
 Michael Ghil!
Ecole Normale Supérieure, Paris, and!
University of California, Los Angeles!

http://www.atmos.ucla.edu/tcd/ and http://www.environnement.ens.fr/ 

Predictability + Data Assimilation, 
Nordita  

Stockholm, 25 May 2011 

Joint work with D. Kondrashov & Y. Shprits (UCLA), S. Kravtsov (U. Wisconsin, 
Milwaukee), A. W. Robertson (IRI, Columbia U.) and K. Strounine (private sector) !



Earth System Science Overview, NASA Advisory Council, 1986



Composite spectrum of climate variability
Standard treatement of frequency bands:
   1. High frequencies – white (or ‘‘colored’’) noise
   2. Low frequencies – slow (‘‘adiabatic’’) evolution of parameters

From Ghil (2001, EGEC), after Mitchell* (1976)
* ‘‘No known source of deterministic internal variability’’



• Temporal
 stationary, (quasi-)equilibrium
 transient, climate variability

• Space
 0-D (dimension 0)
 1-D

• vertical
• latitudinal

 2-D
• horizontal
• meridional plane

 3-D, GCMs (General Circulation Model)
• horizontal
• meridional plane

 Simple and intermediate 2-D & 3-D models

• Coupling
 Partial

• unidirectional
• asynchronous, hybrid

 Full

HierarchyHierarchy:: from the simplest to the most elaborate,
       iterative comparison with the observational data

Climate models (atmospheric & coupled) : A classification

Radiative-Convective Model(RCM)

Energy Balance Model (EBM)

Ro

Ri



Linear inverse model (LIM)

• We aim to use data in order to estimate the two matrices, B
and Q, of the stochastic linear model:

dX = BX · dt + dξ(t), (1)

where B is the (constant and stable) dynamics matrix, and Q is
the lag-zero covariance of the vector white-noise process dξ(t).
• More precisely, the two matrices B and Q are related by a
fluctuation-dissipation relation:

BC(0) + C(0)Bt + Q = 0, (2)

where C(τ) = E{X(t + τ)X(t)} is the lag-covariance matrix of
the process X(t), and (·)t indicates the transpose.
• One then proceeds to estimate the Green’s function
G(τ) = exp(τB) at a given lag τ0 from the sample C(τ) by

G(τ0) = C(τ0)C−1(0).
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Nonlinear stochastic model (MTV)–I

• Let z be a vector decomposed into a slow (“climate") and a
fast (“weather") vector of variables, z = (x, y).
We model x deterministically and y stochastically, via the
following quadratic nonlinear dynamics

dx
dt

= L11x + L12y + B1
11(x, x) + B1

12(x, y) + B1
22(y, y),

dy
dt

= L21x + L22y + B2
11(x, x) + B2

12(x, y) + B2
22(y, y).

• In stochastic modeling, the explicit nonlinear self-interaction
for the variable y, i.e. B2

22(y, y), is represented by a linear
stochastic operator:

B2
22(y, y) ≈ −Γ

ε
y +

σ√
ε

Ẇ(t),

where Γ and σ are matrices and Ẇ(t) is a vector-valued
white-noise.
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Nonlinear stochastic model (MTV)–II

• The parameter ε measures the ratio of the correlation time of
the weather and the climate variables, respectively,
and ε � 1 corresponds to this ratio being very small.
• Using the scaling t → εt , we derive the stochastic climate
model:

dy
dt

=
1
ε
(L11x + L12y + B1

11(x, x) + B1
12(x, y)),

dy
dt

=
1
ε
(L21x + L22y + B2

11(x, x) + B2
12(x, y))− Γ

ε2 y +
σ

ε
Ẇ(t).

• In practice, the climate variables are determined by a variety
of procedures, including leading-order empirical orthogonal
functions (EOFs), zonal averaging in space, low-pass and
high-pass time filtering, or a combination of these procedures.
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MotivationMotivation
• Sometimes we have data but no models.
• Linear inverse models (LIM) are good least-square fits to data, but

don’t capture all the processes of interest.
• Difficult to separate between the slow and fast dynamics (MTV).
• We want models that are as simple as possible, but not any simpler.

Criteria for a good data-derived model

•    Fit the data, as well or better than LIM.
•    Capture interesting dynamics: regimes, nonlinear oscillations.
•    Intermediate-order deterministic dynamics.
•    Good noise estimates.



Key ideas
• Nonlinear dynamics:

• Discretized, quadratic:

• Multi-level modeling of red noise:



Nomenclature
Response variables:

Predictor  variables:

• Each               is normally distributed about 

• Each              is known exactly. Parameter set {ap}:

– known dependence
    of f on {x(n)} and {ap}.

REGRESSION:     Find 



LIM extension #1
• Do a least-square fit to a nonlinear function of the data:

J response  variables:

Predictor variables (example – quadratic polynomial 
of J original predictors):

Note: Need to find many more regression coefficients than
for LIM; in the example above P = J + J(J+1)/2 + 1 = O(J2).



