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The splitting vertex model

» A model of randomly growing rooted, planar trees

» Degree of vertices is bounded by an integer d (we also discuss
the case d = )
» Nonnegative splitting weights wq, wa, ..., Wy
> n;(T) = the number of vertices of degree j in a tree T
p; = Probability of choosing a vertex v € T' of degree 7
wj

P = S wina(T)

57



Splitting rules

» The parameters of the model are

0 wip wiz - Wid1 Wig
W21 W22 W23 -+ W2d-1 Wad
w31 Wi Wiz -+ wW3g-1 O
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a symmetric matrix of non—negative partitioning weights



Splitting rules

» The parameters of the model are

0
Wa,1
W31
Wa,1

| Wd,1

W12
W2 2
w32
Wy 2

Wq,2

Wi,3
W2,3
W3, 3
Wa,3

0

Wi,d-1
W2,d—1
W3,d—1

0

Wi,d
Wa,d

0

a symmetric matrix of non—negative partitioning weights
» Split a vertex of degree ¢ into vertices of degree k and
1+ 2 — k with probability wg ;12 %/w; — all such splittings

equally probable

» The splitting weights w1, wo, ..

partitioning weights by

1
Wi o= o) Wi
7=1

., Wq are related to the



A tree
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Relation to other models

» Ergodic moves in Monte Carlo simulations of triangulations in
2d-quantum gravity J. Ambjorn, J. Jurkiewicz et al.

» A tree growth process which is equivalent to a simplified
model for RNA secondary structures F. David, C. Hagendorf, K.
J. Wiese

» When w; ; =0 unless j =1 or 2 = 1 it reduces to the
preferential attachment model R. Albert and A. L. Barabasi et al.

» For d = 3, in a certain limit, it reduces to Ford’s alpha model
for phylogenetic trees
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Degree distribution

If we consider linear splitting weights
w; = at +b.

the analysis simplifies due to the Euler relation for trees

d
Znﬁ(T) =T, Zmz =2(|T| - 1).
i=1

The normalization factor ), w;n;(T") depends only on the size of
the tree T'.
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Generating function

Let p¢(n1,...,nq) be the probability that the tree T at time ¢ has
(n(T),...,nq(T)) = (n1,...,m4q) .
The probability genereting function

Hf(x) = Z pt(nl, e ,nd)m?l e xgd

n1+-ng=t

satisfies the equation

PN ) n "
Ht+1(X) — Z MC(X).V(mll ...mdd),
nit-tng=t Ei:l n,w;
where ¢(x) = (c1(x), c2(x), - . ., c4(x)) with
¢i(x) = 5 ij,i+2,j:njmi+2,j and V = (6/63:1, .. .,B/Bzd).
j=1

20 /57



Recurrence

» Begin with a tree Ty at time 0

> At time £ > 0 we have a tree T; with n;(T}) vertices of degree
1

> Let 7i¢; denote the average of n;(T") over all trees that can
arise at time ¢, i.e.

Tk = > pi(na,ona)ng = OH(X)|x=1,
ni+...+ng=t
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Recurrence

» Begin with a tree Ty at time 0

> At time £ > 0 we have a tree T; with n;(T}) vertices of degree
1

> Let 7i¢; denote the average of n;(T") over all trees that can
arise at time ¢, i.e.

Tk = > pi(na,ona)ng = OH(X)|x=1,
ni+...+ng=t
» Define _
L
Pt = n

and we will use the notation

p(t) = (pe,1,-- -, Pt,a)
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» The recurrence for H; gives rise to a recurrence for p(t).

Hiv1(x) = c(x) - VHy(x).

1
W(t)

t d .
Ptk = W — WPtk + Z Wk iro—kPti | + Pk — Prs1k)-

i=k—1



» Under mild conditions on the w; ; the limits
lim p:; = p;
t—o0

exist and are the unique positive solution to the linear
equations

d
We WEk,i42—k
Pr = ——pPr + § 1 p;.
w2 i—ko1 W2
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lim p:; = p;
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d
W Wk i4+2—k
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» Under mild conditions on the w; ; the limits
lim p:; = p;
t—o0

exist and are the unique positive solution to the linear
equations

d
We WEk,i42—k
Pr = ——pPr + § 1 p;.
w2 i—ko1 W2

» These values are independent of the initial tree.

