projection onto the subspace
spanned by the (linear) stable and unstable
manifolds (note that the scales are different, in
both directions, in panel (a) and in panels (b-d)).
As the assimilation period 7 increases, the cloud of
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of 7 are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dz, dy/dt, dz/dt) (central manifold ).

points shrinks in both directions, and tends to
concentrate, as expected from the theoretical
arguments of Sections 2 and 3, along the unstable
direction. Along that direction, the diameter of the
cloud is reduced by a factor of about 10 between
t=0 and 7=23. However, in agreement with the
estimate 7~ 2 of the previous section, no really
significant change occurs when 7 increases
beyond 3. It can also be noted that the local
curvature of the unstable manifold is clear on
panel (b).

Tables la—c show the eigenvalues and eigenvec-
tors of the assimilation error covariance matrix,
for 7 =3, as estimated directly from the numerical
sample of 100 points (Table 1a), from the theoreti-
cal formulae (3.5) and (3.9) (Table 1b) and from
the assimilated solutions obtained from a direct
variational assimilation starting from the raw
observations without the incremental process
(Table 1¢). The good agreement between the first
two sets of estimates shows that QSVA is capable
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of maintaining the system within the tangent linear
regime. By contrast, raw assimilation provides a
totally erroneous estimation of the covariance
matrix. Note that the largest eigenvalue in this case
is three orders of magnitude larger than in the
other cases. This is due to the fact that, at the end
of the assimilation period, the 100 trajectories have
progressively spread all over the attractor.

Table 2 shows various estimates of the spectral
radius u(C(z, x)) for different values of 7. The
agreement is very good between the values
obtained from the observed dispersion of the QSV-
assimilated states and from the tangent linear
equations, but the upper bound (3.13) grossly
overestimates the spectral radius for long assimila-
tion periods. Between 7=0 and 7 =8, the square
error is reduced by a factor of about 70, which is
much more than the value ( ~5) obtained from the
theoretical formula (3.15). The large difference
between the upper bound and the actual estimates
is due to the eigenvalue majoration of the matricial
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Table 1. Eigenvectors (w,, w,, wy) and associated
eigenvalues of the covariance matrix of the estima-
tion error at the final time of the assimilation period,
and for t=3

(a) the covariance matrix is estimated from the ensemble
of 100 assimilations performed with the QSVA

algorithm.
X-compo-  y-Compo-  z-COmpo- Eigen-
nent nent nent value
wy 0.397 0.462 0.793 33x1072
w, 0.318 0.741 —0.591 52x1073
ws 0.861 —0.486 —0.147 6.1x10°%

(b) the covariance matrix is estimated through the
tangent linear system and eqgs. (3.5)-(3.9).

X-compo-  y-compo-  z-Compo- Eigen-

nent nent nent value
w 0.400 0471 0.786 291 %1072
Wy 0.311 0.736 -0.600 6.71x 1073
Wi 0.861 —0.486 —0.147 35%x10-12

(c) the covariance matrix is estimated from the 100
assimilation experiments performed without the
QSVA algorithm, i.e., the minimization is performed
directly over the whole assimilation period using the
raw observations at time — 7 as the starting point of
the minimization.

X-COompo-  y-Compo-  z-compo- Eigen-
nent nent nent value
w, 0.550 0.831 0.008 29.4
W, 0.009 0.003 —0.995 121
Wi 0.829 —0.555 —0.060 0.181

C. PIRESET AL.

sum forming Uin eq. (3.15). The assimilation error
increases drastically once the obtained states fall
off the right “valley” of the cost-function. This hap-
pens for = 2. For t =1, the cost function is nearly
quadratic and most solutions remain near the
exact solution. For 7 =38, the cloud of points is
spread all over the attractor (at the end of the
assimilation period).

In order to study the time variations of the
reduction factor along the unstable manifold, we
calculate the theoretical value of u(C(z, x(¢)) (as
given by formula (3.9)), for a time ¢ varying from
0 to 22, and for an assimilation period t varying
from 0 to 5. At a given time ¢, the reduction factor
u(C(z, x(¢))) is a monotonically decreasing func-
tion of 7. In Fig. 8a we display, as functions of ¢, the
values of 7 at which a reduction factor 1 =0.8, 0.5,
0.2, 0.1, and 0.05 is reached. In Fig. 8b, the value of
the first exponent 4,(x(2)) in the r.hss. of (3.15) is
plotted as a function of time . This first exponent
is a measure of the recent-past instability. Several
conclusions can be drawn from these figures. First,
the peaks of both graphs coincide, meaning that,
as expected, the assimilation error is not much
reduced during or at the end of a period of strong
instability. By contrast, the error is greatly reduced
at times ¢ when A,(x(¢)) is small. Strong instan-
taneous instability typically occurs, in the Lorenz
system, when the trajectory lies close to the origin,
which typically occurs near t=12.1, or t=17.1,
one cycle before the transitions observed at
t=128 and ¢=178. Therefore, during and
immediately after an instability period, one should
not expect assimilation to produce accurate
estimated states, and the use of long assimilation
periods does not help. At later times, when the flow

