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Plan of this talk

Background

• Complex networks

• Why stochastic growth models?

• Our favorite: the Bianconi-Barabási model

• Why study leaders and lead changes

Results

• T = ∞ (Barab́asi-Albert model)

• T = 0 (Record-driven growth process)

• T finite (Generic Bianconi-Barab́asi model)
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Complex networks

• Have become a fashion in the 2000s(like fractals in the 1980s)

Natural Leaves, trees, rivers, lungs, blood vessels

Man-made Roads, railways, airlines, Internet, WWW

Artificial Chemical, biological, social, etc.

• Provide a convenient tool to deal with huge sets of data

Nodes = agents, links = relationships

• Growing(nonequilibrium)rather than static(equilibrium)structures

Many examples of networks do grow with time(airline, Internet)

Most successful models of complex networks arestochastic growth models
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Two random examples of artificial complex networks (biology)
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Why stochastic growth models?

Most complex networks exhibit two key features

• Scalefreeness

Broad distribution of node degreek , falling off as power law: P(k) ∼ k−γ

Often 2 < γ < 3 , so that degree fluctuations diverge:vark∼ n(3−γ)/(γ−1)

• Small-world effect

Slow growth of diameter of network: ℓ ∼ lnn

Effective dimensionality is infinite
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• Static models

generalizing Erd̈os-Ŕenyi random graph model

... do not explain above key features in a natural way

• Growth models with preferential attachment

Random growing tree

Node n joins the network at timen

Attaches tosingleearlier node(m= 1, . . . ,n−1)

Attachment probabilityΠn→m defines the model

... have proved far more successful

... have their own interest from the viewpoint of Statistical Physics

... may e.g. exhibit a non-equilibrium condensation transition
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Our favorite: the Bianconi-Barabási model

(Bianconi & Barab́asi, 2001)

Attachment probabilityΠn→m ∼ km(n−1)qm

• Two ingredients

Degree (i.e., popularity) km(n−1) Rich-get-richer

Fitness (i.e., quality) qm Fit-get-richer

• Fitnesses assumed to be activated:qm = exp(−εm/T)

TemperatureT is measure of ruggedness of fitness landscape

Activation energiesεm > 0 quenched random variables with densityρ(ε)

Condensation transition at critical temperatureTc for some distributionsρ(ε)
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Why study leaders and lead changes

Leaderat time n is node I whose degree is maximal: kI (n) = kmax(n)

Interest inhistory of leaders and lead changes?

• Degree of node= activity of airport, popularity of website, wealth of firm, ...

Problem is interestingper se (Krapivsky & Redner, 2002)

• Condensed phase( T < Tc in BB model)

Provides probe fornon-equilibrium dynamics of condensate

Two classes of quantities

• Local: Degreekmax(n) and index I(n) of leaderat time n

• Non-local:NumbersL(n) of leads andD(n) of distinct leadersup totime n
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Results I: T = ∞

Barab́asi-Albert model(Barab́asi & Albert, 1999)

Attachment probabilityΠn→m =
km(n−1)

Z(n−1)

• Minimal model withlinear rich-get-richer effect

• Its success launched the fashion for scalefree networks...among physicists

• Analytical investigations possible

• Numerical simulations too(redirection algorithm)

Worth considering two initial states

(A) Isolated node:Degreek1(1) = 0, henceZ(n) = 2L(n) = 2n−2

(B) Rooted node:Degreek1(1) = 1, henceZ(n) = 2L(n) = 2n−1
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How exact results yield heuristic predictions

• Degree distribution: fk =
4

k(k+1)(k+2)

Scalefree with exponentγ = 3

Extreme-value statisticsargument yieldskmax(n) ∼ n1/2

• Mean degree of nodei at time n :
〈

k(A)
i (n)

〉

=
Γ(n−1/2)Γ(i −1)

Γ(i −1/2)Γ(n−1)
,

〈

k(B)
i (n)

〉

=
Γ(n)Γ(i −1/2)

Γ(i)Γ(n−1/2)

Scales as〈ki(n)〉 ≈
(n

i

)1/2

Confirms kmax(n) ∼ n1/2 and suggests microscopicI(n) ∼ 1

Fluctuations? Memory of initial state?
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Rule: Initial state matters

Many quantities (both local and global)

depend on initial condition and have non-trivial fluctuations

Examples:

Reduced degree of leaderY(n) = kmax(n)/n1/2

Index I(n) of leader

Number D(n) of distinct leaders

Lead survival probabilityS(n)

Quantity 〈Y〉 〈I〉 〈D〉 S

Case A 2.00 3.40 2.22 0.279

Case B 2.16 2.67 1.94 0.389
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Summary of I

Typical history for T = ∞ (Barab́asi-Albert model)

• Finitely many distinct leaders

• Among the few oldest nodes

• Finite probability of having a single leader

• Otherwise lead changes occur at logarithmic pace:L(n) ∼ lnn

• All this depends on initial state
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Results II: T = 0

Record-driven growth process(Godr̀eche & L, 2008)