Regularization

• Regularization involves rotated predictor variables:
   the orthogonal transformation looks for an “optimal”
   linear combination of variables.

• “Optimal” = (i) rotated predictors are nearly uncorrelated; and
                     (ii) they are maximally correlated with the response.

• Canned packages available.

• Caveat: If the number P of regression parameters is
   comparable to (i.e., it is not much smaller  than) the
   number of data points, then the least-squares problem may
   become ill-posed and lead to unstable results (overfitting) ==>
   One needs to transform the predictor variables to regularize
   the  regression procedure.



LIM extension #2

Main level, l = 0:

Level l  = 1:

… and so on …

Level L:

• ΔrL – Gaussian random deviate with appropriate variance 

• If we suppress the dependence on x in levels l  = 1, 2,… L,
   then the model above is formally identical to an ARMA model.

• Motivation: Serial correlations in the residual.



Empirical Orthogonal Functions (EOFs)
• We want models that are as simple as possible, but not any simpler: use

leading empirical orthogonal functions for data compression and capture
as much as possible of the useful (predictable) variance.

• Decompose a spatio-temporal data set D(t,s)(t = 1,…,N; s = 1…,M)
by using principal components (PCs) – xi(t) and
empirical orthogonal functions (EOFs) – ei(s):  diagonalize the
M x M spatial covariance matrix C of the field of interest.

• EOFs are optimal patterns to capture most of the variance.
• Assumption of robust EOFs.
• EOFs are statistical features, but may describe some dynamical (physical)

mode(s).



Empirical mode reduction (EMR)–I

• Multiple predictors: Construct the reduced model
   using J leading PCs of the field(s) of interest.

• Response variables: one-step time differences of predictors;
   step = sampling interval = Δt.

• Each response variable is fitted by an independent
   multi-level model:
   The main level l = 0 is polynomial  in the predictors;
   all the other levels are linear.



Empirical mode reduct’n (EMR) – II
• The number L of levels is such that each of the
  last-level residuals (for each channel corresponding
  to a given response variable) is “white” in time.

• Spatial (cross-channel) correlations of the last-level
   residuals are retained in subsequent
   regression-model simulations.

• The number J of PCs is chosen so as to optimize the 
    model’s performance.

• Regularization is used at the main (nonlinear) level 
  of each channel.



Illustrative example: Triple well

• V (x1,x2) is not polynomial!

• Our polynomial regression
    model produces a time
    series whose statistics
    are nearly identical to
    those of the full model!!

• Optimal order is m = 3;
   regularization required
   for polynomial models of
   order m ≥ 5.



NH LFV in QG3 Model – I
The QG3 model (Marshall and Molteni, JAS, 1993):

• Global QG, T21, 3 levels, with topography; 
   perpetual-winter forcing; ~1500 degrees of freedom.

• Reasonably realistic NH climate and LFV:
   (i) multiple planetary-flow regimes; and
   (ii) low-frequency oscillations
   (submonthly-to-intraseasonal).

• Extensively studied: A popular “numerical-laboratory” tool
   to test various ideas and techniques for NH LFV.



NH LFV in QG3 Model – II
Output: daily streamfunction (Ψ) fields  (≈ 105 days)

Regression model:

• 15 variables, 3 levels (L = 3), quadratic at the main level

• Variables: Leading PCs of the middle-level Ψ

• No. of degrees of freedom = 45 (a factor of 40 less than
    in the QG3 model)

• Number of regression coefficients P =
   (15+1+15•16/2+30+45)•15 = 3165 (<< 105)

• Regularization via PLS applied at the main level.



NH LFV in QG3 Model – III



NH LFV in QG3 Model – IV

The correlation between the QG3 map and the EMR
model’s map exceeds 0.9 for each cluster centroid.



Conclusions on QG3 Model
• Our ERM is based on 15 EOFs of the QG3 model and has
  L = 3 regression levels, i.e., a total of 45 predictors (*).

• The dynamical analysis of the reduced model
   identifies AO–  as the model’s unique steady state.

• The 37-day mode is associated, in the reduced model,
   with the least-damped linear eigenmode.

(*) An ERM model with 4*3 = 12 variables only does not work!

• The ERM approximates the QG3 model’s major
   statistical features (PDFs, spectra, regimes,
   transition matrices, etc.) strikingly well.

• The additive noise interacts with the nonlinear dynamics to
   yield the full ERM’s (and QG3’s) phase-space PDF.



NH LFV – Observed Heights

• 44 years of daily 
700-mb-height winter data

• 12-variable, 2-level model
works OK, but dynamical
operator has unstable
directions: “sanity checks”
required.