Table 2. Estimates of the spectral radius u( C(z, x(t))) of the estimation error covariance matrix at the end

of the assimilation period, and for t=0, 1, 2, 3 and 8§

Cloud of points

Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 1 1 1 1
=1 0.36 0.37 0.39 0.46
=2 59x1072 5.74 45x1072 0.401
=3 33x1072 294 29x102 0.397
=8 1.4x1072 59.9 * 0.396

In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and eqs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-

hand column are the upper bounds defined by eq. (3.13).
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Fig. 8. (a) Values, as functions of time ¢, of the length t of the assimilation period for which the spectral radius
u(C(z, x(¢))) of the estimation error covariance matrix reaches the values u = 0.8, 0.5, 0.2, 0.1, 0.05, (from darker to
lighter shading). The spectral radius is calculated from the linear tangent approximation of the covariance matrix (egs.
(3.5)(3.9)). (b) For the same time period, values of the first exponent 4,(x(¢)) in the r.hs. of (3.15).

becomes more stable, the error can be drastically
reduced by using QSVA.

It must finally be stressed that there are limi-
tations, both numerical and observational, to
QSVA. The control of the absolute minimum can
be maintained in the course of the quasi-static
adjustments only if the starting point of each new
minimization is located within the basin of attrac-
tion of the absolute minimum. This requires, at
least, that both the observational error and the
sampling interval of observations be small enough.
In the case of the Lorenz system, the observations
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must at least be sufficiently accurate and frequent
in time to resolve each individual oscillation
around either one of the fixed points.

4.2. Sequential quasi-static variational assimilation

The algorithm described above has a major
drawback, namely its requirement for repeated
minimizations over overlapping periods of in-
creasing length associated with a high computa-
tional cost. One way to reduce that cost in a practi-
cal situation would be to proceed as follows.
Assume the absolute minimizing solution of the
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forward cost-function J'(z, £, x( — 7)) has been
determined. This cost function corresponds to the
interval (¢ — 1, t), where ¢ is the present time. This
minimizing solution is denoted £(7z—7). New
observations are acquired over the time interval
(¢, t+ 0t), where ot <7. The new cost-function
J'(z, X, x(t—t+ 1)) is then minimized, with
£(t — v+ 07) as starting point of of the minimiza-
tion. This point is obtained from X(z—1t) by
integrating (2.1) for a time d7. The new minimizing
solution defines an initial state for a forecast
starting at time ¢+ dJt. The process can be
repeated, each new minimization being performed
over a time interval shifted by Jr from the time
interval of the previous minimization. This will
work under the condition that, at every step, the
computed minimum is the absolute minimum, and
lies within the attractive basin of the absolute mini-
mum of the next minimization.

A large variety of schemes for sequential quasi-
static variational assimilation of this type can be
defined, only by varying the two parameters t
and Jd7. A number of meteorological centers have
decided to develop variational assimilation for
operational purposes. The schemes which are
being developed can be described as forms of
sequential quasi-static variational assimilation. In
these schemes as they are defined at present (see,
e.g., Courtier et al., 1994), there is no overlap
between successive assimilation periods (o7 =1),
but the solution obtained at each step is used not
only as the starting point for the next minimiza-
tion, but is actually included, as a “background”
term, into the new cost-function to be minimized.
This guarantees that, at each step, the information
contained in the observations performed before
the present assimilation period is not lost.

5. Variational assimilation and predictability

5.1. Instantaneous predictability

A statistical measure of the quality of an
assimilation process can be obtained from the dis-
tribution, for an ensemble of realizations of the
observational noise, of the error in the forecasts
produced from the assimilated states. Fig. 9a,
obtained from the QSVA experiments described in
the previous Section, shows the 5-, 50- and 95-per-
centiles of the distribution of the logarithms of the
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Fig. 9. (a) Median (heavy curve), and 5- and 95-percen-
tiles of the distribution of the logarithms of the nor-
malized squared assimilation and forecast errors, as
obtained from 100 independent realisations of the obser-
vational noise, and as functions of forecast time. The
assimilation period ( —3, 0) is included on the time axis.
(b) Fraction of successful regime forecasts as a function
of the forecast time, for =0 (no assimilation), 1 and 3.

squared forecast error, calculated from the sample
of 100 realizations of the observational noise
already used for producing Fig. 7. The length of
the assimilation period is 7=3. Note that the
assimilation period is included in the figure, and
that only positive values along the horizontal time
axis correspond to “forecasts”. The square error on
the vertical axis is normalized by twice the total
variance of the vector (x(z), y(¢), z(¢)), so that the
averaged squared distance between two points
randomly chosen on the attractor is equal to 1. All
predictability is lost when the distance between
the forecast and the actual values reaches that
value. The oscillations of the three curves in the
figure are in phase, which means that they are
statistically significant. The least successful fore-
casts, associated with the 95-percentile, reach the
predictability limit for a lead time of about 3 time
units. The median value of the forecast error
(50-percentile) reaches the predictability limit for a
lead time of about 4 to 5 time units. This range can
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be taken as the average predictability time for the
particular point on the attractor considered here,
and for the particular choices made here as con-
cerns the observational parameters.

