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Hydrodynamic system

Long wavelength effective description of strongly coupled field
theory.

It is formulated in the language of constituent equations.

The simplest case: no global conserved currents

∇µTµν = 0 ⇒ d + 1 equations

Need to reduce the number of independent elements of Tµν .
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Hydrodynamic system

We consider the fluid is in local thermal equilibrium and
fluctuations are of small energy.

At any given time the system is described by the following
local quantities

Temperature: T (x) ↪→ 1
Velocity vector: uµ(x) ↪→ d + 1

Velocity vectors are normalized : uµuν = −1

� Total d + 1 variables.

In hydrodynamics we express Tµν through T (x) and uµ(x)
through the so-called constitutive equations.
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Hydrodynamic system

As fluid dynamics is a long wavelength effective theory the
constitutive relations are usually specified in a derivative
expansion.

At any given order, thermodynamics plus symmetries
determine the form of this expansion up to a finite number of
undetermined coefficients.

These coefficients may then be obtained either from
measurements or from microscopic computations.
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Hydrodynamic system

0th order

Tµν = (ε+ P)uµuν + Pgµν

ε→ energy density and P → pressure.
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Hydrodynamic system

1st order

Tµν = (ε+ P)uµuν + Pgµν − σµν .

σµν = PµαPνβ
[
η

(
∇αuβ +∇βuα −

2

3
gαβ∇λuλ

)
+ ζgαβ∇λuλ

]
.

Pµν = gµν + uµuν → Projection operator.

η  shear viscosity coefficient
ζ  bulk viscosity coefficients

For conformal fluid ζ = 0.
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Hydrodynamic system

2nd order

Tµν = (ε+ P)uµuν + Pgµν − σµν + Θµν .

Θµν = ητΠ

[
〈Dσµν 〉 +

1

d − 1
σµν(∇·u)

]
+ κ

[
R〈µν〉 − (d − 2)uαR

α〈µν〉βuβ

]
+ λ1σ

〈µ
λσ

ν〉λ + λ2σ
〈µ
λΩν〉λ + λ3Ω〈µλΩν〉λ .
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Kubo formula: Transport coefficients from thermal
correlators

Consider the response of the fluid to small and smooth metric
perturbations: gxy = ηxy + hxy (t, z)

Tµν = (ε+ P)uµuν + Pgµν − σµν + Θµν

⇓
T xy = −Phxy − ηḣxy + ητΠḧxy − κ

2 [(d − 3)ḧxy + ∂2
zhxy ] .

In linear response theory

〈Txy 〉 ∼ GR
xy ,xyhxy

G xy ,xy
R (ω, k) = P − iηω + ητΠω

2 − κ
2 [(d − 3)ω2 + k2] .
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Holographic computation of Green’s function

We start we five dimensional action

SEM = 1
16πG5

∫
d5x
√
−g (R + 12) .

The background has a black-brane solution as,

dS2 = −gttdt
2 + grrdr

2 + gijdx
2dx j ,

gtt = r2(1− 1

r4
), grr =

1

gtt

gij = r2δij .

Solution is asymptotically AdS and boundary topology →
R × R3.

The horizon is at r → 1 and asymptotic boundary is at
r →∞.
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Holographic computation of Green’s function

We study the graviton’s fluctuation in this background,

gxy = g
(0)
xy + hxy (r , x) = g

(0)
xy [1 + εΦ(r , x)].

Plugging it in the action and keeping terms to order ε2,

S =

∫
d4k

(2π)4
dr(A1(r , k)φ′(r , k)φ′(r ,−k)

+A0(r , k)φ(r , k)φ(r ,−k))

Φ(r , x) =

∫
d4k

(2π)4
e ik.xφ(r , k)
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Holographic computation of Green’s function

The coefficients A1(r , k) and A0(r , k) are given by

A1(r , k) = −
1
2g

rr√−g
16πG5

,

A0(r , k) = −
1
2

√
−ggµνkµkν
16πG5

.
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Holographic computation of Green’s function

S =

∫
d4k

(2π)4
dr(A1(r , k)φ′(r , k)φ′(r ,−k)

+A0(r , k)φ(r , k)φ(r ,−k))

Conjugate momentum of the transverse graviton

Π(r , kµ) =
∂S

∂φ′(r , k)

= 2A1(r , k)φ′(r , k)

The equation of motion

Π′(r , kµ)− 2 A0(r , k)φ(r , k) = 0 .
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Holographic computation of Green’s function

Computing the gravitons action on-shell it reduces to the
following surface term

S =

∫
d4k

(2π)4
(A1(r , k)φ′(r , k)φ(r ,−k))

∣∣∣∣∞
1

.

