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Social networks

Two features have equal importance in disease spreading: disease
agent (transmissability) and social structure

Social structure: Graph/Network: nodes (individuals) and edges
(“friendship”)
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graph /network with structure
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Random networks

Social structure only partly known: modelled using random
graph/network with structure

Some (potentially observed) local structures
o D = # friends of randomly selected individual (degree
distribution)
o ¢ = P(two friends of an individual are friends) (clustering)
o p = correlation of degrees in a randomly selected friendship
(degree correlation)
o Households (not treated further)

Other features unobserved = Random network

Tom Britton Random networks and epidemics
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Stochastic epidemic model 6n network”

Also spreading is uncertain = stochastic epidemic model



& s,
Modelling a social network gq‘?ﬁ;
Modelling the spread of an infection iy ¥
Modelling vaccination Stockholms

universitet

Stochastic epidemic model 6n network”

Also spreading is uncertain = stochastic epidemic model

Simplest model: an infected person infects each susceptible friend
independently with prob p and then recovers (one index case)
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Stochastic epidemic model 6n network”

Also spreading is uncertain = stochastic epidemic model

Simplest model: an infected person infects each susceptible friend
independently with prob p and then recovers (one index case)

Effect on graph: thinning — each edge is removed with prob 1 — p

Interpretation: remaining edges reflect “potential spreading”

Tom Britton Random networks and epidemics
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Stochastic epidemic model 6n network”

Also spreading is uncertain = stochastic epidemic model

Simplest model: an infected person infects each susceptible friend
independently with prob p and then recovers (one index case)

Effect on graph: thinning — each edge is removed with prob 1 — p
Interpretation: remaining edges reflect “potential spreading”

(More realistic models may have p random between different
individuals and/or dependent for different friends = more
complicated graphs)

Tom Britton Random networks and epidemics
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Graph and its thinned version

The thinned graph is also a random graph

Those connected to index case make up final outbreak
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Intervention — Control

One epidemiological reason for modelling epidemics is to
understand effects of control measures.

Control measures may either aim at reducing transmission
probability (vaccination, condoms, ...) and/or altering social
structure (isolation, school closure, reduce travelling, ...)
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One epidemiological reason for modelling epidemics is to
understand effects of control measures.

Control measures may either aim at reducing transmission
probability (vaccination, condoms, ...) and/or altering social

structure (isolation, school closure, reduce travelling, ...)

Today: “vaccination” — assuming a vaccinated person cannot get

infected nor spread the disease

= corresponds to thinning of nodes

Tom Britton Random networks and epidemics
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Scientific questions

Given social structure (random network) + epidemic model (p):
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Scientific questions

Given social structure (random network) + epidemic model (p):

o Can a big outbreak occur? (Does thinned random graph have
a giant component?)
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o Can a big outbreak occur? (Does thinned random graph have
a giant component?)

o If so, how many will get infected? (Size of giant component?)
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Scientific questions

Given social structure (random network) + epidemic model (p):

o Can a big outbreak occur? (Does thinned random graph have
a giant component?)

o If so, how many will get infected? (Size of giant component?)
o P(major outbreak)? (Closely related to size of giant)
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Scientific questions

Given social structure (random network) + epidemic model (p):

o Can a big outbreak occur? (Does thinned random graph have
a giant component?)

o If so, how many will get infected? (Size of giant component?)
o P(major outbreak)? (Closely related to size of giant)

o How about when vaccination is put into place?

Tom Britton Random networks and epidemics
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Scientific questions

Given social structure (random network) + epidemic model (p):

o Can a big outbreak occur? (Does thinned random graph have
a giant component?)

o If so, how many will get infected? (Size of giant component?)

©

P(major outbreak)? (Closely related to size of giant)
o How about when vaccination is put into place?

o What is a good vaccination scheme and how many need to be
vaccinated to surely avoid an outbreak?

Tom Britton Random networks and epidemics
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Probabilistic methods involved

Construction of social network
o Configuration model (e.g. Bollobds, 2001)
o Preferential attachment (Barabasi and Albert, 1999)
o Inhomogeneous graphs (Bollobas, Janson, Riordan, 2007)

o Many different constructions!
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Probabilistic methods involved

Initial phase of epidemic (also with vaccination)

Couple epidemic with “suitable” branching process:
o “giving birth” corresponds to “infecting”
o “individual” may correspond to something else (household,
individual + links,...)
o Ry = mean of offspring distribution (Ry > 1 — super-critical)
o Gives P(outbreak) and relative final size (if one giant
component)