As already mentioned, the sign of the variable
x(t) of the Lorenz system is an indicator of which
of the two regimes the state of the system belongs
to. Fig. 9b shows the fraction of successful regime
forecasts as a function of the lead time, for the
three values =0, 1 and 3 of the length of the
assimilation period. All three curves saturate at
the climatological value of 50% at lead time ¢t ~ 4.5,
in agreement with the estimate already obtained
from Fig. 9a. When no assimilation is performed
(7=0), almost half the forecasts miss the transition
at lead time 1.2 (see Fig. 2). For =1, a significant
fraction of the forecasts undergo an erroneous
transition at lead time ¢ = 2.8. For 7 = 3, more than
90 % of the forecasts are successful up to the trans-
ition occurring at time 3.6. The cusp present at
time 2 is due to the fact that x(¢) is close to zero at
that time, leading to difficulties in determining the
regime. The differences between the various curves
in Fig. 9b clearly show the importance, for the
quality of subsequent forecasts, of performing
assimilation over long periods, for which QSVA is
required.

5.2. Variability in predictability

Palmer (1993) has shown that the predictability
of the Lorenz system is subject to large variability.
This aspect is now studied from a sequential
QSVA experiment performed along the period
(0,22), with again 100 realisations of the observa-
tion error, using ¢ = 0.1 and dt = 0.2. We define at
each instant the predictability time, as the average,
over the 100 realisations, of the time during which
the sign of the forecast variable x(#) remains the
same as the actual one. The variations of the
predictability time is displayed in Fig. 10 for three
values of the assimilation period 7. It is larger right
after the instability periods, precisely when long
assimilation periods are not efficient (near t=12.5
and ¢=17.5, compare with Figs. 8a, b and with
Fig. 2). By contrast, long assimilation periods
(r=3) and QSVA increase significantly the predic-
tability time with respect to short assimilation
periods (r=1) when instability periods are
relatively far in the past (here, more than 1 unit,
say), and before new instability periods like at
times 12 and 17). In such cases, the number of
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Fig. 10. Predictability time (see text for definition), as a
function of the absolute time ¢, and for three values of the
length 7 of the assimilation period.

correctly reproduced transitions is significantly
increased by increasing the assimilation period
length, leading to a greater average predictability
time. This shows clearly the importance of taking
long assimilation periods in order to correctly
forecast transitions. In general, after a long period
of stability, the terms in the r.hs. of eq. (3.15)
decrease slowly, leading to a much longer efficient
assimilation period z.;.

5.3. Average predictability

We now assess the impact of variational
assimilation on average predictability. Egs. (2.8)
are integrated for a period of 1000 time units.
Observations are generated, as above, at a
sampling rate of 6r=0.1, with a unit error
covariance matrix. Sequential QSVA is applied as
above, with t=0, 1, and 3 and dr=0.2. Fig. 11a,
whose format is similar to that of Fig. 9a, shows
the average logarithm of the squared forecast error
over these cases. Over the 1000 time units covered,
a total of 5000 forecast experiments are taken into
account, on average (sampled every d7 units).

We first note that averaging over a large number
of different situations filters out the oscillations
present in Fig. 9a. For 7 =3, the error growth is
exponential, with a rate which can be verified to
roughly correspond to the first Lyapunov expo-
nent of the system (A; ~1). The average predic-
tability time (i.e., the lead time at which the error
growth saturates) is about 4-5 time units, in agree-
ment with the estimate already obtained from
Fig. 9a for one particular point of the attractor.
For smaller assimilation periods 7, the growth rate
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Fig. 11. (a) Squared normalized forecast error, averaged
over the attractor, as a function of forecast time, and for
the values 7 =0, 1 and 3 of the length of the assimilation
period (b). Fraction, over the attractor, of successful
regime forecasts, as a function of forecast time, and for
the values =0, 1 and 3 of the length of the assimilation
period.

is smaller, even for the same value of the error
(compare the 7 =3 and the =1 curves). The dif-
ference between the growth rates is due to the fact
that for large assimilation periods, the error is
mostly concentrated along the unstable manifold,
leading to a larger growth rate than when errors
are somewhat spread in all directions. For 1=1,
the predictability time decreases somewhat, and is
equal to about 2 time units when no assimilation is
performed (7 =0).