Following the Minkowskian prescription (Son-Starinets), the
boundary retarded Green’s function is given as,

GR(kµ) = lim
r→∞

−2A1(r , k)φ′(r , k)φ(r ,−k)

φ0(k)φ0(−k)

φ0(kµ) is the value of the graviton fluctuation at boundary.
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Holographic computation of Green’s function

GR(kµ) = lim
r→∞

−2A1(r , k)φ′(r , k)φ(r ,−k)

φ0(k)φ0(−k)

We can rewrite the boundary retarded Green’s function as,

GR(kµ) = lim
r→∞

−Π(r , kµ)

φ(r , kµ)
.

Calculate φ(r , k) solving a second order differential equation
order by order in kµ.

Impose in-falling wave boundary condition at horizon and
Dirichlet boundary condition at asymptotic boundary.

Compute GR order by order in kµ
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A response function

Define a response function of the boundary theory

χ̄(kµ, r) =
Π(r , kµ)

iωφ(r , kµ)
ω = k0

This function is defined for all r and kµ.

Therefor the boundary Green’s function is given by,

GR(kµ) = lim
r→∞

−iωχ̄(kµ, r).
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Radial evolution of the response function

Differentiate the response function w.r.t. r

∂r χ̄(r , kµ) =
1

iω

[
Π′(r , k)

φ(r , k)
− Π(r , k)φ′(r , k)

φ(r , k)2

]

Using the definition of Π(r , k) and field equation of motion

Π(r , kµ) = 2A1(r , k)φ′(r , k) , Π′(r , kµ)− 2 A0(r , k)φ(r , k) = 0 .

∂r χ̄(kµ, r) = iω

√
−grr

gtt

[
χ̄(kµ, r)2

Σ(r)
− Υ(r)

ω2

]
Liu+Iqbal

Exact in kµ.

First order non-linear differential equation.
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Radial evolution of the response function

Σ(r) = −2A1(r , kµ)

√
−grr

gtt

Υ(r) = 2A0(r , kµ)

√
−gtt

grr
.
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Boundary condition

We need to impose one boundary condition to solve this flow
equation.

The boundary condition follows automatically.

Demanding the solution to be regular at the horizon

∂r χ̄(kµ, r) = iω
√
−grr

gtt

[
χ̄(kµ,r)2

Σ(r) −
Υ(r)
ω2

]

χ̄(kµ, r)2

∣∣∣∣∣
r=1

=
Σ(r)Υ(r)

ω2

∣∣∣∣∣
r=1

.

For two derivative gravity

χ̄(kµ, 1) =

√
Σ(1)Υ(1)

ω2
=

1

16πG5
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1st order transport coefficients from flow equation

With this boundary condition, one can integrate out the
differential equation from horizon to asymptotic boundary and
obtain the AdS/CFT response for all momentum kµ.

Tt is trivial to see that at (ω, ki )→ 0 limit,

∂r χ̄(kµ, r) = iω
√
−grr

gtt

[
χ̄(kµ,r)2

Σ(r) −
Υ(r)
ω2

]
∂r χ̄(kµ, r) = 0⇒ χ̄(kµ, r) = constant

Using the boundary condition we get

χ̄(kµ,∞) =
1

16πG5

GR(ω, ki ) = −iωχ̄(kµ,∞) = −iω 1

16πG5
+O(k2

µ)
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1st order transport coefficients from flow equation

Therefore we conclude that for two derivative gravity dual, the full
momentum response at the horizon automatically corresponds to
only the zero momentum limit of the boundary response.

χ̄(kµ, 1) = χ̄(kµ → 0,∞) = η

Liu+Iqbal
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Flow from horizon to boundary
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Figure: Flow of Green’s function from horizon to boundary for two
derivative gravity.
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2nd order transport coefficients from flow equation
N. Banerjee, SD

∂r χ̄(kµ, r) = iω
√
−grr

gtt

[
χ̄(kµ,r)2

Σ(r) −
Υ(r)
ω2

]
The right hand side of this equation is proportional to ω.

