Epidemic thresholds for a static and dynamic small world network

J. K. Ochab and P. F. Góra

Marian Smoluchowski Institute of Physics Jagiellonian University

Random Trees, Polymers and Networks in Biology 7.12.2010

- concerns: people, computers, livestock, plantations
- diseases: rhizomania, foot-and-mouth disease, swine/avian flu, SARS, syphilis, HIV ...
- network models: small-world, scale-free, adaptive, weighted, (un)directed ...
- data: real frequency distribution of contacts, networks of contacts

A Comment on other Research

- examined: development in time, maximal epidemic's size, costs, epidemic thresholds
- aim: effective methods for prediction, prevention and stopping epidemic's development

What is the influence of network dynamics on the epidemic outbreak?

Dybiec, Kleczkowski, and Gilligan, J. R. Soc. Interface 6 (2009) 941-950

Saramaki, Kaski, J. Theor. Biol. 234 (2005), 413-421 Volz, Meyers, Proc. R. Soc. B 274 (2007), 2925-2934

ヘロア ヘロア ヘビア・

The network:

- small-world network (Newman and Watts)
- periodic boundary conditions (toroidal)
- addition of "'shortcuts"':2d\u00f6N
- dynamics: shortcut drawing every turn

The network:

- small-world network (Newman and Watts)
- periodic boundary conditions (toroidal)
- addition of "'shortcuts"':2d\u00f6N
- dynamics: shortcut drawing every turn

ъ

The network:

- small-world network (Newman and Watts)
- periodic boundary conditions (toroidal)
- addition of "'shortcuts"':2d\u00f6N
- dynamics: shortcut drawing every turn

The epidemic:

- SIR (Susceptible-Infectious-Removed)
- discrete time
- infection probability p (of a given neighbour in a given time step)
- latency of the disease
 I = 3

Epidemic's developement

(bond percolation)

P. Grassberger, Math. Biosci. 63, 157 (1983)

Epidemic's developement

(bond percolation)

P. Grassberger, Math. Biosci. 63, 157 (1983)

Epidemic's developement

(bond percolation)

P. Grassberger, Math. Biosci. 63, 157 (1983)

Theory - MEJ Newman

 $H(z) = \sum_{n=1}^{\infty} P(n)z^n$ P(n) - probability of a node belonging to n-cluster on SWN

 $H_0(z) = \sum_{n=1}^{\infty} P_0(n) z^n$ $P_0(n)$ - prob. of a node belonging to n-cluster on regular network

P(m|n) - prob. of m shortcuts emanating from an n-cluster

$$H(z) = \sum_{n=1}^{\infty} P_0(n) z^n \sum_m P(m|n) [H(z)]^m$$

$$H(z) = H_0\{z \exp[2d\phi T(H(z) - 1)]\}$$

 $\langle n \rangle = H'_0(1)/(1 - 2d\phi TH'_0(1))$ - average cluster size Newman, Jensen, Ziff, *Phys. Rev. E* **65** (2002), 021904

Theory

Symmetric infectionInfection from regularInfectionthrough aon static net.net.shortcut.

$$N_{stat} = \phi_{stat} N \cdot T = \phi_{stat} N \cdot \sum_{t=1}^{l} p(1-p)^{t-1}$$

$$N_{dyn} = \phi_{dyn} N/2 \cdot lp + \phi_{dyn} N/2 \cdot (l+1) p$$

$$r(p, l) = \phi_{stat} / \phi_{dyn} = \frac{p(l+1/2)}{T} = \frac{p(l+1/2)}{1 - (1-p)^{l}}$$

Result 1: shift of percolation thresholds

Result 1: shift of percolation thresholds

Result 2: network dynamics

$$\phi = 0.25, I = 4$$

Two time scales: latency time and rewiring rate.

Result 3: scaling behaviour

Result 3: scaling behaviour?

- Network dynamics significantly reduces percolation threshold for epidemic (simulations and theory).
- The ratio of network dynamics and disease latency must be used as a parameter.
- Other finite-size scaling effect for SWN than for regular one.

Thank you

æ

イロン イロン イヨン イヨン

J. K. Ochab and P. F. Góra Epidemic on dynamic SWN

Checking and calibration

$$\langle n \rangle = H_0'(1)/(1-2d\phi p H_0'(1))$$

Newman, Jensen, Ziff, Phys. Rev. E 65 (2002), 021904

Checking and calibration

