The fate of leaders in growing networks

Jean-Marc Luck

Institut de Physique Théorique (CEA & CNRS), Saclay, France

Collaboration with Claude Godrèche and Hélène Grandclaude

- J. Stat. Mech. P11006 (2008)
- J. Stat. Phys. **137**, 1117 (2009)
- J. Stat. Mech. P02001 (2010)
- J. Stat. Mech. P07031 (2010)

Plan of this talk

Background

- Complex networks
- Why stochastic growth models?
- Our favorite: the Bianconi-Barabási model
- Why study leaders and lead changes

Results

- $T = \infty$ (*Barabási-Albert model*)
- T = 0 (*Record-driven growth process*)
- *T* finite (*Generic Bianconi-Barabási model*)

Complex networks

• Have become a fashion in the 2000s (like fractals in the 1980s)

Natural	Leaves, trees, rivers, lungs, blood vessels			
Man-made	Roads, railways, airlines, Internet, WWW			
Artificial	Chemical, biological, social, etc.			

- Provide a convenient tool to deal with huge sets of data
 Nodes = agents, links = relationships
- Growing (nonequilibrium) rather than static (equilibrium) structures
 Many examples of networks do grow with time (airline, Internet)
 Most successful models of complex networks are stochastic growth models

Two random examples of artificial complex networks (biology)

Why stochastic growth models?

Most complex networks exhibit two key features

• Scalefreeness

Broad distribution of node degree k, falling off as power law: $P(k) \sim k^{-\gamma}$ Often $2 < \gamma < 3$, so that degree fluctuations diverge: $\operatorname{var} k \sim n^{(3-\gamma)/(\gamma-1)}$

• Small-world effect

Slow growth of diameter of network: $\ell \sim \ln n$ Effective dimensionality is infinite

• Static models

generalizing Erdös-Rényi random graph model

... do not explain above key features in a natural way

• Growth models with preferential attachment

Random growing tree

Node *n* joins the network at time *n* Attaches to *single* earlier node (m = 1, ..., n - 1)

Attachment probability $\prod_{n \to m}$ defines the model

... have proved far more successful

... have their own interest from the viewpoint of Statistical Physics ... may e.g. exhibit a non-equilibrium condensation transition Our favorite: the Bianconi-Barabási model

(Bianconi & Barabási, 2001)

Attachment probability $\Pi_{n\to m} \sim k_m(n-1) q_m$

• Two ingredients

Degree (i.e., popularity) $k_m(n-1)$ Rich-get-richerFitness (i.e., quality) q_m Fit-get-richer

• Fitnesses assumed to be activated: $q_m = \exp(-\varepsilon_m/T)$

Temperature *T* is measure of ruggedness of fitness landscape Activation energies $\varepsilon_m > 0$ quenched random variables with density $\rho(\varepsilon)$

Condensation transition at critical temperature T_c for some distributions $\rho(\epsilon)$

Why study leaders and lead changes

Leader at time *n* is node *I* whose degree is maximal: $k_I(n) = k_{max}(n)$

Interest in history of leaders and lead changes ?

- Degree of node = activity of airport, popularity of website, wealth of firm, ... Problem is interesting *per se* (Krapivsky & Redner, 2002)
- Condensed phase ($T < T_c$ in BB model)

Provides probe for non-equilibrium dynamics of condensate

Two classes of quantities

- Local: Degree $k_{\max}(n)$ and index I(n) of leader at time n
- Non-local: Numbers $\mathcal{L}(n)$ of leads and D(n) of distinct leaders up to time n

Results I: $T = \infty$

Barabási-Albert model (Barabási & Albert, 1999)

Attachment probability $\Pi_{n \to m} = \frac{k_m(n-1)}{Z(n-1)}$

- Minimal model with *linear rich-get-richer effect*
- Its success launched the fashion for scalefree networks... among physicists
- Analytical investigations possible
- Numerical simulations too (*redirection algorithm*)

Worth considering two initial states

- (A) *Isolated node:* Degree $k_1(1) = 0$, hence Z(n) = 2L(n) = 2n 2
- (B) *Rooted node:* Degree $k_1(1) = 1$, hence Z(n) = 2L(n) = 2n 1

