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Aim of Study

I To find the asymptotic distribution of the number of
records in random split trees. (This number is equal in
distribution to the number of cuts needed to eliminate this
type of tree.)



The Binary Search Tree is an Example of a Split Tree



The Binary Search Tree is an Example of a Split Tree

Randomly draw a number, which we call a key, from the set
{1, 2 . . . , 30}, and associate it to the root.



The Binary Search Tree is an Example of a Split Tree

Randomly draw a new number from the remaining numbers in
{1, 2 . . . , 30}, and associate it to the left child if it is smaller than

the root’s key and to the right child if it is larger.



The Binary Search Tree is an Example of a Split Tree

Proceed recursively in each subtree, by comparing the new drawn
key by the current root’s key.
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The Binary Search Tree is an Example of a Split Tree



The Binary Search Tree (continued)

I Since the rank of the root’s key is equally likely to be
{1, 2, . . . , n}, the size of its left subtree is distributed as bnUc,
where U is a uniform U(0, 1) random variable. Similarly the
right subtree is distributed as n − bnUc.

I All subtree sizes can be explained in this manner. If a subtree

rooted at v has size V , the size of its left subtree is
d
= bVUvc.



The m-ary Search Trees are Examples of Split Trees

Figure: The m-ary search trees are generalisations of the binary search
tree where m = 2. The figure shows a 3-ary and a 4-ary search tree
constructed from the sequence 7,5,15,3,4,6,1,13,11,10,2,16,8,9,14,12.



The m-ary Search Trees cont.

I The proportions of the number of keys in the m subtrees of
the root are given by the lengths of the sub-intervals created
if we do m − 1 random cuts of a [0,1] interval.

I Let (n1, n2, . . . , nm) be the vector of the subtree sizes for the
children of the root. Then (n1, n2, . . . , nm) is distributed as a
multinomial vector (n,V1, . . . ,Vm), where the Vi ’s are
distributed as the minimum of m − 1 uniform U(0, 1) r.v..



What is a Split Tree?

(Devroye 1998)



The Recursive Construction of a Split Tree

All internal nodes 
have s0=0 items

All leaves have
between 1 and
s=4 items

b=2
s=4
s0=0

b=3
s=4
s0=2

All internal nodes 
have s0=2 items

All leaves have
between 1 and
s=4 items

I Let nv denote the cardinality of a node v .
I The splitting procedure starts in the root and is only carried

on as long nv > s.
I Given the cardinality nv > s and the split vector
Vv = (V1,V2 . . . ,Vb), the cardinalities (nv1 , nv2 , . . . , nvb) of
the b subtrees rooted at v1, v2, . . . , vb are distributed as

Multinomial
(

nv − s0,V1,V2, . . . ,Vb

)
.



Examples of Split Trees

I The class of split trees includes many important random trees
of logarithmic height, such as binary search trees, m-ary
search trees, quadtrees, median of (2k + 1)-trees,
simplex trees, tries and digital search trees.

Figure: A 3-ary and a 4-ary
search tree constructed from the
sequence 7, 5, 15, 3, 4, 6, 1, 13,
11, 10, 2, 16, 8, 9, 14, 12.

Figure: A trie built from the
strings 0000 . . . , 0001 . . . ,
001 . . . , 01 . . . , 11000, . . . ,
11001, . . . , 1110 . . . and
1111, . . . .



What is a Cutting in a Rooted Tree?

I Choose one node at random.

I Cut in this node so that the tree separates into two parts, and
keep only the part containing the root.

I Continue recursively until the root is cut. Let X (T ) denote
the (random) number of cuts.



What is a Record in a Rooted Tree?

I Let each node v have a random value λv attached to it.
Assume that these values are i.i.d. with a continuous
distribution.

I A value λv is a record if it is the smallest value in the path
from the root to v .



Records and Cuttings in Rooted Trees

I The number of cuts X (T ) is equal in distribution to the
number of records. (Janson 2004)
Think! A node v is cut at some time if and only if λv is a
record.



Aim of Study

I To find the asymptotic distribution of the number of records
X (T ) (or equivalently the number of cuts) in random split
trees.



Background

I Cutting down trees first introduced by Meir and Moon (1970).
Essentially two random tree models have been considered:

I In the first model the trees have height of order
√

n.
Panholzer, Fill and Kapur have studied e.g., the well-known Cayley
tree. Janson (2004) generalised their results and showed that the
numbers of records (or cuts) of conditioned Galton–Watson trees
are asymptotically Rayleigh distributed. A recent approach by
Addario-Berry, Broutin and Holmgren is to show this result by
defining a cutting down procedure for the Brownian continuum
random trees of Aldous.

