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ABSTRACT

Four-dimensional variational assimilation (4DVAR) of noisy observations in a multi-layer
quasi-geostrophic model is studied, in both the perfect and imperfect model settings. Within
the perfect model setting, the quality of the assimilated state improves significantly when the
assimilation period is extended more than one week into the past. Specifically, when observa-
tions are supplied every 6 h, the squared error in the assimilated state at the end of the assimila-
tion time period (the present) saturates at a value two orders of magnitude smaller than the
imposed observational error for an assimilation period of 10 days. Further, this reduction in
error occurs not only in measures explicitly minimized by 4DVAR, but for all standard measures
of error. For realistic levels of observational error, the extension of forecast lead times is large,
exceeding 15 days for global forecasts when the assimilation period is 10 days. This holds even
for weather regime transitions, which are shown to be predictable at lead times of 10 days. The
use of long assimilation periods extends forecast lead times approximately 5 days over the case
when assimilation periods are on the order of one day. The structure of the analysis error when
long assimilation period 4DVAR is applied is examined. This error is primarily concentrated
in the midlatitude storm tracks. The reduction in analysis error is increasingly efficient at small
scales as the assimilation period is increased; consequently, for long assimilation periods the
analysis error projects strongly into the subspace of the leading Lyapunov vectors. The perform-
ance of 4DVAR in an imperfect model setting is also examined, and is found to depend upon
the growth rate of the model errors. For rapidly growing model errors, extension of the assimila-
tion period beyond about 1–2 days results in a degradation in the quality of the assimilated
state as well as in the forecast quality. However, for model error growth rates similar to the
growth rates of the leading Lyapunov vectors of the system, improvements in the assimilated
state similar to those found for the perfect model are obtained. As such, it is estimated that
assimilation times of 3–5 days for current levels of model error may improve the quality of
assimilated states and forecasts in an operational setting.

1. Introduction chaotic. While this fact imposes an ultimate limit
upon useful deterministic weather forecasts estim-
ated at about 2 weeks, present performance ofIt is well established that dynamical motions in
numerical weather prediction models shows thatthe extra-tropical atmosphere are fundamentally
this limit is still far from being reached. Since the
quality of weather forecasts depends strongly upon* Corresponding author, current address: Department
the quality of the initial conditions, it is hopedof Geosciences, University of Wisconsin-Milwaukee,
that more accurate specification of those condi-Milwaukee, WI 53201 USA.

E-mail: kwanson@csd.uwm.edu tions will significantly improve the quality of
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short-range forecasts and extend the range of study we do not distinguish between the two
sources of information. Rather, we consideruseful forecasts.

One obvious way to improve forecast initial 4DVAR as globally adjusting a model solution to

the available, albeit erroneous, information overconditions is to improve how observational data
are assimilated into numerical prediction models. the entire assimilation period.

In this work, we examine a number of issuesIt is widely agreed that advanced data assimilation

techniques should utilize data better than current regarding the application of 4DVAR in an ideal-
ized setting. One class of these issues concernsstatistical interpolation techniques (Ghil and

Malanotte-Rizzoli, 1991). This includes not only how variational assimilation performs in the face

of chaos. The performance of 4DVAR for lowextracting as much dynamically relevant informa-
tion from the data as possible, but also filtering degree of freedom chaotic dynamical systems, such

as the classic Lorenz (1963) three variable system,out the spurious information (noise). Recently, one

particular advanced technique, four-dimensional has been studied by a number of authors. Gauthier
(1992), Stensrud and Bao (1992), Miller et al.variational assimilation of data (4DVAR), has

been studied intensively. This interest was (1994), and Pires et al. (1996) all found that the

performance of 4DVAR varies significantly as aspawned by the work of Lewis and Derber (1985),
Le Dimet and Talagrand (1986) (hereafter function of the assimilation time period Ta .

Further, it was found in these studies that assimila-LDT86), and Talagrand and Courtier (1987)

(TC87), who showed that it is feasible to perform tion is particularly difficult at times when the
system experiences regime transitions between the4DVAR with fairly realistic models. 4DVAR differs

from sequential algorithms, such as variants of two lobes of the Lorenz attractor. As there are
conceptual similarities between the regime trans-Kalman filtering (Kalman, 1960; Ghil and

Malanotte-Rizzoli, 1991), as it seeks a nonlinear itions in the Lorenz system and weather regime

transitions in the atmosphere (Vautard, 1990),best estimate of the flow through direct explicit
minimization of some scalar function measuring such as from a blocked to an unblocked flow, this

result suggests that predicting atmosphericthe misfit between the observations and the model

solution over a finite assimilation time period Ta . weather regime transitions is inherently difficult.
Finally, assimilation over long time periods Ta isThe misfit, or cost function to be minimized is

typically the sum of the squared observation- difficult due to the appearance of multiple minima

in the cost function. In the presence of multipleminus-model differences, weighted by the inverse
covariance matrix of the observational errors. minima, the result of the minimization, and hence

the assimilated model state estimate, can dependThe computational appeal of 4DVAR is that

adjoint methods provide a means to systematically upon the starting point of the minimization. The
purpose of this work is to examine the extent tosearch for the minimum of the cost function. This

is because the adjoint equations allow explicit and which these results from low degree of freedom

models apply to variational assimilation in a moreefficient calculation of the gradient of the cost
function with respect to the state of the model at realistic atmospheric model, namely the 3-layer

quasi-geostrophic model of Marshall andthe beginning of the assimilation period (LDT86;

TC87). Currently, 4DVAR is operational at the Molteni (1993).
As such, the first issue we address concerns theEuropean Center for Medium Range Weather

Forecasts (ECMWF) with an assimilation period optimal length of time over which to perform

variational assimilation. Pires et al. (1996) foundof 6 h. However, both practical and theoretical
research is needed before the limits and power of that increasing the assimilation time period Ta

beyond the error doubling time of the system tNL4DVAR in an operational setting can be assessed.

In operational mode 4DVAR is used sequen- significantly improved the quality of the assimil-
ated state, and by extension, the quality of thetially, and previous forecasts are treated as ‘obser-

vations’ weighted by their respective error forecasts. They proposed an algorithm, quasi-
static variational assimilation (QSVA), that allowscovariances. This adds a background term to the

cost function. From a theoretical viewpoint, there tracking of the absolute minimum of the cost

function over progressively longer assimilationis no fundamental difference between these forecast
values and the observed values. Therefore, for this periods provided that the temporal density of
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observations is sufficiently large and the level of the error in this manner may reduce the overall
growth rate of the error compared to the caseobservational error sufficiently small. Based upon

their findings with the Lorenz model, they sug- where no assimilation, or assimilation over a short

time period is done. This is because disturbancesgested that assimilation time periods on the order
of one week should be optimal in more realistic that grow more rapidly than the local exponential

divergence of trajectories on the unstable manifold,atmospheric models. We examine whether this

estimate holds in a more complicated model, and such as singular vectors (Farrell, 1990; Molteni
and Palmer, 1993), are typically comprised ofto quantify improvements in forecasts obtained

when the assimilation time period is extended. strongly decaying as well as amplifying error

components (Palmer, 1995). The prototype ofAnother important issue concerns the structure
of the analysis error at the forecast initiation time. singular vector growth is an initial disturbance

composed of two very non-orthogonal eigen-Analysis error has been and continues to be a

topic of extreme interest and importance in opera- modes, one that strongly decays with time and a
second that amplifies or only weakly decays withtional weather forecasting, since it guides the

development of ensemble prediction strategies time. Since the two eigenmodes are very non-

orthogonal, the initial disturbance formed by the(Toth and Kalnay, 1993; Molteni et al., 1996). At
the National Center for Environmental Prediction addition of these eigenmodes can initially be small.