» The proof uses the Perron—Frobenius theorem for " positive”
matrices.
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Perron-Frobenius

Theorem. Let A be a matrix with nonnegative matrix elements
such that all the matrix elements of AP are positive (A primitive)
for some integer p. Then the eigenvalue of A with the largest
absolute value is positive and simple. The corresponding
eigenvector can be taken to have positive entries.

Iterating the recurrence equation for p(¢) we find

1t—1

1
0= 11+ Grrgizaa®) »

=1

where B is a matrix with nonnegative entries except on the
diagonal. If B is primitive and diagonalizable, then p(t) converges
to the normalized Perron-Frobenius eigenvector of B.

24 /57



The B matrix

w2 2101,3
wa  2wap
0 211)371

(d — 2)w17d_1 (d - l)wlvd 0
(d—=2)wsg-s (d—1Nwog1 dwag
(d=2wsqs (d—1Nwggo dwza )
: : — diag(wi)1<i<d
(d - 2)wd—1,1 (d - 1)wd—1,2 dwd—l,B
0 (d — ].)de dwd?g

25/
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Examples

» d = 3 The matrix B is diagonalizable and

pr=p3=2/T, p2=3/7

if the partitioning weights are chosen to be uniform, i.e.

2
it —2(+g—1)

Wi,; = ’wi+j—2(
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Examples
» d = 3 The matrix B is diagonalizable and
pr=p3=2/T, p2=3/7
if the partitioning weights are chosen to be uniform, i.e.

2
it —2(+g—1)

Wi,; = ’wi+j—2(

» d = 4 Can again solve explicitly with uniform partitioning
weights and get p;'s which vary with a and b.

» d = 0o Do not have a proof of convergence but can solve the
equation for the p;'s

1
Ok ~ y2k’1k’l’$, z="b/a

26
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General splitting weights

» Use mean field theory for the normalization factor

Suni(TYw; =ty piw;.
Equation for a steady state vertex distribution

d
W Wk 42—k
Pk =—"—""Prt+ Z P
w i=k—1 w

subject to the constraints
pr+...+pa=1 wip1+...+wepq =w.

» There is a unique positive solution by the Perron-Frobenius
theorem.
» For d = 3 and uniform partitioning weights we find

_ Ta—+/a(a+24p+ 24)
Ps = 6(2c — f— 1)

where o = wy/wy and B = w3 /ws.
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Comparison with simulations

05 T T

f = 1000

o1 L.

£=10000

0 20 40 60 80 a

FIGURE 4. The value of p3 as given in (2.45) compared to
results from simulations. Each point is calculated from 20
trees on 10000 vertices.

A comparison of the theoretical prediction with simulations in the
case d=3 and uniform partitioning weights.
_ W2 w3

a=—, ﬂzi

wh w1
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Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

29 /57



Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

Let m;x = number of such edges in a finite tree of size £, where
the vertex of degree j is closer to the root

29 /57



Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

Let m;x = number of such edges in a finite tree of size £, where
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ik

t

Let p;r = lim; o0
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Correlations

In a typical infinite tree, what is the proportion of edges whose
endpoints have degrees j and k ?

Let m;x = number of such edges in a finite tree of size £, where
the vertex of degree j is closer to the root

Let p;r = lim; o0 Mk Then (for linear splitting weights)
W; + Wk . Wjk
e = ———p; —1)—"p;
Pik Wo Pik + (7 ) Wo Pj+k—2

d d
. Wjiio—; Wit2—k
+G -1 D J;i;mk +(k-1) ) ;TPji-
i=j—1 i=k—1

assuming the existence of the limit.
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Explicit solutions

Can solve in simple cases and find nontrivial correlations: In
general " disassortative” i.e. vertices of high degree are unlikely to
be neighbours.