1997-98 El Niño Animation 

Anomaly   =   (Current observation – Corresponding climatological value)
Base period for the climatology is 1950–1979

Courtesy of NOAA-CIRES Climate Diagnostics Center 
http://www.cdc.noaa.gov/map/clim/sst_olr/old_sst/sst_9798_anim.shtml



ENSO – I

Data:

• Monthly SSTs: 1950–2004,
   30 S–60 N, 5x5 grid 
   (Kaplan et al., 1998)

• 1976–1977 shift removed

• Histogram of SST data is skewed (warm events are larger, while
   cold events are more frequent): Nonlinearity important?



ENSO – II
Regression model:

• J = 20 variables (EOFs of SST)
• L = 2 levels

• Seasonal variations included
   in the linear part of the main
   (quadratic) level.

• Competitive skill: Currently
   a member of a multi-model
   prediction scheme of the IRI,
   see: http://iri.columbia.edu/climate/ENSO/currentinfo/SST_table.html.



ENSO – III

• Observed

• Quadratic model 
 (100-member ensemble)

• Linear model
 (100-member ensemble)

The quadratic model has a slightly smaller RMS error
in its extreme-event forecasts (not shown)

PDF – skewed vs. Gaussian



ENSO – IV

Spectra:

• SSA

• Wavelet

ENSO’s leading oscillatory modes, QQ and QB, are reproduced
by the model,  thus leading to a skillful forecast.

Data Model



ENSO – V
“Spring barrier”:

• SSTs for June are
  more difficult to predict.

• A feature of virtually
  all ENSO forecast
  schemes.

• SST anomalies are weaker in late winter through
   summer (why?), and signal-to-noise ratio is low.

Hindcast skill vs. target month



ENSO – VI
• Stability analysis, month-by-
  month, of the linearized
  regression model identifies
  weakly damped QQ mode
  (with a period of 48–60 mo),
  as well as strongly damped
  QB mode.

• QQ mode is least damped
   in December, while it is not 
   identifiable at all in summer!



•  14 dynamical + 9 statistical = !
!23 models!

Reasonable skill for 6–8 months!
!¼ of QBO period (*)!

The new IRI plume will include only the 
best forecast models so far; !
!in particular the TCD-UCLA !
!EMR-based model!

(*) Large events — warm (El Niño) & cold !
(La Niña) are “beats” of the QB and QQ !
periodicities (Ghil & Jiang, 1998, GRL)!

�



Conclusions on ENSO model

• The quadratic, 2-level EMR model has competitive forecast skill.

• Observed statistical features can be related to the EMR
   model’s dynamical operator.

•  EMR model captures well the “linear,” as well as the
   “nonlinear”  phenomenology of ENSO.

• SST-only model: other variables? (A. Clarke)

• Two levels really matter in modeling “noise.”



Concluding Remarks – I
• The generalized least-squares approach is well suited to
  derive nonlinear, reduced models (EMR models) of
  geophysical data sets; regularization techniques such as
  PCR and PLS are important ingredients to make it work.

• The multi-level structure is convenient to implement and
   provides a framework for dynamical interpretation
   in terms of the “eddy–mean flow” feedback (not shown).

• Easy add-ons, such as seasonal cycle (for ENSO, etc.).

• The dynamic analysis of EMR models provides conceptual
   insight into the mechanisms of the observed statistics.



Concluding Remarks – II

Possible pitfalls:

• The EMR models are maps: need to have an idea about
   (time & space) scales in the system and sample accordingly.

• Our EMRs are parametric: functional form is pre-specified,
   but it can be optimized within a given class of models.

• Choice of predictors is subjective, to some extent, but their
   number can be optimized.

• Quadratic invariants are not preserved (or guaranteed) –
   spurious nonlinear instabilities may arise.



Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multilevel regression modeling of nonlinear 
processes: Derivation and applications to climatic variability. J. Climate, 18, 4404–4424.!

Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil, 2005: A hierarchy of data-based ENSO 
models. J. Climate, 18, 4425–4444.!

Kondrashov, D., S. Kravtsov, and M. Ghil, 2006: Empirical mode reduction in a model of 
extratropical low-frequency variability. J. Atmos. Sci., 63, 1859-1877.!

Strounine, K., S. Kravtsov, D. Kondrashov, and M. Ghil, 2010: Reduced models of atmospheric 
low-frequency variability: Parameter estimation and comparative performance, Physica D, 239, 
145–166, doi:10.1016/j.physd.2009.10.013. 

Kravtsov, S., D. Kondrashov, and M. Ghil, 2009: Empirical model reduction and the modeling 
hierarchy in climate dynamics, in Stochastic Physics and Climate Modelling, Eds. T. N. Palmer and 
P. Williams, Cambridge Univ. Press, pp. 35–72. 

Kondrashov, D., S. Kravtsov and M. Ghil, 2010: Signatures of nonlinear dynamics in an idealized 
atmospheric model, J. Atmos. Sci., 68, 3–12, doi: 10.1175/2010JAS3524.1.!

http://www.atmos.ucla.edu/tcd/!