However, since the first eigenmode decays rapidly,(NCEP), forecast ensembles are initiated by

adding perturbations to the analysis that suppos- the disturbance will rapidly acquire the structure
of second eigenmode as it evolves with time,edly represent the analysis error, while ensembles

at ECMWF are initiated by adding perturbations yielding rapid disturbance growth. Transient
growth of singular vectors in fluid systems wasthat yield the maximum future forecast spread.

Our purpose here is not to arbitrate between these first noted by Orr (1907), and a review of this

process in plane parallel shear flow is given bystrategies, but to provide scientific material to this
debate by examining the main characteristics of Lindzen (1988). In the context here, however, if

extending the assimilation period eliminates erroranalysis errors within the perfect model hypo-

thesis. Since present models are far from perfect, projections in decaying directions, singular vector
growth that relies upon strongly decaying errorthe results presented here are not strictly valid.

However, model improvements and the opera- components will not occur, leading to a con-

sequent reduction in overall error growth rates.tional application of 4DVAR should make these
results applicable in the future. The structure of the assimilated state error has

important practical consequences for predictabil-The general result demonstrated by Pires et al.

(1996) is that in a perfect model environment, the ity. Provided the unstable manifold projects only
weakly into the subspace of leading singular vec-4DVAR-assimilated state error projects essentially

onto the unstable manifold of the system.* This tors, 4DVAR should drastically reduce the error

of the initial conditions in those directions thatimplies that for long assimilation periods, the
assimilation error should project primarily upon grow the fastest over the first few days of the

forecast. Our aim is to address this issue withinthe amplifying local Lyapunov vectors (Eckmann

and Ruelle, 1981; Legras and Vautard, 1995), since the context of a reasonably realistic atmospheric
model. We seek to understand the structure of thethese vectors span the unstable manifold. Pires

et al. (1996) explicitly confirmed that such a assimilation error and the growth of the forecast

error under 4DVAR. This includes how the struc-projection occurs for the 3-variable Lorenz
(1963) system. ture of the error at the forecast initiation time

depends upon the length of the assimilation timeInterestingly, it may be argued that confining

interval, whether error at small scales plays a
significant role in the growth of forecast error,

* For reference, the unstable manifold is spanned by and whether the predictability is directly related
those error directions that decay toward the true solution

to the instability of the flow itself, i.e., to synoptic
trajectory in the distant past; conversely, the stable mani-

scales associated with baroclinic instability.fold is spanned by those error directions that decay
The final issue we address regards how welltoward the true solution trajectory in the distant future

(Guckenheimer and Holmes, 1983). 4DVAR performs in a non-perfect model environ-
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ment. 4DVAR is formally valid only in the perfect Appendix A), and may be schematically written
model framework, where the only source of error

∂q/∂t=−J(y, q+ f)−Dq+S. (2.1)is in the observations themselves. However, any

realistic application of 4DVAR in an operational
Here, q is the relative QG pseudo-potential vorti-

setting must necessarily account for model errors
city (PV), related by an elliptic operator q=Ay

as well. To understand to what extent 4DVAR
to the geostrophic streamfunction y, J(A, B)=

improves forecast quality in the presence of model
(a cos h)−1 (∂

l
A ∂

h
B−∂

l
B ∂

h
A) is the 2-D

errors, we examine assimilation and forecast error
Jacobian operator on a sphere of radius a; f is the

growth using versions of the 3-layer quasi-geo-
Coriolis parameter; and the contribution to the

strophic model with model errors in the truncation
PV from topography in the lowest layer is impli-

as well as improper specification of the model
citly assumed. In each layer, the dissipation Dq

forcing.
consists of Newtonian relaxation of the baroclinic

The outline of the article is as follows. In
flow component to a state of rest, hyperviscosity

Section 2, we introduce the 3-layer quasi-geo-
to damp small scales, and in the bottom layer,

strophic intermediate model used herein, outline
Ekman friction. The forcing term S is empirically

the application of 4DVAR to this model, and
calculated from the wintertime (DJFM) ECMWF

review the arguments presented by Pires et al.
1983–1993 analysis to yield a vanishing time aver-

(1996) why long assimilation time periods are
age vorticity tendency in each layer, i.e.,

desirable to optimally reduce analysis errors. In
Section 3, we study 4DVAR and predictability in S=J(ya , qa+ f )+Dqa , (2.2)
the perfect model situation, examining the
enhanced predictability made possible by the use where the overline indicates time average, and
of 4DVAR in both case studies as well as on subscript a indicates anlayzed ECMWF fields.
average. In Section 4, the structure of the analysis This forcing prevents the model from drifting away
error under 4DVAR is examined, focusing on the from the observed ECMWF climatology. The only
spatial structure of that error and its projection substantive difference between the MM93 model
onto the leading singular vectors and Lyapunov and the version herein is the time difference
vectors for the system. In Section 5, we extend the scheme; we use a first order Adams–Bashforth–
results above to the imperfect model case, and Moulton predictor/corrector scheme (Stoer and
conclusions are drawn in Section 6. Bulirsch, 1993), while MM93 used a leap frog

scheme.
The experimental situations that we consider2. Model and methodology

are idealized. First, a truth trajectory is generated
using the fully nonlinear model. From this traject-2.1. T he dynamical model
ory, ‘‘observations’’ O are generated every 6 h by

The intermediate model we use to study 4DVAR adding error to the truth trajectory. This error is
is the Laboratoire de Météorologie Dynamique modeled by an isotropic Gaussian white noise
(LMD) version of the 3-layer quasi-geostrophic process with a standard deviation of (60, 40, 20) m
(QG) model introduced by Marshall and Molteni in the QG geopotential height field Z= f0g−1y
(1993; hereafter MM93). This model adequately at (200, 500, 850) mb, respectively, where g is the
simulates both extra-tropical synoptic-scale and acceleration due to gravity and f0 the Coriolis
low frequency variability (MM93; Liu, 1994; parameter at 45 N latitude. These observations
Michelangeli, 1996), and the simplicity of the QG are provided to 4DVAR in both the perfect and
framework minimizes computational require- imperfect model settings.
ments. The model is spectral on the sphere, with
triangular truncation at total wavenumber 21

(T21). The vertical coordinate is pressure, with
2.2. T he cost function and its minimization

the QG pseudo-potential vorticity q predicted at
200, 500, and 800 mb levels ( levels l=1, 2, and 3, To assimilate observations spread over the finite

time interval (t0 , t0+Ta ), we seek the initial condi-respectively). The evolution equations are discus-
sed at length in MM93 (their Section 3 and tion y0=y( t0 ) leading to the solution y(t) that
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minimizes the misfit between this solution and the Here, d*q is the sensitivity perturbation to the
integrated backwards in time, and A2 ( · )=data. This misfit is measured by the cost function.
A(A( · )). The choice of the streamfunction

squared norm (in contrast to a kinetic energyJ[y0]=
1

2
∑
N

i=1

y

i
−O

i
, S−1

i
(y
i
−O

i
)� . (2.3)

based norm, for example) simply reflects that our
observational errors are white in this norm; itHere, y

i
=y(t

i
) (where the layer subscript has

shall become apparent that for long assimilationbeen suppressed), O
i
is an observation at time t

i
,

periods, the choice of norm is not critical.S
i
is the covariance of the ith observation error,