Take d = 3, linear splitting weights and uniform partitioning
weights. Then p; = p3 =2/7 and p2 = 3/7. Let y = w3 /wo.
Then the solutions to the correlation equation are

4(3—1y) B 10
P21 77(11 ~2y)’ P31 = 77(11 ~2y)’
_ 4y? - 12y 4105 _ 2(—8y*+ 18y + 63)
P2 = qyrni-2y) P T Ty nl-2y)’
2(—4y? + 20y + 21) 8(3y — 14)
P23 = P33 =

7(2y + 7)(11 — 2y) ’ 7(2y + 7)(2y — 11)
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Sum rules

The following sum rules hold:

P21 + P31
P22 + P32
P23 + p33
P21+ p22 + p23
p31 + p32 + p33

P1
P2
p3
P2
2p3

These relations show that there are only two

densities, e.g. p21 and pas.

2/7
3/7
2/1,
3/7
4/7.

independent link
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Comparison with simulations

L L L L
0 0.5 1 15 2
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Nonlinear splitting weights

Taking d = 3 and general nonlinear splitting weights

_1 3+8)(Ta—1)
L= 3 2a—B-1)(3at28+7+6)

where a = wo/wy, B = wz/wy and v = \Ja (o + 24 8 + 24).
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Comparison

P22

with simulations

22

=100

FIGURE 17. The solution (5.5) for the density pss plotted
as a function of 3 for a few values of a. Each datapoint is
calculated from simulations of 100 trees on 10000 vertices.

- ? (284 a?8"y — 17705 By + 3564 03 + 18 % + 161a B>y — 873 + 11979 0233
—2259a° — 3988 — 207 a® + 6516 a2 81 — 5205 a° 3 — 1419 a* By + 996 o 3°
—5994 o — 892 3%y + 1543 8% — 18 a7 — 668’ 8" 4 3240y + 909 a8y
—2600a®4% — 9750° 3% + 222 8% — 1533 a® 3%y 4 10206 o232 — 11799 a* 3
—5300 3% — 1521 a® By + 1899 0252y + 105907 33 + 1269 0° 52 + 324002 B
+756 a8 + 4860 a® B + 6 3% — 11703 a? 3% + 172802 By — 162 o’y + 486a 52y
+18 8% + 1530 a3 + 6240 B4y — 7720383y — 9.0 + 24 ﬂ‘w)/( (Ba+28+7+6)

X (110% + 2508 + 50y +3 6y + 120+ 40%) (~a+9) (1 - 20+ 6) Ta +26+7)* )
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Subtree probabilities

Label vertices in the tree by their time of creation

» Use linear weights

» Derive expressions for the probabilistic structure of the tree as

vV v v Y

seen from the vertex created at a given time
Average over the creation time

Introduce a scaling assumption

Extract the Hausdorff dimension

Get results which agree with simulations

35 /57



» Begin with a tree consisting of a single vertex at time ¢t = 0

> In a tree of size £ let pr(¥; s) be the probability that the
vertex created at time s < £ is the root

» We find

1

pr(é;s) = mw(e —Dpr(l—1s), s<!

1 -1
pR(Z,Z) = m%’lﬂl])}%(f — 1,3), s=1{

W(¢) = (2a + b){ — a is a normalization factor.

36 /57



(6 —1)
w (71+u| s
-1
(6 —1) +u|§wl

Let px (41,42, .. .,4Lk; s) be the probability that the vertex v created
at time s has degree k, the root subtree has £; links and the other
subtrees incident on v have size £, ..., £. Denote the sum of the
£;'sby £. Thenfork =1and s <{

1 o,
@—@ - U'(/—l)+uv1(u([71)

41 N
. s \
+ E Wiy1,1 ® [ IRNO) )
i=1 Ot li=-1 H / s




and for k > 1 and s < ¢

K 1 .
= —— | Op20, )
; ”'([*1)+wl(k”‘m G

d

+ Z(l +1 k) wgigie

i=k Ot bl =01
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Finally £ > 1 and s =¢