How exact results yield heuristic predictions

• Degree distribution: $f_k = \frac{4}{k(k+1)(k+2)}$

Scalefree with exponent $\gamma = 3$

Extreme-value statistics argument yields $k_{\max}(n) \sim n^{1/2}$

• Mean degree of node *i* at time *n* :

$$\left\langle k_i^{(A)}(n) \right\rangle = \frac{\Gamma(n-1/2)\,\Gamma(i-1)}{\Gamma(i-1/2)\,\Gamma(n-1)}, \quad \left\langle k_i^{(B)}(n) \right\rangle = \frac{\Gamma(n)\,\Gamma(i-1/2)}{\Gamma(i)\,\Gamma(n-1/2)}$$

Scales as $\left\langle k_i(n) \right\rangle \approx \left(\frac{n}{i}\right)^{1/2}$

Confirms $k_{\max}(n) \sim n^{1/2}$ and suggests microscopic $I(n) \sim 1$

Fluctuations? Memory of initial state?

Rule: Initial state matters

Many quantities (both local and global)

depend on initial condition and have non-trivial fluctuations

Examples:

Reduced degree of leader $Y(n) = k_{\max}(n)/n^{1/2}$

Index I(n) of leader

Number D(n) of distinct leaders

Lead survival probability S(n)

Quantity	$\langle Y angle$	$\langle I angle$	$\langle D angle$	S
Case A	2.00	3.40	2.22	0.279
Case B	2.16	2.67	1.94	0.389

Summary of I

Typical history for $T = \infty$ (Barabási-Albert model)

- Finitely many distinct leaders
- Among the few oldest nodes
- Finite probability of having a single leader
- Otherwise lead changes occur at logarithmic pace: $\mathcal{L}(n) \sim \ln n$
- All this depends on initial state

Results II: T = 0

Record-driven growth process (Godrèche & L, 2008)

- Reminder: Fitnesses are activated: $q_m = \exp(-\epsilon_m/T)$ $T \to 0$ limit: $\epsilon_m < \epsilon_l$ implies $\prod_{n \to m} / \prod_{n \to l} \to \infty$
- Node N whose energy ε_N is smallest at time n : ε_N = min(ε₁,...,ε_n)
 Defined as the current record node at time n
 Attracts all new connections... until outdone by next record
- There is an infinite sequence of record times (i.e., record nodes) $\{N_1, N_2, N_3, ...\}$
- Only record nodes grow
- Leaders (largest degree) are among records (best fitness)

The universal (but not so well-known) statistics of records

Time *N* is a record if $\varepsilon_N < \min(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{N-1})$

- This occurs with prob. $p_N = \frac{1}{N}$ irrespective of past, future, and $\rho(\varepsilon)$
- Number of records up to time *n* grows as $\ln n$

Sequence of record times $\{N_1 = 1, N_2, N_3, \ldots\}$

• Recursive construction

If *N* is a record, next record is *M* with prob. $p_{N,M} = \frac{N}{M(M-1)}$

• Multiplicative continuum formalism

$$N_{m+1} = \frac{N_m}{U_{m+1}}$$
 U_{m+1} uniform in $[0,1]$

• Scale invariance, i.e., stationarity in logarithmic time

Degree k_{max} of the leader

Extensive and fluctuating...

Take stroboscopic view of the growth process at the record times N_m Ratios $R_m = \frac{k_{\max}(N_m)}{N_m}$ obey recursion $R_{m+1} = \max(U_{m+1}R_m, 1 - U_{m+1})$

obey recursion $\kappa_{m+1} = \max(O_{m+1}\kappa_m, 1 - O_{m+1})$

This line of thought yields many analytical results

Connection with Kesten variable and 1D disordered systems

A few of our analytical results

• Degree $k_{\max}(n)$ and index I(n) of leader at time n

Grow linearly in time, as $k_{\max}(n) = Rn$ and I(n) = SnRatios *R* and *S* have known limiting distributions