The formulae above are valid provided theand 
 · , ·� is the inner product chosen as a measure
model is not temporally discretized. In practice,of the error. For the study here, we consider the
to obtain an exact gradient calculation the adjointinner product based on QG streamfunction
of the numerical time difference scheme must alsosquared, which is simply
be taken. For the case here, the forward model
employs the first order Adams–Bashforth–
ya , yb�= P P (ya , yb) dA , (2.4)
Moulton predictor–corrector time difference

scheme, and the calculation of the adjoint to this
where the double integral is over the surface of

scheme is straightforward. The adjoint code was
the sphere, and summation over the three layers

verified using the scalar product identity (Thépaut
is implicit. For future reference, we also define the

and Courtier, 1991).
enstrophy inner product

The adjoint model (2.6) involves twice the

number of nonlinear terms as the nonlinear for-

qa , qb�= P P (qa , qb) dA ; (2.5)

ward model (2.1), so that each adjoint integration
is approximately twice as costly as the forward

this alternative error measure is used to assess the integration. Given that the minimization algo-
extent to which error reduction by 4DVAR is rithm requires several iterations, each with one or
norm-specific. more evaluations of the functional and one of its

The minimization of the cost function is done gradient, the cost of one iteration corresponds
iteratively using algorithms such as conjugate roughly to the time required to integrate the model
gradient or quasi-Newton methods, where the over a period of 3Ta .latter are generally more efficient (Gilbert and

Lemaréchal, 1989). All minimizations in this paper
2.3. L ong assimilation periods and quasi-staticuse a slightly modified version of the quasi-

variational assimilationNewton algorithm DFPMIN from Numerical

recipes (Press et al., 1992). The iterative quasi- The successful assimilation of data for long TaNewton method requires at each iteration the in a nonlinear, chaotic system is not trivial, as
knowledge of the gradient of the cost function multiple minima in the cost function emerge as Tawith respect to initial condition y0 . As demon- is increased. The emergence of multiple minima is
strated by LDT86 and TC87, the value of the cost discussed at length in the context of low order
function and its gradient may be obtained by a chaotic systems by a number of authors (Li, 1991;
forward integration of the direct nonlinear model Gauthier, 1992; Miller et al., 1994; Pires et al.,
followed by a backward integration of the 1996). For Ta sufficiently long in a chaotic system,
adjoint model. the true solution trajectory will pass through

For the QG model (2.1), the adjoint model in regions in the system’s phase space where the flow
the streamfunction squared norm can be written is highly sensitive to small errors. For example, in

the Lorenz (1963) system, these sensitive regions∂d*q/∂t=−L(q)d*q (2.6)
occur whenever the x and y components of the

where trajectory are simultaneously small (Palmer,
1993). In these sensitive regions, assimilated tra-L(q)=−AJ(q+ f, A−2d*q)
jectories lying near the true trajectory at the

+A2J(A−1q, A−2d*q)−ADA−2d*q .
beginning of the assimilation period may be
diverted into erroneous solution regimes for some(2.7)
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period of time, only to later return to the vicinity then the error at the beginning of the assimilation
period would be much more strongly constrained.of the true trajectory before the end of the assimila-

tion time interval. Any trajectory that is diverted Cycling involves the addition of a background

term at the beginning of the assimilation periodand rejoins the true trajectory in this manner must
lie within a secondary minima, as discussed in that contains information from previous assimila-

tions. If this background term has appropriateSubsection 2.2 of Pires et al. (1996).

Increasing Ta leads to ever more encounters error statistics (in particular, flow dependent stat-
istics), 4DVAR will have significant informationwith sensitive regions within the system’s phase

space. Given the exponential sensitivity of flow about the past. As such, the error at the beginning

of the assimilation period would be much reduced.trajectories in chaotic systems, assimilated traject-
ories lying ever nearer to the true trajectory at the However, if the assimilation period is already quite

long, essentially no new information about thebeginning of the assimilation period will be

diverted into secondary minima as Ta is increased. unstable components of the system would be
added. Thus, cycling would not significantly affectThis makes assimilation by descent methods effec-

tively useless for very long Ta , as assimilated the error at the end of the assimilation period,

and hence by extension, the forecast error.trajectories will nearly always become trapped in
a secondary minima of the cost function rather To provide the best estimate of the model state

at the forecast initiation time, we are confrontedthan shadow the true trajectory (Miller et al.,

1994). with two conflicting objectives: make Ta as long
as possible to improve the quality of the assimil-Yet, it can be shown that for optimal 4DVAR,

the assimilation period Ta should be as long as ated state, but keep Ta small enough to avoid the
emergence of multiple minima. Pires et al. (1996)possible. As discussed in Pires et al. (1996), this is

because of the manner in which 4DVAR distrib- proposed an algorithm, quasi-static variational

assimilation (QSVA), that allows extension of Tautes the assimilation error during the assimilation
time period. For example, at the beginning of the while avoiding the problems associated with mul-

tiple minima. The QSVA algorithm can be decom-assimilation period, 4DVAR has significant

information about the future behavior of trajector- posed into three steps, summarized below.
Without loss of generality we denote the presenties, and hence errors in phase space directions

containing trajectories that depart from the true (forecast initiation time) as t=0, implying assim-

ilation is done over the time interval [−Ta , 0]. Astrajectory in the future are strongly constrained.
However, since the assimilation has no informa- outlined above, the minimization is performed

with respect to the state y0=y(t0 ) at the begin-tion about the past behavior of the system, error

components that decay toward the true trajectory ning of the assimilation period.
(1) Initialization. Use the observationin the future, i.e., trajectories on the stable manifold

of the system, are not strongly constrained. y(0)
0
=O(Ta ) as the starting point for the minimiza-

tion of the intermediate cost function I∞[dTa , y0],Conversely, at the end of the assimilation period
4DVAR has significant information about the past defined over the time interval [−Ta , −Ta+dTa].

The state at −Ta corresponding to this minimizingbehavior of trajectories, and hence errors in phase

space directions containing trajectories that depart trajectory is denoted y(1)
0

.
(2) Stage i to stage i+1: Use y(i)

0
as the startingfrom the true trajectory in the past are strongly

constrained. However, since the assimilation has point for the minimization of the intermediate

cost function I∞[(i+1)dTa , y0], defined over theno information about the future behavior of the
system, error components that decay toward the time interval [−Ta , −Ta+ (i+1)dTa]. The state

at −Ta corresponding to this minimizing traject-true trajectory in the past, i.e., trajectories on the

unstable manifold of the system, are not strongly ory is denoted y(i+1)
0

. The index i varies from 1 to
M−1 where Ta=MdTa .constrained. At intermediate times, 4DVAR has

significant information about both the past and (3) Final stage. The starting point of the final
minimizing trajectory y(M)

0
is intended to be thefuture behavior of the true trajectory and the error

tends to be small in all phase space directions. absolute minimizing solution of I∞[dTa , y0]=
I[y0] defined over the entire assimilation periodIt is of interest to note that if 4DVAR is properly

cycled, as it would be in an operational setting, [−Ta , 0]. The corresponding state estimate for
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times t>−Ta is obtained by integrating the model
over the assimilation period with y(M)

0
as the initial

condition at time −Ta .
In the experiments described below, we consider

the time increment dTa=1 day. The value Ta=0
corresponds to a case where no assimilation is

performed, where the assimilation error is identical
to the observation error. As a computational note,
about 20 minimizing steps using the quasi-Newton

algorithm are used for each QSVA increment.