®

—1 k

d—1

1
= mzz Z Wk, i—k+2

s=0 j=2 i—k—1

>

Gty g =t 1
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We average over s to get simpler recursions:

pr(C+1) = %PR(Z)~
pi(l+1) (3.11)
= %m [W(Z)pl(f) + giwwm 4;“; pilth, -, 6) + 25@01111]-
Z
pr(lr, .o lk)
_ ﬁ%m [Srade1wipr(0) +§W(@ )l — 1 b))

d
+Z(i7k+1)wk,i—k+2 Z pi([,ly-~~~,4+17)¢~,€27~~-’[k) (3.12)
i=k

, "
Ot g

=01—1

i=

kood
+Z Z Whiekt2 Z Pi([h-~~,Zj71,f/17-~~»4+1—k74j+1~~,fk)]

— . , "
Jj=2i=k—1 CR s
:ijfl
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Finally we define the "two point functions” that are needed to
calculate the Hausdorff dimension:

qki(elie2) = Z Z pk( g.:"'i ;Cf’ii {I.I:"'iegl)y

lll +'“+4c—i:l1 llll-‘r...-l—%/:lz

which is the probability that 7 trees of total volume £1, none of
which contains the root, are attached to a vertex of order k in a
tree of total volume £ = £; + £5. There are d(d — 1)/2 such
functions, 1 <7<k —1.
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The two point functions satisfy the recursion relation

{+1 1

Qki(£17€2) = mm{

d
> wk,j+2—k((j —i)qji(lr — 1,02) +iq; j— (ki) (b1, b2 — 1))
j=k—1

(Wl = 1)+ (k=i = 1) (w2 — ws) ai(ly — 1,2)
+(W(ZQ — ].) + (Z — 1)(7,02 — w;;))qki((l,fz — ].)

+Okabe1wipr(l2) + 6adpnwry > pea(f, a%—ﬁ}
Ot o+l =l

An almost closed system of linear equations.
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Hausdorff dimension

> Let T be a tree with £ edges and v, w vertices of T'.

This definition is different from the one usually given for infinite
trees but is expected to be equivalent.
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Hausdorff dimension

> Let T be a tree with £ edges and v, w vertices of T'.
» Denote the graph distance between v and w by dr(v, w).
» We define the radius of T as
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This definition is different from the one usually given for infinite
trees but is expected to be equivalent.
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Hausdorff dimension

> Let T be a tree with £ edges and v, w vertices of T'.
» Denote the graph distance between v and w by dr(v, w).
» We define the radius of T as

R = (21[) UEZTdT(T: ’U) 0'('U),

» We define the Hausdorff dimension of the tree, dg, by the
scaling law for large trees
(Rp) ~ €% {5 0

This definition is different from the one usually given for infinite
trees but is expected to be equivalent.
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Combinatorics

» Cutting the tree at an edge ¢ we get two subtrees of size £;

and 52
» One can prove the following identity:

ZdT('v,'w)cr(w) = Z(Zeg(v;i) +1)

7

valid for any vertex v. We use it for v = r.
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» The identity implies:

(Rr) = %ZP 22227"1)4—1)

(+1 & d
=7 Y (20 + 1)) qrp—1(L — £2; 42)
£2=0 k=1

45 /57



» We use a scaling assumptions about the ¢ functions
Qri(€1,€ — £1) = £ Pwii(£1/8) + O(£P+1)

This scaling hypothesis has been tested by direct calculation
for trees up to size 50.000.

» Inserting into the recurrence equation for gx; keeping leading
order terms in £71 gives

d
_ 1 N L Wy _
2-pwp = o Z W j+2— k( J—)wji + ij,jf(k—i)) Tk
j=k—-1
» This is a Perron-Frobenius type equation. Gives p in principle.

» Can solve in simple cases and prove some bounds in more
general cases.

46 /57



Hausdorff dimension

Linear weights and d = 3

g 3(1 4+ /1 + 16v)
H pu—
8y

) y:’UJ3/'lU2

FIGURE 13. Equation (4.25) compared to simulations. The
Hausdorff dimension, dy, is plotted against y = w;/ws. The
leftmost datapoint is calculated from 50 trees on 50000 ver-
tices and the others are calculated from 50 trees on 10000
vertices.
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Hausdorff dimension
General solution ford = 3

dy =

(wa2 —2ws31) + \/(wz,z — 2w31)? + 8ws 1 (w21 + 3ws,2)

(w2 —2ws 1) + \/(’wz,z —2w31)? + 16ws 1ws3 2

ws 2 = w3/3

Ws,1 = Wa,2 = wa/3

dy

wy; =1

L L L L L
[ 20 40 60 80 100
W2

48 / 57



The mass distribution

Consider trees with vertices of order 1,2 and 3, i.e. d = 3.