• Probability that a given record node is (will be) a leader

$$\omega = \langle R \rangle = \int_0^\infty \left(1 - e^{-E(s)} \right) ds = 0.624329988...$$
$$E(s) = \int_s^\infty e^{-t} \frac{dt}{t}$$

ω is the Golomb-Dickman constant... well-known in Combinatorics

• Number of leads and of distinct leaders up to time *n*

 $\mathcal{L}(n) = D(n) \approx \omega \ln n$

Summary of II

Typical history for T = 0 (Record-driven growth process)

- Only record nodes grow
- Every record has a chance ω to become a leader
- All leaders are distinct
- $\ln n$ records and $\omega \ln n$ leaders up to time n
- Degree and index of the leader linear in time and fluctuating

Results III: T finite (generic BB model)

Reminder: Attachment probability $\Pi_{n \to m} = \frac{k_m(n-1)q_m}{Z(n-1)}$

Fitnesses are activated: $q_m = \exp(-\varepsilon_m/T)$

Mean-field analysis (Bianconi and Barabási, 2001)

Mean degree of node m at time n knowing its fitness q_m

 $\langle k_m(n) \rangle_{q_m} \approx \left(\frac{n}{m}\right)^{q_m/C}$

- Growth exponent q_m/C proportional to fitness q_m
- Denominator *C* obeys gap equation $I(T,C) = \int_0^\infty \frac{\rho(\varepsilon) d\varepsilon}{C e^{\varepsilon/T} 1} = 1$

Condensation transition at finite temperature T_c

C = 1 for T_c s.t. $I(T_c, 1) = \int_0^\infty \frac{\rho(\varepsilon) d\varepsilon}{e^{\varepsilon/T_c} - 1} = 1$

- Formal analogy with Bose-Einstein condensation
- Condition: $\rho(\varepsilon) \sim \varepsilon^{\theta-1}$ with $\theta > 1$ as $\varepsilon \to 0$ (analogue of d > 2 for BEC)
- Condensed phase $(T < T_c)$

Known condensed fraction F = 1 - I(T, 1)

Degree of condensate (leader) should grow as $k_{\text{max}} \approx F n$

What is actually observed in condensed phase?

Numerical study for triangular distribution of energies

 $\rho(\varepsilon) = 2\varepsilon$ on [0,1]. $T_c = 0.711716308...$

Degree of leader: $R(n) = k_{\max}(n)/n$

Extensive fluctuations

Slow down w.r.t. record-driven case

Far from BEC picture with its constant condensed fraction

Condensation scenario

Infinite hierarchy of fluctuating condensates

- Degrees $k_{(1)} \ge k_{(2)} \ge k_{(3)} \ge \dots$
- Leader with degree $k_{(1)}$ not really singled out
- Ratios $R_{(j)} = k_{(j)}/n$ have non-trivial T -dept joint law
- Statics just provides sum rule $\sum_{i} R_{(j)} = F$
- Non-trivial higher moments, e.g. $\sum_{i} R_{(j)}^2 = Y$

History of leaders

The Leader of Today is the Record of Old

Reminder: $\langle k_m(n) \rangle_{q_m} \approx \left(\frac{n}{m}\right)^{q_m/C}$

- (1) Original variational extreme-value argument for n.i.i.d. variables $I \sim ((\ln n)/T)^{\theta}$
- (2) Leader is a record with high probability $(\Pi_{\infty}(T_c) \approx 0.866)$

Hence $D(n) \sim \theta \ln \ln n$, $S(n) \sim (\ln n)^{-\theta}$

The above holds irrespective of phase: both fluid $(T > T_c)$ and condensed $(T < T_c)$ Crossover time at low temperature: $\tau \sim T^{-\theta}$

Take home messages

1. The fate of leaders

A more efficient search engine is launched today. Will it outdo Google? If so, when?

The Leader of Today is the Record of Old

- Yes with high probability. But in a very distant (*exponentially large*) future
- Beware of broad crossovers to other regimes (BA, RD)

2. Nonequilibrium condensation dynamics

Condensed phase of BB model provides exotic scenario (w.r.t. BEC & ZRP)

- Infinite hierarchy of fluctuating condensates
- Very slow turnover