3. 4DVAR and predictability in the perfect
model case

In this section, we estimate the reduction in
analysis and forecast error by using 4DVAR in a
perfect model environment. In particular, we focus

on estimating the efficient past time scale te beyond
which observations no longer lead to improve-

ments in the assimilation and forecast skill. Pires
et al. (1996) found that for the Lorenz (1963)
system, this time scale was about 3 times the

doubling time of small errors tNL for the system.
Extrapolating, they argued that for the real atmo-
sphere, the efficient time scale should be about

one week. We now examine the relevance of this Fig. 1. Variation of the assimilation quality and forecast
estimate for the MM93 system. skill as measured by (a) the squared streamfunction error,

and (b) the enstrophy error as a function of time
(abscissa) and Ta (the numbers at the start of each curve).

3.1. Performance of QSVA and the use of far past Note that the cost function minimized herein measures
observations errors in the squared streamfunction norm. This assim-

ilation experiment is performed for one case only.
To understand how far QSVA allows us to

extend Ta consider assimilation of a sequence of
‘‘observations’’ available every 6 h that are gener- to 10 days, the error in the assimilated state

decreases substantially in both squared stream-ated by adding noise to a reference solution of the
nonlinear model (2.1). For reference, the error function and enstrophy norms. Somewhat surpris-

ingly, the reduction in error enstrophy is largerdoubling time for the model calculated by integrat-

ing a random initial perturbation over a suffi- than the reduction in error squared streamfunc-
tion, despite the fact that QSVA explicitly minim-ciently long time interval using the tangent linear

model is tNL~3 days. izes the latter quantity. However, the assimilated

trajectory is dynamically consistent over the assim-Previous attempts to extent Ta without QSVA
yielded improved assimilated states to Ta~tNL ilation time period; hence it is only natural that

error in all dynamically relevant quantities should(Gauthier, 1992; Tanguay et al., 1995). However,

extending Ta much beyond tNL was shown to lead be reduced, regardless of whether a given measure
of error is explicitly minimized.to a rapid decay of the quality of the assimilated

state, as the assimilated trajectories became The QSVA scheme succeeds in maintaining the
assimilated trajectory within the basin of attrac-trapped in secondary minima. For the MM93

model, we find that using QSVA circumvents some tion for the absolute minima of the cost function

for Ta as long as 10 days. This is in spite of theof the difficulties presented by the appearance of
multiple minima. Fig. 1 shows that as Ta increases existence of multiple minima in the cost function
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for Ta>5 days. For example, performing the that about 100 of the 1518 degrees of freedom in
the MM93 model are unstable. This imbalanceassimilation directly without QSVA for Ta=6 days

(not shown) yields an assimilated state with error between the number of stable and unstable direc-

tions means that the stable manifold is much morestreamfunction and error enstrophy both about
1.5 times larger than the QSVA assimilated state difficult for 4DVAR to characterize, and as such,

reduction of errors on the stable manifold is moreerrors shown in Fig. 1. In general, for the MM93

model we have found that multiple minima in the difficult than reduction of errors in the unstable
manifold within the assimilation period.cost function emerge for Ta=4 to 6 days, implying

that QSVA is required to obtain any reduction in Another interesting feature apparent in Fig. 1 is

the drastic improvement in predictability in thethe assimilated state error and forecast quality
that may occur for longer values of Ta . medium range (days 5–15) that is obtained by

using long assimilation periods. Fig. 1 shows t=However, it is also apparent from Fig. 1 that

the error in the assimilated state cannot be reduced 0 day assimilation/analysis error levels for short
Ta are equal to forecast error levels more thanindefinitely. Extending Ta to 14 days increases the

error in the assimilated state as well as the forecast 5 days in the future for Ta=10 days. This result

suggests that if current NWP models were perfect,error compared to their respective values for Ta=
10 days. The exponential proliferation of multiple the implementation of a long-perid 4DVAR ana-

lysis system would lead to a substantial gains inminima associated with the chaotic nature of the

system ultimately catches up with the QSVA algo- forecast skill.
rithm for Ta sufficiently long. The barrier at 10 to

12 days is roughly independent of both dTa and
3.2. Assimilation and predictability of a blocking

the observation frequency, as it still exists when
onset

the QSVA increment is changed to dTa=1/2 day

or 2 days, as well as when the frequency of Turning to a more observationally relevant
situation, we now examine the extent to whichobservations is doubled. This indicates that

extending Ta beyond 10 days may be difficult 4DVAR improves the predictability of a particular

weather regime transition in a reference modelregardless of the length of the QSVA increment
dTa . Curiously, Pires et al. (1996) were able to solution. Regime transitions, such as from a zonal

to a blocked flow, are well known to be difficultextend Ta to 8tNL for the low order Lorenz (1963)

system compared to only 3–4tNL for the MM93 to predict operationally (Tibaldi and Molteni,
1990). Based upon the behavior of simple dynam-model here. Evidently, maintaining the assimilated

state in the absolute minima of the cost function ically systems such as the Lorenz (1963) system,

it has been argued that the difficulty in predictingis more difficult for long Ta in high dimensional
systems than in low dimensional systems like the such transitions occurs because the flow is inher-

ently more unstable to small perturbations in theLorenz system. Nevertheless, assimilation to a

value of Ta=3tNL appears readily possible, which vicinity of such transitions (Palmer, 1993). This
instability can be quantified in any number ofby the arguments presented in Pires et al. (1996)

should be sufficient to extract the bulk of the ways; the growth of finite time singular vectors

(Molteni and Palmer, 1993), local Lyapunov vec-dynamical information contained within the
observations. tors (Trevisan and Legnani, 1995), or the flow

sensitivity as measured by the growth of perturba-It is interesting that the minimum in error

variance is located near the end rather than at the tions optimally configured to cause such weather
regime transitions (Oortwijn and Barkmeijer,middle of the assimilation period. This is because

there are many more stable phase space directions 1995) all indicate faster error growth when such

transitions occur.in the MM93 model than unstable phase space
directions: Vannitsen and Nicolis (1997) found Consider a synoptic situation consisting of the

Fig. 2. Onset and decay of the blocking event studied in this sub-section. Panels read from left to right, top to
bottom, and show 500mb QG geopotential height Z= f0g−1y at days 0, 2, 4, 6, 8, and 10. The contour interval is
50 m, with the 200 m contours darkened.
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onset and decay of a block in a model reference within the ENA region whose geopotential height
is smaller than the time mean. Although thissolution. Several time slices of the 500 mb height
construction is arbitrary, it provides a case-specificfield for this reference solution are shown in Fig. 2,
spatial disturbance pattern to compare against therevealing the onset and maturation of an V-type
time evolution of the block. Given this pattern weblock in the North Atlantic between t=0 and t=
can define the blocking index10 days. This block then subsequently decays

quickly, with the flow returning to near climatolo-
C=


Z, ZB�

ZB , ZB�

, (3.1)gical values by t=15 days. The experiments are
constructed as follows: to the 10 days preceding

where Z= f0g−1y is the instantaneous 500 mbday 0 of this solution, we generate 20 different
QG geopotential height field. We then arbitrarilyobservational realities by adding Gaussian white
normalize C to vanish for t=0 days and to havenoise error to the reference solution. These obser-
a value of unity at t=8 days for the true modelvations are provided every 6 h and assimilation is
trajectory. The variability of C with time for eachperformed over the time interval [−Ta , 0] for
individual forecast provides a quantitative meas-Ta=0, 2, and 10 days for each realization. The
ure of the skill of regional blocking prediction.QSVA algorithm is then applied to each series of