To solve this equation up to order ω2 → replace the leading
value for χ̄

∂r χ̄(kµ, r) = iω

√
−grr

gtt

[
η2

Σ(r)
− Υ(r)

ω2

]
+O(ω2, k2

i ).

We impose the regularity condition at the horizon.
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2nd order transport coefficients from flow equation

z The solution

− iωχ̄(kµ,∞) = −iω
(

1

16πG5

)
+ω2

[
1

2
(1− ln 2)

(
1

16πG5

)]
−q2

2

(
1

16πG5

)
+ Divergent piece.

Comparing it with the expression of Green’s function

G xy ,xy
R (ω, k) = −iηω + ητΠω

2 − κ
2 [(d − 3)ω2 + q2] .

η =
T 3π3

16πG5
, κ =

η

πT
, τπ =

2− ln 2

2πT
.
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Generalized flow equation in HD gravity
N. Banerjee, SD

We consider a gravity set-up with n derivative action.

I =
1

16πG5

∫
d5x
√
−g
[
R + 12 + α′R(n)

]
Not clear how to define the conjugate momentum and
response function.

Way out: Effective action.

Seff =
1

16πG5

∫
d4k

(2π)4
dr

[
AHD

1 (r , k)φ′(r , k)φ′(r ,−k)

+AHD
0 (r , k)φ(r , k)φ(r ,−k)

]
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Generalized flow equation in HD gravity

§ Steps to write the flow equation in HD gravity

I Generalized momentum ΠHD(r , k) = 2AHD
1 (r , k)φ′(r , k)

I Boundary Green’s function

GHD
R (kµ) = limr→∞−

2AHD
1 (r ,k)φ′(r ,k)φ(r ,−k)

φ0(k)φ0(−k) = limr→∞−ΠHD(r ,kµ)
φ(r ,kµ)

I Define a response function in higher derivative theory

χ̄HD(kµ, r) =
ΠHD (r ,kµ)
iωφ(r ,kµ) .
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Generalized flow equation in HD gravity

F Therefore the flow equation is given by,

∂r χ̄
HD(kµ, r) = iω

√
−grr

gtt

[
χ̄HD(kµ, r)2

ΣHD(r , k)
− ΥHD(r , k)

ω2

]

Here we define

ΣHD(r , k) = −2AHD
1 (r , kµ)

√
−grr

gtt

ΥHD(r , k) = 2AHD
0 (r , kµ)

√
−gtt

grr
.
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Generalized flow equation in HD gravity

Boundary Condition

The response function χ̄HD should be well-defined at horizon.
This implies,

χ̄HD(kµ, r)

∣∣∣∣∣
r=rh

=
√

ΣHD (r)ΥHD (r)
ω2

∣∣∣∣∣
r=rh

A comparison with 2-derivative gravity.
In 4 derivative theory : L ∼ β1R

2 + β2Rim
2 + β3Ric

2

χ̄GB(kµ, 1) = 1
16πG5

[
1 +

((
q2 − 8

)
β3 − 40β1

)
α′
]
.
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Flow from horizon to boundary in HD gravity

-Re@ ΧHΩ = 0, q = 0L

-Re@ ΧHΩ = 1.2, q = 1.1LD

-Im@ ΧHΩ = 0, q = 0LD

-Im@ ΧHΩ = 1.2, q = 1.1L H
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Figure: Flow of Green’s function from horizon to boundary in higher
derivative gravity.
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Results

Weyl4 term

η

π3T 3
= 1 + 135γ +O(γ2)

κ =
η

πT
(1− 145γ) +O(γ2)

τπT =
2− log(2)

2π
+

375γ

4π
+O(γ2) .

Earlier found by [Buchel+Paulos]

Four derivative gravity

η =
1

16πG5

(
1− 8 (5β1 + β3)α′

)
+O(α′2)

κ =
η

πT

(
1− 10β2α

′)+O(α′2)

τπT =
2− ln 2

2π
− 11β2

2π
α′ +O(α′2).
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Results

Exact Gauss-Bonnet theory

η =
1

16πG5
(1− 4λgb)

κ =
2λgb (8λgb − 1)(

1−
√

1− 4λgb

)
(4λgb − 1)

τπT =
1

4π(−1 + 4λgb)

[
− 8λ2

gb + 12
√

1− 4λgbλgb

+10λgb − 2
√

1− 4λgb − 4 log(2)λgb

+ (1− 4λgb) log
(
−4λgb +

√
1− 4λgb + 1

)
+ (4λgb − 1) log (1− 4λgb)− 2 + log(2)

]
.
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Results

To preserve causality of a conformal fluid there exists a bound
[Buchel+Myers]

τπT − 2ηs ≥ 0 .

