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Outline

• The forecast uncertainty

• Bayesian Hierarchical modelling to quantify the 

Surface Vector Wind (SVW) uncertainty and 

distributions

• A new method of Ocean Ensemble Forecasting 

using the BHM-SVW 



How do we quantify the uncertainty in the 
winds?    We use Bayes' Theorem

 Y is a physical variable of interest

 X is a set of observations  relevant  to Y

 [y|x] is the posterior distribution of Y

 [x|y] is the measurement error model or Data Stage

 [y] is the prior or Process Model Stage

 is the normalization so the posterior distribution integrates to 1

 defines         parameters necessary to define Data and Process Models

Bayesian Hierarchical Modelling



Review: Bayesian Hierarchical Models (BHM) 

BHM Building Blocks:

The end product of BHM is the Posterior Distribution of the field of interest

Data Stage Distribution (likelihood) quantifies uncertainty in relevant observations, 

through relevant parameter errors

Process Model Stage Distribution (prior) quantifies uncertainty in knowledge of the

Physical process connected to the field to estimate

Parameter Distributions from Data Stage and Process Models (i.e. [θ
d
], [θ

p
‏( [

issues of identifiability, uncertainty, model validation

Estimates of posterior distributions are obtained via Gibbs sampler Algorithm and Markov 

Chain Monte Carlo methods

Posterior mean is summary

Standard deviation of posterior is an estimate of the spread



Our data stage: QuikSCAT and ECMWF Surface Wind

Estimates for the Mediterranean Sea
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12:00 UTC 18:00 UTC



ECMWF NWP surface winds 

uncertainty over the Med Sea
Space scale
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Building the wind distributions using Bayesian

Hierarchical Modelling (BHM-SVW) 

Conceptual and implementation blocks:

Data Stage: 2 types of data 

QSCAT winds and

ECMWF analyses/forecasts

Process model stage: 

Raylegh friction surface model

translated into a stochastic finite 

difference equation

QSCAT

ECMWF



Process model (prior) for the SVW :

Choice: begin with RFE
linear,  includes surface friction
dependent variables match well with “obs”
include a “friction” process w/o spec form

Rewriting the RFE separately for u and v 
Components

Choice: approximate models (“leading order”) 
reduce no. terms,
concentrate data stage inputs to reduce
uncertainty

Model A1:

Model A2:



SVW Model A1: from Deterministic to Stochastic

1. Discretize RFE approximation (geostrophic-ageostrophic model)‏

2. Make the equations stochastic introducing parameters and model error‏

θ
i

are random parameters distributed as gaussian

a are random parameters distributed as gaussian and

‘phi’ are 20 spatial EOFs



Posterior Distributions of the Parameters:  

A1E3 s2a_corrected

With and Without QuikSCAT

Geostrophic Validation
Modes for posterior distributions of 

parameters  for geostrophic terms are 

+/- inverse Coriolis; ageostrophic 

parameters are 0.

QuikSCAT data increase spread (non-Gaussian), 

and shift distributions farther from Geostrophy.   
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The Kinetic Energy Spectra of the posterior distribution



Zonal Wind Kinetic Energy Spectra: BHM Metric 

with QuikSCAT without QuikSCAT

QuikSCAT data support (observed) power-law behavior at synoptic and mesoscales.
Without QuikSCAT, high-wavenumber variance is noise.



BHM-SVW realizations: example for 

February 7, 2005 at 18:00 GMT



The MFS deterministic forecast system

• Once a week, daily 

analyses are produced 

for the past 14 days (best 

satellite information and 

all in situ) • Every day a deterministic 

forecast is issued starting 

either from analysis or a 

simulation

Forecast and analyses production cycle 
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The BHM-SVW 

Ocean Ensemble Forecast

method
DaysTuesday TuesdayTuesday

Analysis10 days Forecast 

Ensemble 

members:

10 sets of

analyses 

and forecasts 

forced 

by BHM-SVW 

realizations

Each ensemble member run

assimilates data and the winds

transit smoothly from analysis

to forecast 

.....



BHM-SVW-OEF initial condition spread: 

amplification of the uncertainty due to 

winds where there is no data assimilated

Uncertainty is 

concentrated at the 

mesoscales

Sea Surface Temperature

Sea Surface Height

Initial condition spread      

Initial condition spread      



Sea Surface Height

BHM-SVW-OEF last forecast day 

spread

Initial condition ensemble

spread has 

amplified at the 10 fcst day

in mesoscale regions

Initial condition spread

10-th fcst day spread



Sea Surface Height

BHM-SVW-OEF last forecast day 

spread

Density std

Density

Ensemble Forecast spread

is upper thermocline

intensified

10-th fcst day spread



sigma units

member 1 of 10

member 2 of 10 member 4 of 10

member 3 of 10

Algerian Current:

large spread

Gulf of Lions Gyre:

small, but climatically

important spread

MFS-Wind-BHM

Forecast day 10F

Ensemble Spread: Surface Density, Gulf of Lion 
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ECMWF EPS forcing

is not effective

to produce flow

field changes 

at the mesoscales



TEMPERATURE SALINITY

RMS

BHM-SPREAD

RMS

BHM-SPREAD

JAN DEC JAN DEC

RMS- 90’s‏Re-An (M. Adani) RMS- 90’s‏Re-An (M. Adani)

Background Error versus Ensemble Spread



Ocean Ensemble Forecast Experiments

NAME OF THE EXPERIMENT ENSEMBLE METHOD

BHM-SVW-OEF-16 MEMBERS GENERATED BY 

REALIZATIONS OF BHM-SVW 

with full resolution model (1/16)

EEPS-OEF MEMBERS GENERATED BY 

ECMWF EPS WINDS, SAME 

INITIAL CONDITION

TIRP-OEF MEMBERS GENERATED BY 

PERTURBED INITIAL 

CONDITIONS

BHM-SVW-OEF-4 MEMBERS GENERATED BY 

REALIZATIONS OF BHM-SVW 

with low resolution model (1/4)



EEPS wind

realizations

Member 1

Member 2

Member 3 Member 3

Member 2

Member 1

BHM wind

realizations



THERMOCLINE INTENSIFIED 

RANDOM PERTURBATION

The horizontal structure is random, 

the vertical is thermocline intensified

Alternative ensemble methods: the TIRP-OEF
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Comparison TIRP-OEF and BHM-SVW-

OEF spread

BHM-SVW-OEF

TIRP-OEF

TIRP Perturbations vertical structure has been chosen ad-hoc

10-th fcst day spread



Final considerations

• A new method to produce realistic distributions of surface 

winds (SVW) from QSCAT and NWP analyses and 

forecasts has been developed (Milliff et al., 2009, 

submitted)

• BHM-SVW distributions are used to design a new ocean 

ensemble forecasting method: BHM-SVW-OEF (Bonazzi 

et al., 2009, submitted)

• The BHM-SVW-OEF produces 10 days forecast spread at 

the mesoscales and in the upper thermocline

• Ad-hoc I.C. perturbations can produce similar results while 

large scale NWP ensemble prediction winds are not 

effective

• BHM-SVW-OEF coupled to IC condition perturbation 

methods promises in the future to contribute to the 

understanding of the „uncertainty conundrum‟