Tom Britton Random networks and epidemics



Stochastic models (General) ;ft.:% E

Problems and methodology AR

Three (subjective) examples Stockholms
universitet

Extensions and additional questions

Multitype nodes: adults — children for influenza, or male — females
in STls

Multitype edges: close — distant friends, or steady — short term
relationships for STls

More general epidemic model: often leads to directed and
dependent edges

Time-dynamic graphs: of interest when studying long term
behaviour — endemic situations

Tom Britton Random networks and epidemics
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Three subjective examples

We now present four “case studies”
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

The degree distribution and its effect on Ry

Britton, Janson and Martin-L6f (2007)

Model

o Social structure: Individuals have degree distribution
D ~ {px} and friends are chosen completely at random

o Epidemic model: each susc. friend is infected with prob p

o index case randomly selected, n — 1 susceptible

Tom Britton Random networks and epidemics
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

The degree distribution and its effect on Ry

Britton, Janson and Martin-L6f (2007)

Model

o Social structure: Individuals have degree distribution
D ~ {px} and friends are chosen completely at random

o Epidemic model: each susc. friend is infected with prob p

o index case randomly selected, n — 1 susceptible

What is Ry?
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Britton, Janson and Martin-L6f (2007)

Model

o Social structure: Individuals have degree distribution
D ~ {px} and friends are chosen completely at random

o Epidemic model: each susc. friend is infected with prob p

o index case randomly selected, n — 1 susceptible

What is Ry?
o Ry =pE(D)?
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Britton, Janson and Martin-L6f (2007)

Model

o Social structure: Individuals have degree distribution
D ~ {px} and friends are chosen completely at random

o Epidemic model: each susc. friend is infected with prob p

o index case randomly selected, n — 1 susceptible

What is Ry?
o Ry = pE(D)?- Wrong!
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The degree distribution and its effect on Ry

Britton, Janson and Martin-L6f (2007)

Model

o Social structure: Individuals have degree distribution
D ~ {px} and friends are chosen completely at random

o Epidemic model: each susc. friend is infected with prob p

o index case randomly selected, n — 1 susceptible

What is Ry?
o Ry = pE(D)?- Wrong!
o Ro= p(E(D) —1)?

Tom Britton Random networks and epidemics
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The degree distribution and its effect on Ry

Britton, Janson and Martin-L6f (2007)

Model

o Social structure: Individuals have degree distribution
D ~ {px} and friends are chosen completely at random

o Epidemic model: each susc. friend is infected with prob p

o index case randomly selected, n — 1 susceptible

What is Ry?
o Ry = pE(D)?- Wrong!
o Ry = p(E(D) — 1)?- Wrong!
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The basic reproduction number

What is the degree distribution of infectives (during early stages)?

Vol
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The basic reproduction number

What is the degree distribution of infectives (during early stages)?

Vo :

Answer: {Px; k > 1}, where px = const - kpx = kpx/E(D)
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The basic reproduction number

What is the degree distribution of infectives (during early stages)?

Vo :

Answer: {px; k > 1}, where px = const - kpx = kpx/E(D)

V(D) - E(D))

— Ro=p(ED) -1 = =p (E0D)+ TP

Tom Britton Random networks and epidemics
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The basic reproduction number

What is the degree distribution of infectives (during early stages)?

Vo :

Answer: {px; k > 1}, where px = const - kpx = kpx/E(D)

V(D) - E(D))

— Ro=p(ED) -1 = =p (E0D)+ TP

Empirical networks have heavy-tailed degree distributions ...

Tom Britton Random networks and epidemics
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The probability and size of an outbreak

The initial phase of epidemic = branching process

= m = 7(p, {pk}) := P(major outbreak) can be computed
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The probability and size of an outbreak

The initial phase of epidemic = branching process
= m = 7(p, {pk}) := P(major outbreak) can be computed

7 = fraction infected = P(random ind. belongs to giant)
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The probability and size of an outbreak

The initial phase of epidemic = branching process
= m = 7(p, {pk}) := P(major outbreak) can be computed
7 = fraction infected = P(random ind. belongs to giant)

= P(index case belongs to giant) = P(major outbreak) = 7

— outbreak size can also be derived
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Vaccination

Suppose a fraction v are vaccinated prior to outbreak
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Vaccination

Suppose a fraction v are vaccinated prior to outbreak

Who are vaccinated?
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Vaccination

Suppose a fraction v are vaccinated prior to outbreak

Who are vaccinated?

a) Randomly chosen individuals

— Ry, = p(1—v)(E(D) - 1) = (1 - v)Ro
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Vaccination

Suppose a fraction v are vaccinated prior to outbreak

Who are vaccinated?