The forecast values of C, shown in Fig. 4 fornoisy observations.
the 20 realizations of the observational error,To measure the skill of regional blocking predic-
indicate that extending Ta greatly improvestion, we define a blocking index in a manner
regionally predictability. For Ta=0 days (nosimilar to that of Liu (1994) by introducing the
assimilation), neither the blocking onset nor itsQG geopotential height anomaly pattern ZB decay are well simulated, as the median of C forshown in Fig. 3. This anomaly pattern is con-
the 20 realizations is quite small and the spreadstructed by subtracting the time mean from the
of C quickly becomes as large as the blocking5-day running average 500 mb geopotential height
anomaly itself. Extending the assimilation periodfield centered at day 8, and setting to zero every
to Ta=2 days, the blocking onset is successfullypoint of this difference field outside the Europe–
predicted for all but two realizations of the obser-North Atlantic (ENA) region (30 to 90°N latitude,
vational error. However, the spread of the forecasts60°W to 40°E longitude), as well as those points
beyond t=8 days indicates rather poor case-wise
predictability of both the timing and the speed of
the decay of the block. With an assimilation period
of Ta=10 days, both the onset and decay of the
block are captured for all 20 realizations of the
observational error. The forecast values of C only
deviate significantly from the truth trajectory for
forecast lead times longer than 10 days.

3.3. Average predictability

In addition to improving predictability in
specific synoptic situations, extending Ta also
improves the average predictive skill of the model.
We now consider a 150-day model reference solu-
tion, of which noisy observations are generated
every 6 h as above. A sequential version of QSVA
proposed by Pires et al. (1996) is applied to this
time series to quantify the average predictability
for a 100 day segment of this solution, where
assimilation and forecasting are carried out every

Fig. 3. Geopotential height anomaly pattern used to
dt=12 h. The sequential version of QSVA imple-quantify regional predictability skill for the 20 manifesta-
mented is quite simple. We start by doing QSVAtions of observational error for the experiments in this

sub-section. The contour interval is 25 m. for the interval [t−Ta , t] for t=0 days. From
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escape from the attracting basin of the absolute
minima of the cost function. However, taking a
few QSVA minimizing steps at the intermediate

time steps Ta=6 and 8 days speeds the overall
convergence of the minimization. The assimilation
and forecast statistics described below are for the

200 individual assimilations and forecasts.
Fig. 5 shows that extending Ta from 0 to 10

days reduces the median error of the assimilated

state and consequently increases the forecast skill.
The quantitative reduction in the magnitude of
the error converges to a level about 70 times

smaller than the observational error in the squared
streamfunction norm explicitly minimized by
QSVA, and about 100 times smaller than the

observational error in the enstrophy norm for the
assimilation period Ta=10 days. For Ta greater
than 4 days, the error growth is approximately

exponential. The growth rate of the squared error
measures suggests an error e-folding time of 5 days,

Fig. 4. Dependence upon Ta of the forecast anomaly cor-
relation coefficient C for the 20 realizations of observa-
tional error. (a) Ta=0 days, (b) 2 days, and (c) 10 days.
For all cases, the solid line is the anomaly correlation
coefficient for the true solution, and the impulses are the
individual forecast realizations.

that point forward, the assimilated state at time
t−Ta+dt is used as the starting point for the
next assimilation’s minimization. No QSVA Fig. 5. Median values of the (a) streamfunction squared
appears to be necessary after the first time step error, and (b) enstrophy error for the 200 forecast set as

a function of forecast time and of the assimilation time Ta.for Ta=10 days, as the assimilated state does not
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or an error doubling time of approximately
3.5 days. This doubling time is somewhat longer
than the doubling time based upon the leading
Lyapunov exponent for the MM93 model of
3 days, primarily due to smaller local error growth
rates in the Equatorial and Southern Hemispheric
regions of the model domain. The lead time for
global forecast skill is quite long, exceeding 15 days
for Ta larger than 6 days. Note that in the squared
streamfunction norm, the growth rate of the error
decreases as Ta is made larger. The extent to which
extending Ta changes the error growth, as well as
changes in the structure of the error as a function
of Ta shall be explored further in the next Section.

The power of the 4DVAR to reduce error in
this perfect model setting when used in assimila-
tion mode, i.e., for negative times in Fig. 5, is also
apparent. In assimilation mode with Ta=10 days,
the error squared streamfunction is reduced by
two orders of magnitude at time t=−2 days. The
reduction in error for the assimilated states is
greater than that at the forecast initiation time, as
the assimilated state has the benefit of information
propagating not only forward but also backward
in time. We emphasize this fact because the poten-
tial of variational assimilation to provide
extremely accurate estimations of the atmosphere
for re-analysis of data should not be overlooked.

Finally we note that Fig. 5 reveals the systematic
nature of the behavior depicted by Fig. 1. Long
period assimilation with Ta=10 days increases
the predictability time scale by 5 days over short
assimilation periods of 1–2 days.

4. Structure of the analysis error under
4DVAR

4.1. Spatial structure

To begin our analysis of the error structure in
the MM93 model using QSVA, we consider the
spatial patterns of the error averaged over the 200
forecast experiments discussed above. Fig. 6 shows
the 500 mb QG geopotential error variance for
Ta=10 days at the forecast initiation time (day 0)
and 4 days later. At both times, the error is
primarily concentrated in the mid-lattitude storm Fig. 6. (a) 500 mb QG geopotential height error variance
tracks. However, comparison of panels (a) and (b) at day 0 for Ta=10 days. Contour interval is 1.25 m2,
shows that the error grows faster in the Pacific with values greater than 8.75 m2 shaded. (b) Same, but

day 4 error. Contour interval is 25 m2, with values greaterstorm track than in the Atlantic storm track. This
than 125 m2 shaded. (c) Zonal average error variance atis consistent with larger lower tropospheric Eady
day 0 (solid) and day 4 (dashed). Note the log scale forgrowth rates in the Pacific storm track for the
the ordinate.
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MM93 model, and implicates baroclinic instability a function of total wavenumber on the sphere at
as the primary source of error growth. Fig. 6c the forecast initiation time for Ta=0, 1, 2, 4, 6,
shows the zonally averaged 500 mb geopotential and 10 days. In addition to the substantial overall
height error variance at 0 and 4 days, again for decrease in the magnitude of the error as Ta is
Ta=10 days. The zonally averaged error at day 0 increased consistent with Fig. 5, the shape of the
does not vary strongly with latitude, but the spectra for long Ta in Fig. 7 indicates that the
growth of error in the tropics is weak compared error is preferentially reduced at small scales. This
to that in the mid-latitudes and particularly the is consistent with the larger reduction in error
Northern Hemisphere extra-tropics. The tropical enstrophy compared to error squared streamfunc-
error amplifies by a factor of only 3 over the 4-day tion as Ta is increased as shown in Fig. 5. While
time period, compared to more than a factor of this preferential reduction of error at small scales
10 amplification in the error over the Northern does not prove that error cascading from small to
Hemisphere extra-tropics. large spatial scales during the forecast is unimport-

It should be noted that these error structures in ant, QSVA does reduce error effectively at scales
general depend upon the space-time distribution not heavily weighted by the norm defining the
of the observations. Hence, it is encouraging from cost function.
the operational perspective that error growth is This reduction in error is virtually independent
slow in the tropics, which are poorly observed. In of the information provided at small scales.
contrast, one expects that long period 4DVAR Assimilation and forecasting on the same time
would greatly reduce analysis errors over the series with observations supplied only to scales
north Atlantic, due to the influence of observations larger than T13 yields virtually identical power
made upstream over the North American spectra and error reduction (not shown). This
continent.

conclusion only holds at the end of the assimila-

tion period for Ta=10 days; at the beginning of

the assimilation period, the error spectral structure4.2. Spectral structure of the error
is strongly peaked at small scales. Evidently, this

Next, we examine the spectral structure of the
information at small scales primarily lies in phase

error as a function of Ta. Fig. 7 shows the power
space directions that do not amplify over the

spectra of the streamfunction squared variance as
assimilation period, and hence this loss of informa-

tion does not adversely affect the assimilated

solution at the end of the assimilation period.