-0.711 0.113
* *

-0.8 -0.6 -0.4 -0.2 0.0 0.2

0.00

0.02

0.04

0.06

Λgb

T ΤΠ -

2 Η

s

Figure: Bound on λgb
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Flow of retarded Green’s function of boundary R current

Retarded Green’s function of boundary R-current

GR
i ,j (k) = −i

∫
dtd3xe ik·x〈[Ji (x), Jj (0)]〉

Jµ(x) is the CFT current dual to a bulk gauge field Aµ.

In hydrodynamic approximation

Jν = −κ̃Pαν ∂α
µ

T
+ Ωlν +O(∂2)

where, κ̃ and Ω 7→ first order transport coefficients, µ 7→
chemical potential, T 7→ temperature and

Pµν = uµuν + ηµν
lµ = εαβγµ uα∂βuγ .
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Flow of retarded Green’s function of boundary R current

We start with Einstein-Maxwell action

S =
1

16πG5

∫
d5x
√
−g
(
R + 12− 1

4
F 2

)
.

Solution is given by

ds2 = − r2
0 U(r)

r dt2 + dr2

4r2U(r)
+

r2
0
r (d~x2)

At(r) = E (r)

U(r) = (1− r)(1 + r − Q2r2

r6
0

) E (r) =
√

3Q
r2
0

(1− r)

Temperature

T = r0
π

(
1− Q2

2r6
0

)
Chemical potential

µ =
√

3Q
r2
0
.
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Flow of retarded Green’s function of boundary R current

We turn on small fluctuations for x component of gauge fields.

Since the At component of the bulk vector is non-vanishing in
this background, the perturbations Ax can couple to the tx
component of graviton.

Therefore we also need to consider small metric fluctuations
for components gtx . Writing them in momentum space

Ax (r , x) =
∫

d4k
(2π)4 e

ik.xA1(r , k)

g x
t (r , x) =

∫
d4k

(2π)4 e
ik.x Φ(r , k)

There exists a constraint relation between Ax and gtx .

We use this relation to replace gtx from equation of motion of
Ax .
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Flow of retarded Green’s function of boundary R current

The on-shell action for gauge field fluctuations

SA =
1

16πG5

∫
d4k

(2π)4

[
− r2

0U(r)A′2x (r , k)

+

(
ω2

4rU(r)
− q2

4r

)
A2

x

]
.

The current corresponding to Ax fluctuation

Jx (r , k) =
δSA

δA′x (r , k)

= −2r2
0U(r)A′x (r , k).
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Flow of retarded Green’s function of boundary R current

The equation of motion for Ax (r , k) is given by,

J ′x (r , k) = 1
2

(
ω2

rU(r) −
q2

r

)
Ax (r , k)− 2rE ′(r)2Ax (r , k).

Define a response function

σ(r , k) = Jx (r ,k)
iωAx (r ,k) .

Taking the derivative with respect to r and using the equation
of motion

σ′(r , k) =
iω

2r0U(r)

[
σ(r , k)2

−
(
r0
r

(
1− q2U(r)

ω2

)
− 4r0rE

′(r)2U(r)

ω2

)]
.
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Flow of retarded Green’s function of boundary R current

X Boundary condition

Regularity at the horizon

σ(1, k)2 = 1.

Low frequency limit is not trivial .
? There is a non trivial flow from horizon to boundary even in
kµ → 0 limit.
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Flow of retarded Green’s function of boundary R current

-ImAΣIQ2
= 2 r0

6ME

-ReAΣIQ2
= 2 r0

6ME

-ReAΣIQ2
< 2 r0

6ME

-ImAΣIQ2
< 2 r0

6M

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure: Flow of σ for non-extremal and extremal black holes.
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Summary and Outlook

We study the flow of retarded Green’s function of energy
momentum tensor in presence of generic higher derivative
gravity.

The flow equation is valid for any momentum: kµ → Any
higher order transport coefficient can be computed from this
flow equation.

It would be interesting to understand the connection between
low frequency behavior of membrane fluid and boundary fluid
using this flow equation. Any UV /IR relation??

Thank you
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