Fig. 11b, which is in the same format as Fig. 9b,
shows the average fraction of successfully forecast
regimes. All curves saturate at the climatological
value (0.5) for a lead time of 5 units. There is a dif-
ference of about 0.7 time units in regime predic-
tability between forecasts corresponding to z=1
and to T = 3. At a lead time of 3, for instance, about
85% of the regimes are correctly forecast for t=3
whereas the corresponding fractions are respec-
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tively 75 % and 55 % for z =1 and for no assimila-
tion.

6. Conclusion and discussion

We have performed a theoretical investigation
on variational assimilation of noisy observations
of a deterministic, nonlinear, chaotic dynamical
system. The study is made under the hypothesis of
a perfect model, and the results are illustrated by
numerical experiments performed with the three-
variable system introduced by Lorenz (1963). We
have studied how the accuracy of the state
obtained at the end of the assimilation period
varies when the length of the period increases back
to infinity. Mathematically, infinite accuracy is
obtained on the component of the flow that pro-
jects along the stable manifold of the system, while
finite accuracy is obtained on the component of the
flow that projects along the unstable manifold.
That latter component being the component that
generates forecast errors, inclusion of past obser-
vations, even with a perfect model, can have only
a limited impact on predictability.

The purpose of variational assimilation is to
determine the trajectory of the system that best
fits the observations over the assimilation period.
This is achieved through minimization of an
appropriate cost function. As the length of the
assimilation period increases back to infinity, the
chaotic nature of the system produces a foliation of
the contours of the cost-function and generates
infinitely many minima. The existence of multiple
minima in the cost-function for the case of a sim-
plistic atmospheric model was also shown by Li
(1991) and Gauthier (1992). These minima are
located in parallel narrow “valleys” elongated in
the direction of the unstable manifold of the system
at the final time of the assimilation period, the time
at which forecasts are to be issued. The attractor of
the system generally consists of a fractal foliation
of infinitely many sheets parallel to the unstable
manifold (this foliation is consequently infinitely
more refined than the foliation of a cost-function
defined over a finite time interval). The absolute
minimum of the cost-function always lies near the
sheet containing the exact state of the flow.

Starting the minimization from the observed
values generally leads to a secondary minimum.
We proposed here a quasi-static version of varia-
tional assimilation which, provided the temporal
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density of observations is high enough, allows to
track the absolute minimum over progressively
longer assimilation periods. A sequential version of
the quasi-static variational assimilation, suggested
in Subsection 4.2, allows to reduce drastically the
large computer time required for the quasi-static
adjustments of the solution. It is to be noted that
variational assimilation, as planned to be opera-
tionally implemented in several meteorological
centers, can be described as one particular form of
sequential quasi-static variational assimilation.

Comparison has been made of the quality of
forecasts originating from initial conditions
obtained through assimilation and from simply
“observed” initial conditions. The conclusion is
that assimilation significantly increases predic-
tability. The longer the assimilation period, the
higher the predictability. The gain in accuracy that
can be obtained by increasing the length of the
assimilation period is however limited, and
strongly dependent on the instability of the flow
over the recent past. We propose an approximative
estimate for the length 7, of the “efficient”
assimilation period. This length is proportional to
the average doubling time of growth of small
errors, found by Lorenz (1969) to be of the order
of 2.5 days for the large-scale atmospheric flow.
Using this value, a crude estimate of the efficient
assimilation period is 7.~ one week for the large-
scale atmospheric flow.

However, the oversimplified assumptions made
here (perfect model, for instance) cast doubt on the
reliability of such an estimate. The use of an imper-
fect model will probably decrease the efficient
assimilation period. The model errors have an
increasing influence as assimilated observations
get older. Nevertheless, it is generally agreed that
the initial errors are the main reason of the predic-
tability limitation of the forecasts in the short and
medium terms, hence leaving us with the hope that
assimilation periods of the order of several days
could be considered. In any case, experiments with
realistic models and actual observations have to be
carried out in order to clarify this point.

Above all, if valid qualitative conclusions, based
on arguments which are independent of the
particular properties of the Lorenz system, can
certainly be drawn for the atmosphere (as for
instance, the existence of multiple minima in the
cost-function, the concentration of the assimila-
tion error in the unstable modes, or the variation
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of the quality of the assimilation with the current
stability of the flow), further work is certainly
necessary before reliable quantitative estimates
can be obtained (for instance, on the maximum
value d¢ permissible for the QSVA algorithm to
work, and on the efficient assimilation period
length).