Root

What is the distribution of the size of the left (or right) tree as the
total size of the tree gets large?

Has been studied for preferential attachment trees and is well
understood for generic trees.

We study this for the SV model with linear splitting weights.

49 /57



Definitions

> Let vo(NN) = Probability that the left (or right) subtree is
empty in a tree of size N

> Let v1 (N1, N2) = Probability that the left and right subtrees
have sizes N1 and Ny

> Put Fo(z) = S n 2N 1p(N)
> Put F(z,9) = X5 N, zN1yN2p, (Ny, No)

50 /57



Equations

» The splitting rules give linear relations between vo(N),
v1(N1, No) with Ny + No = N — 1 and the same functions
with N replaced by N + 1.

» Find linear PDEs for the generating functions Fp and F.

(Az+ B)z

B-—a+z4+a—1
(1-2)?

azFo(Z) + (1 — Z)Z Fo(Z) =

M(2)0,F(z,y) + M(y)0y F(z,y) + Clz,y)F(z,y) = D(z,y)

M(z) = wi(l—2z)z, Clz,y) =2ws+b— (w2 +b—wi+ws)(z+y),
D(z,y) = wy (e Fo(z) +y *Fo(y))

» These equations can be solved in closed form.
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Results

Use the scaling assumptions
vi(zN, (1 — z)N) ~ N~
for0<z <1las N — oo and
v1(Ny, Np) ~ N

for No > Ny > 1

» Scaling assumptions agree with explicit calculations of the
v-functions

» A=X; =b/34+4/3 (w;=0at+b, 2a+b=1)

» In the infinite volume limit one of the subtrees is infinite with

probability 1 and the size of the other one is distributed as
N~*. Proven in a special case.
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The infinite volume limit

Let I'y be rooted planar trees with vertices of degree at most D.
Let pup be the probability measure on I'y induced by the vertex
splitting procedure.
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The infinite volume limit

Let I'y be rooted planar trees with vertices of degree at most D.
Let pup be the probability measure on I'y induced by the vertex
splitting procedure.

Theorem Assume that the partitioning weights wy i are nonzero
fork =2,...,D. Then the measures uy converge weakly as

N — o0 to a probability measure p on the set of infinite trees
which is independent of the initial tree.
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The proof uses a result on the convergence of inhomogeneous
Markov Chains and standard properties of the set of trees with the
metric

d(Ty,Ty) = inf{R™' : Br(T1) = Br(T»)}

where Bg(T') is the subtree of T' spanned by vertices within
distance R from the root.
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The proof uses a result on the convergence of inhomogeneous
Markov Chains and standard properties of the set of trees with the
metric

d(Ty,Ty) = inf{R™' : Br(T1) = Br(T»)}

where Bg(T') is the subtree of T' spanned by vertices within
distance R from the root.

The main problem is to prove the convergence of
un({T : Br(T) = To}

as N — o0.
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Exactly soluble special case (S. Stefansson)

For linear splitting weights, D = 3 and if the splitting weight w, of
the root is defined in a special way, then the model becomes
Markovian self-similar if wy o = 2ws 2 = w,.

This means that

Pn(T) = Q(N1, N2) Py, (T1) Pn, (T>)

where Py is a probability distribution on the set of trees of size N,
Q is a positive function and Ny o are the sizes of the left and right
subtrees T} 5 of T'.
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One can show explicitly that

» there is a unique spine

» the probability distribution for outgrowths from the spine can
be described explicitly

» the Hausdorff dimension can be calculated and varies
continuously with the parameters of the model from 1 to oo

» There is a closed form for the v functions.

» Can be generalized to trees with vertices of higher order.
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Conclusions and problems

» The vertex splitting model encompasses a very large class of
random growing trees as well as generic trees — in limiting
cases at least.

» Can one generalize the exact solution in the MSS case to the
general case?

» What are the spectral properties?
» How can one characterize the infinite volume limits?
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