I In the second model the trees have height of order log n.
A large class of trees in this model are the random split trees.
Janson (2004) showed that for the complete binary tree the number
of cuts is asymptotically weakly 1-stable. Drmota, Iksanov, Moehle
and Roesler, recently used analytic methods to show that the
number of cuts in the random recursive tree is also weakly 1-stable.



Cuttings in Relation to Physics

I The number of cuttings in rooted trees is related to coalescent
theory in Physics.

I In coalescent theory one studies the physical phenomenon
when several blocks merge into one block. There is a markov
process with transition probabilities λb,k which gives the rate
at which any k-tuple of blocks merges when there are b
blocks in total.

I Martin and Goldschmidt (2005) showed that the number of
cuttings in a random recursive tree corresponds to the number
of collision events that take place until there is just a single
block in the Bolthausen-Sznitman coalescent.



The Main Theorem

Let Tn be a split tree with n items, and let X(Tn) be the number
of records (or cuts) in Tn.

Main Theorem
Suppose that n→∞. Then(

X (Tn)− αn

c ln n
− αn ln ln n

c ln2 n

) / αn

c2 ln2 n

d→ −W , (1)

where c and α are constants and W has an infinitely divisible
distribution more precisely a weakly 1-stable distribution with
characteristic function

E
(

e itW
)

= exp
(
− c

2
π|t|+ it(C )− i |t|c ln |t|

)
, (2)

where C is a constant.



Infinitely Divisible Distributions

I A triangular array is a sequence of random variables
Zn,j , 1 ≤ j ≤ n, so that the variables in each row, n, are
independent and identically distributed. Typically the variables
in different rows are not independent.

I A random variable Z has an infinitely divisible distribution, if
and only if, for all n, there is a triangular array
Zn,j , 1 ≤ j ≤ n, such that

Z
d
=

n∑
j=1

Zn,j .



α-Stable Distributions

A distribution of a random variable Z is α-stable for α ∈ (0, 2] if
for a sequence of i.i.d random variables Zk , k ≥ 1 distributed as Z
there exists constants cn such that

n∑
k=1

Zk
d
= n

1
α Z + cn,

for all n. The distribution is strictly stable if for all n, cn = 0 and
weakly stable otherwise.



Method of Proof of the Main Theorem

I To express the number of records X (Tn) by a sum of i.i.d. r.v.
derived from λv and then apply a classical limit theorem for
convergence of a sum of triangular null arrays to infinitely
divisible distributions. This method was first used by Janson for

finding the distribution of the number of records in the deterministic

complete binary tree.

I To extend the Janson method so that it can be used for the
more complex random binary search tree.

I To generalize the proofs for the binary search tree and show
that this method can be used also for all other types of split
trees.



Complete Binary Tree: Most Nodes Close to the Top
Level of Depth log2 n

Figure: A complete binary tree. All nodes except the leaves have two
children.



Split Trees: Most Nodes Close to Depth c lnn.

2ln n

2ln n+O(ln^(1/2)n)

2ln n−O(ln^(1/2)n)

0.3711... ln n

4.31107... ln n

All levels are full up to here.

The height of the tree.

Most nodes are in this strip.

Figure: This figure illustrates the shape of the binary search tree. The
root is at the top. The horizontal width represents the number of nodes
at each level. Most nodes are in a strip of width O(

√
ln n) around 2 ln n.



Subtree Sizes in Split Trees

V1

V2

Contains n items

Contains ≈nV1 items

Contains 
≈nV1V2

items

V3

Contains 
≈nV1V2V3

items

Figure: Given all split vectors in the tree, nv for v at depth k is close to
nV1V2 . . .Vk , where the Vr ’s are i .i .d . random variables distributed as
the components in the split vector.



Subtree Sizes in Split Trees

I In a split tree with n items, given the root’s split vector
Vσ = (V1, . . . ,Vb), the numbers of items in the subtrees
rooted at the root’s children are close to nV1, . . . , nVb.

I Let nv be the number of items in the subtree rooted at node
v . Given all split vectors in the tree, nv for v at depth k is
close to

nV1V2 . . .Vk ,

where Vr , r ∈ {1, . . . , k} are independent and identically
distributed (i.i.d.) random variables (r.v).
The Vr ’s are given by the split vectors associated with the
nodes in the unique path from v to the root.



“Good” and “Bad” Vertices in Split Trees

I There is a central limit theorem for the depth of nodes so that

“most” nodes lie at c ln n +O
(√

ln n
)

. Devroye (1998)

I Let d(v) denote the depth of a node v in the split tree Tn. A
node v is called good if

c ln n − ln0.6 n ≤ d(v) ≤ c ln n + ln0.6 n,

and bad otherwise. Recall that the subtree sizes can be
expressed by r.v.’s that depend on the split vectors. I use this
fact to apply large deviations and show that the bad nodes are
bounded by a small error term and can thus be ignored.



Advantage of Considering Records in Subtrees

I Consider the subtrees Ti , 1 ≤ i ≤ bL rooted at
L = C log log n.