Preliminary applications of the QSVA algo-
rithm by the authors to a quasi-geostrophic model,
have been performed, yielding efficient assimila-
tion periods of the order of 5-10 days. In a recent
work, Luong (personnal communication) also
applied QSVA for the assimilation of altimetric
data in a quasi-geostrophic oceanic model, and
came out with efficient assimilation periods of
about 100 days, a period too long for the applica-
tion of direct variational assimilation.

Just as predictability itself, the accuracy of
assimilated solutions varies significantly with the
current state of the flow. We have shown that the
instantaneous estimation error strongly depends
on the degree of instability of the recent past.
Situations of low instability near the end of the
assimilation period are favorable to high accuracy
in the ensuing assimilated state. On the opposite,
unstable situations lead to a relatively large
estimation error, and no much improvement is to
be expected in such situations through the use of
long assimilation periods. This would typically
apply just after the atmosphere has undergone a
transition of weather regime.

We have shown how the variance of the instan-
taneous estimation error can be numerically
estimated, using the linear tangent model and its
adjoint. This method is however expensive. Its cost
could be reduced, following the ideas developed in
Toth and Kalnay (1993, 1994), by restricting the
computations to a few sequentially estimated
breeding modes. These modes, which are among
the unstable modes, must contain a large propor-
tion of the estimation error.

We have considered in this paper only varia-
tional assimilation. But some of the conclusions
obtained, such as the concentration of assimilation
error in the unstable modes of the flow, or the fact
that the assimilation error cannot be reduced to
zero by increasing the assimilation period, are
absolutely general. As regards the algorithms
themselves, the only real question is whether varia-
tional assimilation, or wvariants of variational
assimilation such as QSVA, are more efficient or
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not than other algorithms, such as the sequential
algorithms studied by Miller et al. (1994). This
question will be addressed in future work.

Finally, one main conclusion of this paper is
that assimilation of past observations essentially
reduces the error along the stable components of
the flow. A dual result is that assimilation of future
observations would reduce the error along the
unstable components. If observations are available
both before and after the time at which the state of
the flow is to be estimated, the assimilation error
becomes small in all directions. This has two con-
sequences. First, it emphasizes the importance, in a
reanalysis process of past observations, of using
observations performed both before and after the
estimation time. Second, it shows that any
available “future information” could be useful for
assimilation. Such future information can be
produced, for instance, by empirical models of the
low-frequency components of the atmospheric
system (Vautard et al,, 1995, Mon. Wea. Rev., sub-
mitted). Such models are able to predict characters
of the flow that ordinary weather prediction
models are apparently not able to predict, owing
partly to their systematic errors in the long run. As
such, the empirical models of the low-frequency
components bring additional information that is
contained neither in past observations nor in the
assimilating model. Low-frequency oscillations,
such as intraseasonal modes could be good
candidates for such a process. This would mean
that empirical forecasts could be considered as
“future observations” and used just as any other
observation in the real-time assimilation process.
Therefore, a complete assimilation cycle would
contain the empirical forecast itself.
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8. Appendix

The behaviour of the covariance matrix of the
estimation error in the limit of an infinitely long
assimilation period

We prove statements (i), (ii) and (iii) of Subsec-
tion 3.3. We will need lemmas, separated into
several algebraic lemmas (AL) and one topologi-
cal lemma (TL).

ALI: If A and B are symmetric positive-definite
matrices, then the matrix C=4"'—(4+B) " 'is
also symmetric positive-definite. The proofis easily
obtained by starting from a Cholesky factorisation
of 4, A= PTP, where P is an invertible matrix, and
noting that the eigenvalues of the symmetric
matrix

I—(I+(PT)~'BP~)~!

are all positive.

AL2: If A(t) is a one-parameter family of
symmetric positive-definite matrices such that
A(t') — A(t) is positive for ¢’ <t, then A(t) has a
limit 4, as ¢ goes to infinity. This limit is positive,
but may be singular. Then, for any value of the
parameter ¢, A(t) — A . has positive, possibly zero,
eigenvalues. The proof is obtained by taking the
limit, for any vector u, of { A(t) u, u>, which is a
decreasing, positive function of the parameter ¢,
and therefore converges to a non-negative number
a(u). The limit matrix coefficient (4, ), is obtained
by taking the limit, as ¢ goes to infinity, of

Aij(t) = }1(<A(t)(ui+ “j)’ (u;+ “j)>

= A (u—wy), (w;—uy)>) (A1)
where u, and u; are the basis vectors. The con-
vergence of 4,,(¢) is guaranteed by the convergence
of each.term of the difference.

AL3: If A is a symmetric positive-definite matrix
of order n, u and v are any vectors in R”, then the
following two inequalities hold:

Cu, vD2 < Au, ud{A v, v),
(CAu, 02 < CAu, ud{ Ao, v).

(A2a)
(A2b)

These inequalities result from Schwarz’s inequality
applied with the scalar product defined by the
matrix A.