The behaviour of the error in the above experi-

ments is similar to that observed in the 4DVAR

experiments of Tanguay et al. (1995). In their

study of 4DVAR in a turbulent barotropic cascade,

extending the assimilation period also reduced

assimilation errors preferentially at small scales

(their Fig. 7), although their error never acquired

the spectral structure of the unstable manifold for

their turbulent barotropic model due to their

observation scheme*. This agreement is com-

forting, as instabilities in their barotropic model

were also found on large scales, albeit the result

of forcing rather than baroclinic instability as inFig. 7. Time average power spectra of day 0/ forecast
initiation time error in the squared streamfunction norm the case herein. Note, however, that the applica-
for the 200 forecast experiments. Individual curves are tion of QSVA allows the assimilation period here
labeled by their respective values of Ta. Also included to be extended further than it was in study
are the spectral structure of the leading Lyapunov vector

Tanguay et al. (1995) (10 versus 6 days); presum-( labeled LV) and the leading 2-day future singular vector
ably, applying QSVA in that study would have( labeled SV) averaged over the 200 forecast experiments.

The amplitude for these vectors is arbitrary. led to even greater reduction of assimilation error.
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4.3. Analysis errors, Lyapunov vectors, and
singular vectors

Also shown in Fig. 7 are the average spectra of
the leading Lyapunov vector (LV)** and that of

the leading singular vector (SV) optimized over the
first two forecast days. For Ta=10 days, the power
spectra of the error at forecast initiation time

strongly resembles that of the leading LV, while
the leading SV peaks at such larger wavenumbers
(see also Molteni and Palmer, 1993). This suggests

that the analysis error strongly projects onto the
unstable manifold of the system error when long
assimilation period 4DVAR is applied, as indicated
by the theoretical result of Pires et al. (1996). Fig. 8. Projection of the day 0 assimilation error onto

the 100 leading Lyapunov vectors and the 100 leadingTo show this explicitly, we project the 200
singular vectors as a function of assimilation time Ta.analysis errors at t=0 days onto the 100 leading
The solid lines for each are the median for the 200LVs and the 100 leading SVs, respectively, for
experiments, and the dashed lines are the 5th and 95th

varying values of Ta , and calculate the ratio
percent confidence intervals.

between the error variance of the projection and
that of the total error. Fig. 8 shows that for short
assimilation periods, the variance explained by

clude that analysis errors under 4DVAR are also
both the leading SVs and LVs is quite low.

parallel to these sheets.
However, as Ta increases, the analysis error mostly
projects onto the LVs, while no increase of the

variance explained by SVs is observed. Since the 4.4. Structure of the analysis error and
predictabilityunstable manifold of the system is locally spanned

by the LVs associated with a positive Lyapunov
The fact that analysis errors project onto the

exponent (about 100 in the MM93 model), we
leading LVs does not mean that non-modal singu-

conclude that the analysis errors for Ta=10 days
lar vector growth is totally eliminated, since LVs

are indeed contained within the unstable manifold.
have a nonzero (albeit small ) projection onto SVs.

Conversely, the leading SV directions are not
To show this, we project the 200 analysis errors

representative of this analysis error. Since the
at time t=0 for assimilation period Ta=10 days

unstable manifold of a dynamical system is parallel
onto the leading 20 SVs, and integrate these pro-

to its attractor sheets (Eckmann and Ruelle, 1983;
jected perturbations forward in time. For compar-

see also Legras and Vautard, 1995), we also con-
ison, the projection onto the leading 20 LVs is
also performed and integrated forward in time.

* Tanguay et al. (1995) provide a compregensive dis- Fig. 9 shows the growth of these projected errors,
cussion of the structure of the unstable manifold in a

as well as the entire forecast error for Ta=10 daysforced, turbulent barotropic system; we refer the interes-
from Fig. 5 as a function of lead time. The smallted reader to that study for more details.
projection of the analysis error onto the leading

** The Lyapunov vectors used herein are constructed by
20 SVs at day 0 grows very rapidly with time, and

integrating arbitrary initial conditions forward for 30
the associated forecast error amplitude is the samedays using the tangent linear model. After the first 10
as that of the forecast issued from the non-pro-days, these perturbations were reorthogonalized and nor-

malized using singular value decompression in the stre- jected error after day 3. In contrast, forecasts
amfunction squared norm every half day. Since these issued from the analysis errors projected onto the
vectors are only integrated over a finite period, they are leading 20 LVs maintain the same growth rate as
only approximate to the true Lyapunov vectors. We

the non-projected errors. The mean pattern cor-
retain 100 of these LV’s over a given 30 day interval,

relation between the SV-projected forecast errorsconsistent with the approximately 100 asymptotically
and the non-projected forecast errors is about 0.7.growing directions for the MM93 model (Vannitsen and

Nicolis, 1997). After day 3, it appears that the forecast error is
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the actual difference in the error growth rate goes
as the log of the square root of Cgrwth .

Fig. 10 shows the median of Cpat and Cgrwth at

forecast time t=4 days for the assimilation periods
Ta=1 and 10 days for the 200 forecast experi-
ments. Spatial truncation of the initial error

reduces both the median growth and spatial cor-
relation of the error for both values of Ta .
However, the truncation affects the Ta=1 day

error much more strongly. For example, removing
all scales smaller than T15 cuts the median Ta=
1 day error growth in half over the 0- to 4-day

time period, while a similar reduction in error
growth for Ta=10 days requires removing all

Fig. 9. Time evolution of the projection of the 200 day
error information initially on scales smaller than

0 assimilation errors for Ta=10 days onto the 20 leading
T11. The slopes of the Cgrwth and Cpat curvesLVs and 20 leading SVs at day 0. Also shown is the
provide an estimate of the sensitivity of the t=actual Ta=10 day forecast error.
4 day forecast error to information contained at

dominated by the component of the initial error
along the leading SVs.