I Let Λi be the smallest value of the λv ’s from the node i to
the root of Tn. Given Tn and the λv ’s below level L,

X (Tn) ≈
bL∑
i=1

X (Ti )Λi
.

Figure: The subtrees T1, T2, T3, T4 at depth L = 2 are considered. This
example has Λ1 = 1, Λ2 = 8, Λ3 = 3 and Λ4 = 3.



Applying a Theorem for Triangular Arrays

I Using that X (Tn) ≈
∑bL

i=1 X (Ti )Λi
, the normalized X (Tn) in

the Main Theorem can be expressed as

−
( ∑

d(v)≤L

ξv +
n∑

i=1

ξ
′
i

)
+ op(1),

where ξv := nv c ln n
n · e−λv c ln n and the ξ

′
i ’s are r.v.’s only

depending on the nv ’s with d(v) = L.

I Conditioned on the nv ’s, the ξv ’s are independent r.v.’s since
the λv ’s are independent, and the ξ

′
i ’s are deterministic.

Thus, given the nv ’s, {ξv}
⋃
{ξ′i } is a triangular array.

I The purpose is to use a classical central limit theorem
for convergence of a sum of triangular null arrays to
infinitely divisible distributions.



The Triangular Array Theorem Requires Theorem 2

The limit theorem for triangular null arrays requires that three
conditions for the null array are fulfilled.

Theorem 2
Suppose that n→∞ and choose any constant C > 0, then

(i) sup
v

P
(
ξv > x

∣∣nv

)
→ 0 for every x > 0, i .e. {ξv} is a null array

(ii)
∑

d(v)≤L

P
(
ξv > x

∣∣nv

) p→ ν(x ,∞) =
c

x
for every x > 0,

(iii)
∑

d(v)≤L

E
(
ξv1[ξv ≤ C ]

∣∣nv

)
+

n∑
i=1

ξ
′
i

p→ K , K is a constant

(iv)
∑

d(v)≤L

Var
(
ξv1[ξv ≤ C ]

∣∣nv

) p→ cC .



Theorem 2 implies the Main Theorem

I Recall that the normalized X (Tn) in the Main Theorem can

be expressed as −
(∑

d(v)≤L ξv +
∑n

i=1 ξ
′
i

)
+ op(1).

I Theorem 2 shows that the necessary conditions for
{ξv}

⋃
{ξ′i } are fulfilled so that the limit theorem for

convergence of sums of null arrays to infinitely divisible
distributions can be applied to

∑
d(v)≤L ξv +

∑n
i=1 ξ

′
i .

I Thus, the Main Theorem is proved i.e. the normalized
X (Tn) converges to an infinitely divisible distribution. In
particular the measure ν(x ,∞) = c

x in Theorem 2 implies
that this distribution is weakly 1-stable.



Proof of Theorem 2

I Theorem 2, which implies the Main Theorem has a technical
proof. The idea is to use the Chebyshev inequality for proving
that the sums in (ii), (iii) and (iv) are sharply concentrated
about their mean values.

I Important Observation: The sums in (ii), (iii) and (iv) only
depend on the subtree sizes {nv , d(v) ≤ L}.

I Recall that nv for v at depth k , is close to nV1V2 . . .Vk ,
where Vr , r ∈ {1, . . . k} are independent r.v.’s distributed as
the components Vi in the split vector.

I Let Yk := −
∑k

r=1 ln Vr . Note that nV1V2 . . .Vk = ne−Yk .
In a binary search tree, Yk is distributed as a Γ(k , 1) r.v. since

Vr
d
= U, where U is a uniform U(0, 1) r.v..



Proof of Theorem 2 (continued)

I For general split trees there is usually no simple distribution
function for Yk ; instead renewal theory is used.

I Define the renewal function

U(t) =
∞∑
k=1

bkP(Yk ≤ t) =
∞∑
k=1

Fk(t), (3)

and let F (t) := F1(t) = bP(Vi ≤ t).

I For U(t) we obtain the following renewal equation

U(t) = F (t) +
∞∑
k=1

(Fk ∗ F )(t) = F (t) + (U ∗ F )(t).

I For t →∞ the solution of this equation is

U(t) = (c + o(1))et .



Conclusions

I It was tested whether the Janson method for determining the
asymptotic distribution of the number of records (or cuts) in a
deterministic complete binary tree could be extended to
random split trees.

I It was shown that with modifications, the Janson method
could be used for determining the asymptotic distribution
of the number of records (or cuts) in the binary search
tree, which is one well-characterized type of split tree.

I Further, by also introducing renewal theory, the method of
proof used for the binary search tree could be generalized to
cover all split trees.

I The results show that for the entire large class of random split
trees the normalized number of records (or cuts) has
asymptotically a weakly 1-stable distribution.
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