AL4: If 4 is a symmetric matrix, of order n, its
kernel Ker(A4), and its image Im(A) are mutually
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orthogonal and in direct sum: Ker(4) ®Im(A4) =
R”. This follows from the diagonalisation of sym-
metric matrices, Ker(A4) being associated to zero
eigenvalues and Im(A4) to nonzero ones.

TL1: The Oseledec theorem (Oseledec, 1968).
For a large class of dynamical systems in a com-
pact manifold of dimension »n, the quantity

A(dx) =lim <-|_1t—| In( || H(t, x) 6x||)>, t— — oo

(A3)
exists and takes at most n values, A, >
A, = --- = A,, the so-called Lyapunov exponents
of the system. H(¢, x) is the resolvent of the system.
In the tangent space at point x, there exist
subspaces E,(x)={dx: A(6x)<A,} such that
R'"=FE|(x)2Eyx)=2 --- 2FE,(x). The unstable
manifold of the linear tangent system is the
subspace E,(x), where r is the smallest index such
that A, <0. There exists an inequality similar to
(2.6a), i.e., there are constants R>0and 0 <y < 1,
such that for any vector Jdx belonging to the
unstable manifold,

IH(z, x) 6x|| <R ||6x]| n",  for (A4)

The real number # can be chosen as any positive
number greater than exp(A,). When the system is
hyperbolic, the theorem of Hirsch and Pugh
(1970), from which inequalities (2.6a, b) result,
also shows that the unstable manifold of the
tangent system, E,(x), is locally tangent to, and
has the same dimension as, the unstable manifold
W.(x) of the nonlinear system.

t<0.

Proof of statement (i) of Subsection 3.3

The fact that (C(z, x) dx, 6x) is a monotoni-
cally decreasing function of 7 results from Lemma
ALL: If t=NJdt <t =N'6t, then NN’ and,
from eq. (3.9) one obtains:

C(t, x)—C(t', x)=a? {U(r, x)'— [ Uz, x)

N -1
+ X HYt,x) H(ti’x)] }; (AS)
i=N+1
therefore C(z, x) — C(t', x) is a symmetric positive
matrix, which proves the statement.
Proof of statement (ii) of Subsection 3.3
Equality (AS) also shows that the one-
parameter matrix family C(z,x) (r is the
parameter ) satisfies the hypothesis of Lemma AL2,
which proves the statement.
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Proof of statement (iii) of Subsection 3.3

We first show that Ker(C, ) < E*(x) (the sub-
space orthogonal to the unstable manifold). Take
any two vectors u in Ker(C,), and v in E,(x). We
first prove that {u, v> =0. From inequality (A2a)
of Lemma AL3 and eq. (3.9), one obtains, for any
value of 7:

{u, vD2 <L (1, x) u, ud{U(t, x) v, v).

The definition of U(z, x), for t = N dt, leads to

N
Uz, x)v,0) = ¥ H(t;, x) 0],

i=0

(A6)

(A7)

which is bounded as 7 goes to infinity, from
inequality (A4) of Lemma (TL1) and from the fact
that v € E,(x). The fact that u € Ker(C_, ) makes the
term < C(z, x) u, u) go to zero as 7 goes to infinity.
Therefore, {u, v> =0.

Next, we prove that Im(C ) S E(x). Letvbea
nonzero vector in Im(C). By definition, there is
a nonzero vector u such that v=C_u. Then,
inequality (A2b) of AL3 defines the following
upper bound for the quantity

(v, Ult, x) vy = Cyu, U, x) Cou):
{Copu, U(t,x) Coud?
<{Cu, ud{CU(z, x) Cou, Ult,x) Cou).
(A8)

For any value of 7, C(1,x)—C, is a positive
matrix (Lemma AL2). Therefore, the second term
in the r.hs. of (A8) is less than { (7, x) U(z, x)
C.u, Ult, x) Cu). From eq. (3.9), one obtains

(Coott, U(z, x) Coou)?

<{LCopth,ud{Cyru, Uz, x) Cyou), (A9)

and since U(z, x) is positive definite, the last
inequality can be divided by {(C.,u, U(t, x)
C., u), which leads to, after reintroduction of v,

v, Ult, x)v) S {Cxpu, u). (A10)

The expansion (A7) of the Lh.s. of this equation
shows that the corresponding series is bounded,
and that || H(z, x) v|| vanishes as 7 goes to infinity.
This proves that v belongs to E,(x), and that
Im(C, )< E,(x). From the two inclusions
Ker(C, )< E}(x) and Im(C,,) € E,(x), and from
Lemma AL4, we finally obtain the proof of state-
ment (iii).



120

C. PIRESET AL.

REFERENCES

Bennett, A. F. 1992. Inverse methods in physical
oceanography. Cambridge University Press, Cam-
bridge, United Kingdom, 346 pp.