In terms of spatial scales, this result indicates
that inspite of the preferential reduction of error
at small scales by QSVA, forecast errors undergo

a significant upscale cascade of variance over the
subsequent 4 days of evolution. However, the
importance of this upscale cascade depends upon

the length of the assimilation period Ta . To see
this, we truncate the actual assimilation error at
(and only at) the forecast initiation time, and

compare the growth and spatial structure of this
truncated error in the future to that of the true
forecast error. If error information on small scales

at the forecast initiation time is important, the
loss of this information should result in significant,
quantitative changes to the large scale structure

and growth of the forecast error in the medium
range. To quantify the effect of error truncation,
we consider the two quantities

Cpat=
yact , ytrunc�/
yact , yact� , (4.1)

Cgrwth=
ytrunc , ytrunc�/
yact , yact� , (4.2)

where the subscript ‘act’ refers to the actual field

and the subscript ‘trunc’ refers to fields that are
spectrally truncated at t=0 days. The quantity
Cpat is a pattern correlation, measuring the spatial

Fig. 10. Cpat (solid) and Cgrwth (dashed) for the
resemblance between the truncated and actual

forecast error at day 4 for the assimilation periods (a)
errors at some forecast time t, while Cgrwth meas- Ta=1 day and (b) Ta=10 days. The abscissa denotes
ures the relative growth of the truncated and the largest wavenumber retained when the error is trun-

cated at the forecast initiation time.actual errors. Note that Cgrwth is quadratic, hence

Tellus 50A (1998), 4



.   .384

a given scale. For Ta=1 day, the forecast error is
equally sensitive to errors at all scales, as both
Cgrwth and Cpat have relatively constant slopes

over the T11 to T21 range of scales. However, for
Ta=10 days, the slopes of both Cgrwth and Cpat
are significantly greater in the T12 to T16 range

than in the T17 to T21 range. Extending Ta
diminishes the importance of information initially
on small scales in the error to the overall growth

and structure of the forecast error in the medium
range.

5. Imperfect models
Fig. 11. Effect of extending the assimilation period Ta in
the presence of model error when the predictive model

Operational forecasting, of course, is manifestly is truncated to T20.
not done in a perfect model setting. Model errors
are a fact of any operational model, and the value

of 4DVAR must in part be based upon how Fig. 5. The dynamical origin of this model error
is the loss of eddy energy due to the harshereffectively it can deal with model error. To study

the effect of model error on 4DVAR more closely, truncation in the meridional direction. This is
consistent with the result of Held and Phillipswe examine in detail assimilation using two dis-

tinct imperfect models, one where the source of (1993), who showed that the level of eddy energy

in spectral models depends strongly on modelmodel error is due to truncation error, and the
other where the model error results from the resolution at these relatively coarse resolutions.

Adding observational noise, assimilation is per-incorrect forcing.

formed for the time periods Ta=0, 1, 2, 3, and
4 days. The assimilation and forecast error as a

5.1. T runcation error
function of Ta are shown in Fig. 11. As in the

perfect model experiments, there is a markedFor our first set of experiments using 4DVAR
in an imperfect model setting, we use a version of reduction in error when assimilation is carried out

with Ta=1 day compared to the Ta=0 day casethe MM93 model identical in all respects to that

used for the perfect model experiments, except with no assimilation. The magnitude of this error
reduction is similar to that in the perfect modelthat it is truncated at total wavenumber T20

instead of T21. The experiments are as follows: a experiments. However, extending Ta to 2 days

results in very little additional forecast improve-reference solution is generated using the T21
model, just as in the perfect model experiments, ment, and the forecast skill actually degrades as

Ta is extended to 3 and 4 days. Note that theand ‘‘observations’’ are generated by adding

Gaussian white noise to this solution every 6 h, quality of the assimilated state also degrades as
Ta is extended (compare Ta=3 and 4 days),as above. These observations are then truncated

at total wavenumber T20, and their spectral although this occurs for somewhat larger Ta than

does the degradation in forecast skill. There iscoefficients are supplied to a T20 version of the
MM93 model and its adjoint for assimilation and also a significant increase in the growth rate of

the forecast error compared to the perfect modelforecasting. The results presented below are aver-

ages over 20 distinct reference solutions. forecast error growth rate. Comparison of Figs.
11 and 5 reveals that while the error growth rateConsider first the model error in the absence of

observational noise, shown in Fig. 11. The model for Ta=0 days is similar to the error growth rate
in the perfect model in the absence of assimilation,error grows quite quickly, reaching the level of

the observational noise in about 3 days. The error the forecast error growth rate for Ta=1 day is

nearly twice as large as the Ta=1 day perfectsaturates at a value similar to the climatological
error level for the perfect model experiments of model rate. Within this context, however, model
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error emerges as the reason for the rapid growth shows the assimilation and forecast errors for
these values of a for the assimilation time periodof forecast error, as the curve for the Ta=1 day

assimilated forecast error follows the model error Ta when the median t=0 day error for the 20

forecasts is the smallest. As one would expect,curve exactly. This highlights that in the presence
of model error, it is unrealistic to expect the smaller levels of erroneous forcing allow Ta to be

extended further, ranging from as long as Ta=assimilation scheme to produce an initial condi-

tion leading to a forecast error that grows more 7 days for a=0.02 to as short as Ta=2 days for
a=0.32. As in the truncated imperfect modelslowly than the underlying model error itself.

The truncated imperfect model results do pre- experiments, however, extending Ta beyond this

optimal assimilation time leads to a rapid degrada-sent one additional intriguing result, namely that
the optimal assimilation time is approximately tion in the quality of the assimilated state. Again,

a reasonable estimate of this optimal Ta is abouthalf the time it takes model error to reach the

level of the observational error. To test this hypo- half the time it takes the model error to reach the
level of the observational error.thesis, we turn to an imperfect model where the

magnitude of the model error can be better With regard to extending these results to an

operational environment, however, it is encour-controlled.
aging to note that even in the presence of an
erroneous forcing of a=0.08, generating a system-

atic error on the order of 50 m in the 500 mb5.2. Errors in forcing
geopotential height field, the optimal assimilation

Returning to the T21 version of the model used
time period is Ta=5 days. Fig. 14b shows the

in the perfect model experiments above, we intro-
assimilation and forecast error for Ta=0, 1, and

duce a model error by adding a perturbation to 5 days for model error a=0.08. Even for this level
the empirical forcing term S in the nonlinear

of model error, the gain in predictability time by
equation of motion (2.1). If we let S denote the

extending the assimilation period from 1 to 5 days
true forcing used in the perfect model experiments, is about 3 days. This leaves hope for the imple-
an erroneous forcing is generated by scaling that

mentation of 4DVAR with long assimilation
forcing by some constant a,

periods even using current operational models.
The forecast skill of the forced imperfect modelSerrr= (1+a)S . (5.1)

is clearly better than that of the truncated imper-
fect model (compared Figs. 14a and 11). ThisThis error in empirical forcing results in a drift of

the modeled climate with systematic error for a= suggests that the growth rate of the model error

determines whether the gain in forecast lead times0.08 is shown in Fig. 12. It has a maximum
magnitude of approximately 50 m geopotential using long assimilation periods in the perfect

model setting can be achieved in an imperfectheight on the 500 mb surface, similar to the 60 m

geopotential height errors of typical of the current model setting. The model error growth rates for
the erroneous empirical forcing are similar to thegeneration of forecast models (Anderson, 1993;

Déqué and Royer, 1992). growth rates leading LVs for the MM93 model,

provided a is sufficiently small (a<0.16). ThisIn contrast to the truncated imperfect case,
Fig. 13 shows that in the absence of observational differs from the truncated imperfect model, where

the model error grows so quickly that it swampsnoise, model error resulting from erroneous for-

cing amplifies at about the same rate as the Ta= the growth of error due to amplification of obser-
vational errors by internal dynamical processes.10 days perfect model forecast error for all values

of a. As a increases, the model error reaches the While in an operational setting model error

growth is impossible to measure absolutely, it canlevel of the observational noise more quickly,
ranging from 14 days for a=0.02 and 3 days for be estimated by comparing different generations

of forecast models. Provided that the growth ratea=0.32.
Adding observational noise, assimilation is car- of this model error is similar to that of the leading

LVs of the system, we expect the perfect modelried out on 20 distinct reference solutions for

model error forcing values of a=0.02, 0.08, 0.16, results here to extend to the imperfect model case.
Hence, reductions in model error can be expectedand 0.32, and for a variety of values of Ta . Fig. 14a
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Fig. 12. Model climate drift of the 500 mb geopotential height for a forcing value of a=0.8. Contour interval is
5 m, with negative contours dashed and the zero contour omitted.

to provide a two-fold benefit to forecasting. Not

only will the model better mimic the real atmo-
sphere, but smaller model errors will also allow
for longer assimilation periods and the accom-

panying improvements in forecast initial condi-
tions and slower overall forecast error growth
rates.

