(In collaboration with Jean-Paul Blaizot, Romuald Janik, Jerzy Jurkiewicz, Ewa Gudowska-Nowak, Piotr Warchoł, Waldemar Wieczorek)

Non-equilibrium phenomena in random matrix models

Maciej A. Nowak

Mark Kac Complex Systems Research Center, Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

Nordita Workshop, Stockholm, November 22nd, 2010

Outline

- Diffusion of large (huge) matrices (physics, telecommunication, life sciences..)
- Non-linear Smoluchowski-Fokker-Planck equations and shock waves
- Finite N as viscosity in the spectral flow Burgers equations
- Order-disorder phase transition in large N YM theory, colored catastrophes and universality
- Chiral shock waves (Wishart ensemble)
- Summary

Motivation

Justification for novel approach

- Contemporary physical and other complex systems are characterized by huge matrices (Large N, MIMO systems, DNA data, dEEG data...)
- Systems evolve due to dynamic evolution as a function of exterior parameters (time, length of the wire, area of the surface, temperature ...)
- Can we achieve mathematical formulation for this setup?
- Can noise **improve** our understanding?

Two probability calculi

CLASSICAL

- pdf $< ... >= \int ... p(x) dx$
- Fourier transform F(k) of pdf generates moments
- In F(k) of Fourier generates additive cumulants
- Gaussian Non-vanishing second cumulant only

MATRICIAL (FRV for $N = \infty$)

- spectral measure $< ... >= \int ... P(H) dH$
- Resolvent $G(z) = \left\langle \operatorname{Tr} \frac{1}{z H} \right\rangle$
- R-transform generates additive cumulants G[R(z) + 1/z] = z
- Wigner semicircle Non-vanishing second cumulant only

Exact analogies for CLT, Lévy processes, Extreme values statistics...

Inviscid Burgers equation

After considerable and fruitless efforts to develop a Newtonian theory of ensembles, we discovered that the correct procedure is quite different and much simpler..... from F.J. Dyson, J. Math. Phys. 3 (1962) 1192

- $H_{ij} \rightarrow H_{ij} + \delta H_{ij}$ with $< \delta H_{ij} = 0 >$ and $<(\delta H_{ii})^2>=(1+\delta_{ii})\delta t$
- For eigenvalues x_i , random walk undergoes in the "electric field" (Dyson) $<\delta x_i>=\sum_{i\neq j}\left(\frac{1}{x_i-x_i}\right)$ and $<(\delta x_i)^2>=\delta t$
- Resulting SFP equation for the resolvent in the limit $N=\infty$ and $\tau = Nt$ reads $\partial_{\tau} G(z,\tau) + G(z,\tau) \partial_{z} G(z,\tau) = 0$
- Non-linear, inviscid complex Burgers equation, very different comparing to Fick equation for the "classical" diffusion

Inviscid Burgers equation - details

SFP eq:

$$\partial_t P(\lbrace x_j \rbrace, t) = \frac{1}{2} \sum_i \partial_{ii}^2 P(\lbrace x_j \rbrace, t) - \sum_i \partial_i (E(x_i) P(\lbrace x_j \rbrace, t))$$

 Integrating, normalizing densities to 1 and rescaling the time $\tau = Nt$ we get

$$\partial_{\tau}\rho(x) + \partial_{x}\rho(x)P.V. \int dy \frac{\rho(y)}{x-y} = \frac{1}{2N}\partial_{xx}^{2}\rho(x) + P.V. \int dy \frac{\rho_{c}(x,y)}{x-y}$$

- r.h.s. tends to zero in the large N limit
- $\frac{1}{x+i\epsilon} = P.V.\frac{1}{x} \mp i\pi\delta(x)$

Complex Burgers Equation and viscosity

- Burgers equation $\partial_{\tau}G + G\partial_{z}G = 0$
- Complex characteristics $G(z,\tau)=G_0(\xi[z,\tau)])$ $G_0(z)=G(\tau=0,z)=rac{1}{z}$ $\xi=z-G_0(\xi)\tau$ $(\xi=x-vt)$, so solution reads $G(z,\tau)=G_0(z-\tau G(z,\tau))$
- Shock wave when $\frac{d\xi}{dz} = \infty$
- Universal preshock expansion at the singularity for finite N We define $f(z,\tau)=\partial_z\ln<\det(z-H(\tau))>$ $\partial_\tau f+f\partial_z f=-\nu\partial_{zz}f$ $\nu=\frac{1}{2N}$
- Exact (for any N) viscid Burgers equation with negative viscosity, similar equation for $g(z,\tau) = \partial_z \ln < 1/\det(z H(\tau)) >$
- Universal oscillations anticipating the shock, contrary to smoothening of the shock in hydrodynamics – Airy universality

"Behind the Great Wave at Kanagawa" (by Hokusai) Color woodcut, Metropolitan Museum of Art, New York.