Bennett, A. F. and Budgell, W. P. 1989. The Kalman
smoother for a linear quasi-geostrophic model of
ocean circulation. Dyn. Atmos. Oceans 13, 219-267.

Budgell, W. P. 1986. Nonlinear data assimilation for
shallow water equations in branched channels.
J. Geophys. Res. 91 (C9), 10,633-10,644.

Courtier, P. and Talagrand, O. 1990. Variational
assimilation of meteorological observations with the
direct and adjoint shallow-water equations. Tellus
42A, 531-549.

Courtier, P., Derber, J., Errico, R., Louis, J.-F. and
Vukicevic, T. 1993. Important literature on the use of
adjoint, variational methods and the Kalman filter in
meteorology. Tellus 45A, 341-357.

Courtier, P., Thépaut, J.-N. and Hollingsworth, A. 1994.
A strategy for operational implementation of
4D-VAR, using an incremental approach. Q. J. R.
Meteorol. Soc., in press.

Daley, R. 1991. Atmospheric data analysis. Cambridge
University Press, Cambridge, U.K., 460 pp.

Derber, J. C. 1987. Variational four-assimilation analysis
using quasi-geostrophic constrains. Mon. Wea. Rev.
115, 998-1008.

Devaney, R., and Nitecki, Z. 1979. Shift automorphisms
in the Hénon mapping. Comm. Math. Phys. 67,

137-148.

Errico, R. M. and Vukicevic, T. 1992. Sensivity analysis
using an adjoint of the PSU-NCAR mesoscale model.
Mon. Wea. Rev. 120, 1644-1660.

Evensen, G. 1992. Using the extended Kalman filter
with a multilayer quasigeostrophic ocean model.
J. Geophys. Res. 97 (C11), 17,905-17,924.

Evensen, G. 1994, Sequential data assimilation with a
nonlinear quasi-geostrophic model using Monte Carlo
methods to forecast error statistics. J. Geophys. Res. 99
(C5), 10,143-10,162.

Farmer, J. D, and Sidorovich, J. J. 1991. Optimal
shadowing and noise reduction. Physica D 47,
373-392.

Gaspar, P. and Wunsch, C. 1989. Estimates from
altimeter data of barotropic rossby waves in the
northwestern atlantic ocean. J. Phys. Oceanogr. 19,
1821-1844.

Gauthier, P. 1992. Chaos and quadri-dimensional data
assimilation. A study based on the Lorenz model.
Tellus 44A, 2-17.

Guckenheimer, J. and Holmes, P. 1983. Nonlinear oscilla-
tions, dynamical systems, and bifurcations of vector
fields. Springer-Verlag, New-York, 453 pp.

Ghil, M. and Malanotte-Rizzoli, P. 1991. Data assimila-
tion in meteorology and oceanography. Adv. Geophys.
33, 141-266.

Hénon, M. 1976. A two-dimensional mapping with a
strange attractor. Comm. Math. Phys. 50, 69-77.

Hirsch, M. W. and Pugh, C. C. 1970. Stable manifolds
and hyperbolic sets. Proc. Symp. Pure. Math. 14,
133-163.

Jazwinski, A. H. 1970. Stochastic processes and filtering
theory. Academic Press, New York, USA.

Kalman, R. E. 1960. A new approach to linear filtering
and prediction problems. J. Basic Eng. 82D, 35-45.
Lacarra, J.-F. and Talagrand, O. 1988. Short-range
evolution of small perturbations in a barotropic

model. Tellus 40A, 81-95.

Le Dimet, F.-X. and Talagrand, O. 1986. Variational
algorithms for analysis and assimilation of
meteorological observations: theoretical aspects.
Tellus 38A, 97-110.

Legras, B. and Ghil, M. 1985. Persistent anomalies,
blocking, and variations in atmospheric predictability.
J. Atmos. Sci. 42, 433-471.

Lewis, J. and Derber, J. C. 1985. The use of adjoint equa-
tions to solve a variational adjustment problem with
advective constraints. Tellus 37A, 309-322.

Li, Y. 1991. A Note on the uniqueness problem of varia-
tional adjustment approach to four-dimensional data
assimilation. J. of the Met. Soc. of Japan. 69, 581-585.

Lorenc, A. C. 1981. A global three-dimensional multi-
variate statistical interpolation scheme. Mon. Wea.
Rev. 109, 701-721.

Lorenc, A. C. 1986. Analysis methods for numerical
weather prediction. Q. J. R. Meteorol. Soc. 112,
1177-1194.

Lorenz, E. N. 1963. Deterministic nonperiodic flow.
J. Atmos. Sci. 20, 130-141.

Lorenz, E. N. 1965. A study of the predictability of a
28-variable atmospheric model. Tellus 27, 321-333.
Lorenz, E. N. 1969. Atmospheric predictability -as
revealed by naturally occurring analogues. J. Atmos.