6. Summary and conclusions

We have performed an investigation into the
performance of four-dimensional variational

assimilation of noisy observations in a model of
relatively realistic phenomenology compared to

Fig. 13. Model error generated by the addition of anom-
the real atmosphere, the quasi-geostrophic model

alous forcing of strength a, denoted by the label closest
designed by Marshall and Molteni (1993)to each curve. The dashed curve denotes the error level
(MM93). The study is made within both theof the observational noise used throughout the text.
perfect model setting, by assuming that the only
source of forecast error lies in the initial condition,
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function. For the MM93 model, multiple minima
that degrade the quality of the assimilated state if
the assimilation is attempted without the QSVA

iterations emerge in the cost function for assimila-
tion time intervals greater than about 5 days.

The reduction in error in the assimilated solu-

tions is quite impressive, with error in the stream-
function squared norm reduced by a factor of 70
over the level of observational error for an assim-

ilation period of 10 days (Fig. 5). The increase in
forecast lead times is equally impressive, exceeding
15 days for global forecasts for realistic levels of

observational error. An assimilation period of
10 days extends the forecast lead times about
5 days beyond the case where the assimilation

period is 1 day. Even weather regime transitions
in the extra-tropics, known to be difficult to predict
in operational settings, are predictable at lead

times of greater than 10 days using QSVA with
an assimilation period of 10 days.

The structure of the analysis error under
4DVAR was examined. We showed that this error
is most concentrated in the storm tracks and at

relatively large scales (total wavenumbers 3–7).
The error reduction is increasingly efficient at
small scales as the assimilation period is increased.
To examine the relative efficiency of LyapunovFig. 14. (a) Assimilation and forecast error as a function
vector (LVs) (Toth and Kalnay, 1993;of time for the error forcing values of a=0.02, 0.08, 0.16,
Houtekamer, 1995) versus singular vectorsand 0.32. The assimilation time period Ta used for each

value of a is the period for which the median t=0 day (Lacarra and Talagrand, 1988; Molteni and
error is the smallest. (b) Assimilation and forecast skill Palmer, 1993; Molteni et al., 1996) in representing
for the forced imperfect model with a=0.08 and for the analysis error for the design of ensemble
several values of Ta. The dashed line denotes the level of

prediction strategies, we compared the projection
observational noise in both panels.

of the assimilated solutions into the subspaces
spanned by the leading LVs and singular vectors,

respectively. As suggested by the work of Piresand the imperfect model setting, where both obser-
vational and model error are included. Within the et al. (1996), our results show that when long

assimilation periods are used, assimilation errorsperfect model setting, the quality of the assimilated

state improves significantly when the assimilation are mostly concentrated on the unstable manifold
of the model, or alternatively, along the leadingtime interval is extended significantly into the past,

with the state estimation saturating at an assimila- LVs. However, the leading LVs and SVs are not

strictly orthogonal, and the very small projectiontion period of 10 days. This result is consistent
with the conjecture of Pires et al. (1996) that the of analysis errors onto the leading SVs is the

component of the error that will dominate theoptimal assimilation time period for the atmo-

sphere should be about 3 times the nonlinear time future forecast error at later times. This result
hints at a hybrid strategy for generating perturba-scale of the model as measured by the e-folding

time of small initial errors. Extension of the assim- tions for probabilistic weather prediction in the
medium range. Our results show that in the perfectilation time interval to long times requires the use

of the quasi-static variational assimilation (QSVA) model setting, LVs rather than SVs represent

analysis errors. Hence, perturbations generated foralgorithm designed by Pires et al. (1996) in order
to keep track of the absolute minimum of the cost probabilistic forecasting should be restricted to
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the subspace spanned by the leading LVs. operational point of view. This is because there
algorithms can be started before all observationsHowever, the number of potentially useful LVs

can be large. For the simple MM93 model here, are available to maximize the computational time

available to produce an assimilated state, andit takes 100 LVs to describe 70% of the analysis
error variance. It is expected that more realistic observations that arrive after the ‘‘cut-off ’’ time

can be blended in as they arrive (Jarvinen et al.,models will require hundreds of LVs in order to

have a realistic representation of the analysis error. 1996). This is a desirable feature due to the heavy
computational burden that is required by thisObviously, such a large subspace cannot be

sampled efficiently given current limitations on assimilation method.

Another important outstanding questioncomputing power. However, for an assimilation
period of 10 days, we found that as few as 20 regarding the application of variational assimila-

tion concerns the performance of 4DVAR in theleading SV directions account for much of the

forecast error after day 3. Thus, we hypothesize presence of instabilities of unobserved scales. The
MM93 model used here as baroclinic instabilitythat the projection of the leading LVs onto a small

number of SV directions should achieve the best active on synoptic scales, but the small scales of

the model are stable, as witnessed by the preferen-compromise between an ensemble’s ability to rep-
resent the analysis error and limitations due to tial reduction in error at small scales by the

4DVAR (Fig. 7). However, in the real atmospheresample size. Needless to say, the efficiency of the

last projection stage for ensemble prediction is not there are both balanced instabilities on subsynop-
tic scales, such as frontal-type instabilities, as wellguaranteed and must be tested using simple

models such as the one used here. as meso and micro-scale moist convective instabil-
ities. These small scale instabilities undoubtablyThe performance of variational assimilation in

an imperfect model setting varies strongly with will affect the ability to perform data assimilation

even on synoptic scales.both the amount of growth rate of the model
error. For large, rapidly growing model error, Above all, the results presented in this article

are intended to provide hope for the developmentextension of assimilation periods beyond 1–2 days

results in a degradation in the quality of the of more elaborate 4DVAR strategies. Fig. 5 exem-
plifies the potential of long period 4DVAR; theassimilated state as well as in the forecast quality.

However, for model error growth rates similar to 5-day gain in predictability time for assimilation

periods of 10 days compared to assimilationthe growth rates of the leading LVs of the system,
improvements in the assimilated state similar to periods of 1 day roughly represents the potential

gain in predictability that can be expected in thethose found for the perfect model appear possible.

Based upon this, it is estimated that assimilation future due to proper application of 4DVAR. As
such, there is good cause to believe that substantialtimes of as large as 5 days for current values of

model error might provide improved assimilation gains in predictability are still possible, as models

become ever more ‘‘perfect’’ and computer powerstates and forecast initial conditions in an opera-
tional setting. More generally, we found that the increases, relative to current applications of

optimal interpolation and 3DVAR.optimal assimilation period length should be

about half the time taken by the model error to
reach the level of observational error when perfect
initial conditions are assumed. A fundamental 7. Acknowledgements
outstanding issue is whether assimilation methods
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