Diffusion of unitary matrices:

- ullet Similar Burgers equation for G(z, au) Durhuus, Olesen, Migdal, Makeenko, Kostov, Matytsin, Gross, Gopakumar, Douglas, Rossi, Kazakov, Voiculescu, Pandey, Shukla, Janik, Wieczorek, Neuberger
- Collision of two shock waves, since they propagate on the circle
- ullet Universal preshock expansion at the singularity for finite N
- Similar, exact (for any finite N) viscid Burgers equation with negative viscosity (for < det > and < 1/det >)
- Universal, wild oscillations anticipating the shock, contrary to smoothening of the shock in standard hydrodynamics – here Pearcey universality

Colliding Great Waves at $\theta=\pi$ (by Hocus Pocusai, Microsoft Paint based on Hokusai woodcut)

•
$$W(c) = \langle P \exp(i \oint A_{\mu} dx^{\mu}) \rangle_{YM}$$

•
$$Q_N(z,A) \equiv \langle det(z-W(A)) \rangle$$

• Double scaling limit...

•
$$z = -e^{-y}$$

 $y = \frac{2}{12^{1/4}N^{3/4}}\xi$
 $\mathcal{A}^{-1} = \mathcal{A}^{*-1} + \frac{\alpha}{4\sqrt{3}}\frac{1}{N^{1/2}}$

• $Q_N(z, A) \rightarrow \lim_{N \to \infty} \left(\frac{4N}{3}\right)^{1/4} Z_N(\Theta, A) = \int_{-\infty}^{+\infty} du e^{-u^4 - \alpha u^2 + \xi u}$

universality!
Closing of the gap is

universal in d = 2, 3, 4

Universal scaling visualization - "classical" analogy

Caustics, illustration from Henrik Wann Jensen

Fold and cusp fringes, illustrations by Sir Michael Berry

Morphology of singularity (Thom, Berry, Howls)

GEOMETRIC OPTICS

(wavelength
$$\lambda = 0$$
)

- trajectories: rays of light
- intensity surface: caustic

WAVE OPTICS $(\lambda \rightarrow 0)$

$N \to \infty$ Yang-Mills $(\nu = \frac{1}{2N} = 0)$

- trajectories: characteristics
- singularities of spectral flow

FINITE *N* YM (viscosity $\nu \rightarrow 0$)

Universal Scaling, Arnold (μ) and Berry (σ) indices

"Wave packet" scaling (interference regime)

- $\bullet \ \Psi = \tfrac{C}{\lambda^{\mu}} \Psi (\tfrac{x}{\lambda^{\sigma_x}}, \tfrac{y}{\lambda^{\sigma_y}})$
- fold $\mu = \frac{1}{6} \ \sigma = \frac{2}{3} \ \text{Airy}$
- cusp $\mu = \frac{1}{4} \ \sigma_{\mathsf{X}} = \frac{1}{2} \ \sigma_{\mathsf{y}} = \frac{3}{4}$ Pearcey

Yang-Lee zeroes scaling with N (for $N \to \infty$)

- YL zeroes of Wilson loop
- $N^{2/3}$ scaling at the edge
- $N^{1/2}$ and $N^{3/4}$ scaling at the closure of the gap

Hard edge universality

- Random walk of chiral Gaussian matrices: mirror eigenvalues due to "chiral symmetry", zero modes from "rectangularity"
- Change of variables converts the evolution onto complex Bru (Wishart) evolution
- Burger's alike equation for the resolvent for zero rectangularity $\partial_{\tau}G(z,\tau) + 2zG(z,\tau)\partial_{z}G(z,\tau) = -G^{2}(z,\tau)$
- Riccati equation for Airy transmutes into Riccati-Bessel equation
- Crucial role of $G^2(0) = -\pi^2 \rho^2(0)$
- Physical interpretation: Banks-Casher relation $< q\bar{q}> \sim \pi \rho(0)$
- Spectral shocks and spontaneous symmetry breaking in QCD

More details: J.-P. Blaizot, MAN, P. Warchoł, to be published

Conclusions

- Powerful "spectral" formalism for matrix-valued diffusions (also for Ginibre-Girko matrices)
- Turbulence (in Kraichnan sense) as a mechanism for Haar measure in CUE
- Nonlinear effects, shock waves, universality
- New insight for several order-disorder transitions (e.g. Durhuus-Olesen transition, chiral symmetry breakdown)
- Multiple realisations of the universality, presumably also in several real complex systems
- New paradigm: for large matrices, noise is more helpful then distractive, improving predictability ("classical" limit)
- Hint for new mathematical structures?

More details: J.-P. Blaizot, MAN: 0911.3683, 0902.2223, PRL 101, 102001 and references therein.