Sci. 26, 636-646.

Miller, R. N., Ghil, M. and Gauthiez, F. 1994. Advanced
data assimilation in strongly nonlinear dynamical
systems. J. Atmos. Sci. 51, 1037-1056.

Molteni, F. and Palmer, T. 1993. Predictability and
finite-time instability of the northern winter circula-
tion. Quart. J. R. Meteor. Soc. 119, 269-298.

Nese, J. M., Dutton, J. A. and Wells, R. 1987. Calculated
attractor dimensions for low-order spectral models.
J. Atmos. Sci. 44, 1950-1972.

Oseledec, V. 1. 1968. A multiplicative ergodic theorem:
Lyapunov characteristic numbers for dynamical
systems. Trans. Moscow Math. Soc. 19, 197-231.

Palmer, T. 1988. Medium and extended-range predic-
tability and the stability of the Pacific/North American
mode. Quart. J. R. Meteor. Soc. 114, 691-713.

Palmer, T. 1993. Extended-range atmospheric prediction
and the Lorenz model. Bull. Am. Meteor. Soc. 74,
49-65.

Parrish, D. and Derber, D. 1992. The National
Meteorological Center’s Spectral Statistical-Interpola-
tion Analysis System. Mon. Wea. Rev. 120, 1747-1763.

Tellus 48A (1996), 1



ON EXTENDING THE LIMITS OF VARIATIONAL ASSIMILATION 121

Rabier, F. and Courtier, P. 1992. Four-dimensional
assimilation in the presence of baroclinic instability,
Q. J. R. Meteorol. Soc. 118, 649-672.

Robertson, D. H., Brown, F. B. and Navon, 1. M. 1989.
Determination of the structure of mixed-xenon clusters
using a finite-temperature, lattice-based Monte Carlo
method. J. Chem. Phys. 90, 3221-3229.

Ruelle, D. 1989. Chaotic evolution and strange attractors.
Cambridge University Press, Cambridge, 95 pp.

Sheinbaum, J. and Anderson, D. L. T. 1990a. Variational
assimilation of XBT data. Part L. J. Phys. Oceanogr. 20,
672-688.

Sheinbaum, J. and Anderson, D. L. T. 1990b. Variational
assimilation of XBT data. Part II. Sensitivity studies
and use of smoothing constraints. J. Phys. Oceanogr.
20, 689-704.

Sparrow, C. 1982. The Lorenz equations. Springer-
Verlag, New-York, 269 pp.

Stensrud, D. J. and Bao, J. W. 1992. Behaviors of varia-
tional and nudging assimilation techniques with a
chaotic low-order model. Mon. Wea. Rev. 120,
3016-3028.

Talagrand, O. 1992. Data assimilation problems. In:
Proceedings, NATO Advanced Study Institute,
Energy and water cycles in the climate system,
(Gliicksburg, Germany, October 1991), E. Raschke
and D. Jacob, eds. Forschungszentrum Geesthacht,
Geesthacht, Germany, 187-213.

Talagrand, O. and Courtier, P. 1987. Variational
assimilation of meteorological observations with the

Tellus 48A (1996), 1

adjoint vorticity equation (I). Theory. Quart. J. R.
Met. Soc. 113, 1311-1328.

Thacker, W. C. and R. B. Long, 1988. Fitting dynamics
to data. J. Geophys. Res. 93, 1227-1240.

Thépaut, J.-N., Vasiljevic, D., Courtier, P. and Pailleux,
J., 1993. Variational assimilation of conventional
meteorological observations with a multilevel
primitive-equation model. Q. J. R. Meteorol. Soc. 119,
153-186.

Tibaldi, S. and Molteni, F. 1990. On the operational
predictability of blocking. Tellus 42A, 343-365.

Toth, Z. and Kalnay, E. 1993. Ensemble forecasting at
NMC. The generation of perturbations. Bull. Amer.
Meteor. Soc. 74, 2317-2330.

Toth, Z. and Kalnay, E. 1994. Ensemble forecasting at
NMC. The use of the breeding method for generating
perturbations. Proceedings, 10th AMS Conference on
Numerical Weather Prediction, Portland, Oregon,
USA, July 1994. Published by the American
Meteorological Society.

Vautard, R. and Legras, B. 1988. On the source of
midlatitude low-frequency variability. Part II. Non-
linear equilibration of weather regimes. J. Atmos. Sci.
45, 2845-2867.

Vautard, R. 1990. Multiple weather regimes over the
north Atlantic: analysis of precursors and successors.
Mon. Wea. Rev. 118, 2056-2081.

Zou, X. Navon, I. M. and Le Dimet, F.-X. 1992. Incom-
plete observations and control of gravity waves in
variational data assimilation. Tellus 44A, 273-296.