• Reminder: Fitnesses are activated:qm = exp(−εm/T)

T → 0 limit: εm < εl implies Πn→m/Πn→l → ∞

• Node N whose energyεN is smallest at timen : εN = min(ε1, . . . ,εn)

Defined as the current record node at timen

Attracts all new connections... until outdone by next record

• There is an infinite sequence of record times (i.e., record nodes)

{N1, N2, N3, . . .}

• Only record nodes grow

• Leaders(largest degree) are amongrecords(best fitness)
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The universal (but not so well-known) statistics of records

Time N is a record if εN < min(ε1,ε2, . . . ,εN−1)

• This occurs with prob.pN =
1
N

irrespective of past, future, andρ(ε)

• Number of records up to timen grows aslnn

Sequence of record times{N1 = 1, N2, N3, . . .}

• Recursive construction

If N is a record,nextrecord is M with prob. pN,M =
N

M(M−1)

• Multiplicative continuum formalism

Nm+1 =
Nm

Um+1
Um+1 uniform in [0,1]

• Scale invariance, i.e., stationarity in logarithmic time
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Degreekmax of the leader

Extensive and fluctuating...
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obey recursionRm+1 = max(Um+1Rm, 1−Um+1)

This line of thought yields many analytical results

Connection with Kesten variable and 1D disordered systems
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A few of our analytical results

• Degreekmax(n) and index I(n) of leader at timen

Grow linearly in time, askmax(n) = Rn and I(n) = Sn

Ratios R and S have known limiting distributions
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• Probability that a given record node is (will be) a leader

ω = 〈R〉 =
Z ∞

0

(

1−e−E(s)
)

ds= 0.624329988...

E(s) =
Z ∞

s
e−t dt

t

ω is the Golomb-Dickman constant... well-known in Combinatorics

• Number of leads and of distinct leaders up to timen

L(n) = D(n) ≈ ω lnn
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Summary of II

Typical history for T = 0 (Record-driven growth process)

• Only record nodes grow

• Every record has a chanceω to become a leader

• All leaders are distinct

• lnn records andω lnn leaders up to timen

• Degree and index of the leader linear in time and fluctuating
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Results III: T finite (generic BB model)

Reminder: Attachment probabilityΠn→m =
km(n−1)qm

Z(n−1)

Fitnesses are activated:qm = exp(−εm/T)

Mean-field analysis (Bianconi and Barab́asi, 2001)

Mean degree of nodem at time n knowing its fitnessqm

〈km(n)〉qm
≈

( n
m

)qm/C

• Growth exponentqm/C proportional to fitnessqm

• DenominatorC obeysgap equation I (T,C) =

Z ∞

0

ρ(ε)dε
Ceε/T −1

= 1
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Condensation transition at finite temperatureTc

C = 1 for Tc s.t. I (Tc,1) =
Z ∞

0

ρ(ε)dε
eε/Tc −1

= 1

• Formal analogy withBose-Einstein condensation

• Condition: ρ(ε) ∼ εθ−1 with θ > 1 as ε → 0 (analogue ofd > 2 for BEC)

• Condensed phase(T < Tc)

Known condensed fractionF = 1− I (T,1)

Degree of condensate (leader) should grow askmax≈ F n
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What is actually observed in condensed phase?
Numerical study for triangular distribution of energies

ρ(ε) = 2ε on [0,1]. Tc = 0.711716308...

Degree of leader:R(n) = kmax(n)/n
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Extensive fluctuations

Slow down w.r.t. record-driven case

Far from BEC picture with its constant condensed fraction
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Condensation scenario

Infinite hierarchy of fluctuating condensates

• Degreesk(1) ≥ k(2) ≥ k(3) ≥ . . .

• Leader with degreek(1) not really singled out

• Ratios R( j) = k( j)/n have non-trivialT -dept joint law

• Statics just provides sum rule∑
j

R( j) = F

• Non-trivial higher moments, e.g.∑
j

R2
( j) = Y
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History of leaders

The Leader of Today is the Record of Old

Reminder: 〈km(n)〉qm
≈

( n
m

)qm/C

(1) Original variational extreme-value argument for n.i.i.d. variables

I ∼ ((lnn)/T)θ

(2) Leader is a record with high probability(Π∞(Tc) ≈ 0.866)

Hence D(n) ∼ θ ln lnn, S(n) ∼ (lnn)−θ

The above holds irrespective of phase: both fluid(T > Tc) and condensed(T < Tc)

Crossover time at low temperature:τ ∼ T−θ
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Take home messages

1. The fate of leaders

A more efficient search engine is launched today. Will it outdo Google? If so, when?

The Leader of Today is the Record of Old

• Yes with high probability. But in a very distant(exponentially large)future

• Beware of broad crossovers to other regimes(BA, RD)

2. Nonequilibrium condensation dynamics

Condensed phase of BB model provides exotic scenario (w.r.t. BEC & ZRP)

• Infinite hierarchy of fluctuating condensates

• Very slow turnover
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