a) Randomly chosen individuals

= R, =p(1l-— v)(E(D) -1)=(1-Vv)Ro
= if v >1—1/Ry then R, <1 = no outbreak!
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Vaccination

Suppose a fraction v are vaccinated prior to outbreak
Who are vaccinated?

a) Randomly chosen individuals
= R, =p(1-Vv)(E(D)=1)=(1-Vv)Ry
= if v >1—1/Ry then R, <1 = no outbreak!
o Critical vaccination coverage: vo =1 —1/Ry
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Vaccination

Suppose a fraction v are vaccinated prior to outbreak
Who are vaccinated?

a) Randomly chosen individuals
= R, =p(1-Vv)(E(D)=1)=(1-Vv)Ry
= if v >1—1/Ry then R, <1 = no outbreak!
o Critical vaccination coverage: vo =1 —1/Ry

o Problem: If Ry large (e.g. due to large V(D)), ve &1 —
impossible
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Vaccination, cont’'d

Can we do better?
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Vaccination, cont’'d

Can we do better? Yes! Vaccinate social people
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Can we do better? Yes! Vaccinate social people

But social network usually not observed ...
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Vaccination, cont’'d

Can we do better? Yes! Vaccinate social people
But social network usually not observed ...

b) Acquaintance vaccination strategy

o Choose individuals at random
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Vaccination, cont'd

Can we do better? Yes! Vaccinate social people
But social network usually not observed ...

b) Acquaintance vaccination strategy

o Choose individuals at random

o vaccinate one of their friends
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Vaccination, cont'd

Can we do better? Yes! Vaccinate social people
But social network usually not observed ...

b) Acquaintance vaccination strategy

o Choose individuals at random

o vaccinate one of their friends

Vaccinees will have degree distribution {py} rather than {px}

= much more efficient
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Graphs with clustering

Britton, Deijfen, Lageras and Lindholm (2008)

Random networks with clustering
o In many social networks (perhaps not sexual networks!) two
friends of an individual are quite often friends themselves
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Graphs with clustering

Britton, Deijfen, Lageras and Lindholm (2008)

Random networks with clustering

o In many social networks (perhaps not sexual networks!) two
friends of an individual are quite often friends themselves

o ¢ := P(two friends of an individual are friends)

Tom Britton Random networks and epidemics
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Graphs with clustering

Britton, Deijfen, Lageras and Lindholm (2008)

Random networks with clustering

o In many social networks (perhaps not sexual networks!) two
friends of an individual are quite often friends themselves

o ¢ := P(two friends of an individual are friends)

o How construct a random network with predefined clustering c?

Tom Britton Random networks and epidemics



(¥Rsrz,

1. Arbitrary D and vaccination (¢ = p = 0) %
2. Effect of Clustering on epidemic (p = 0) ) j
3. Effects of promiscuity in STls S%‘skh 1
4. Maximizing outbreak w.r.t. deg.distr. u%%ersoit?f

X

One solution: bipartite graphs

Specific construction using bipartite graphs:
1. Type 1: “true individuals” (n), Type 2: “groups” (8n)
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One solution: bipartite graphs

Specific construction using bipartite graphs:

1. Type 1: “true individuals” (n), Type 2: “groups” (8n)
2. An individual is attached to a group, independently, with prob
v/n
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One solution: bipartite graphs

Specific construction using bipartite graphs:

1. Type 1: “true individuals” (n), Type 2: “groups” (8n)

2. An individual is attached to a group, independently, with prob
v/n

3. Project the graph on “true individuals”: individuals that share
a common group are connected
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One solution: bipartite graphs

Specific construction using bipartite graphs:
Type 1: “true individuals” (n), Type 2: “groups” ((n)
An individual is attached to a group, independently, with prob
v/n

Project the graph on “true individuals”: individuals that share
a common group are connected

An infected individual infects each not yet infected “friend”
with prob p and then recovers.

Tom Britton Random networks and epidemics
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Resulting graph:

Conclusions from analysis
o Positive clustering: ¢ = ﬁ
o E(D) = 3+? (D is mixed Poisson)
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Resulting graph:

Conclusions from analysis
o Positive clustering: ¢ = ﬁ
o E(D) = 3+? (D is mixed Poisson)

How is the epidemic affected by c?
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Resulting graph:
Conclusions from analysis
o . . - 1
o Positive clustering: ¢ = e
o 2 . . .
o E(D)=py (D is mixed Poisson)

How is the epidemic affected by c¢?

Next slide: Ry and P(major outbreak) as functions of ¢, (for fixed
E(D)=4and p=0.2, 0.3, 0.4)
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A model for an STl in a heterosexual community
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The model (Britton, Nordvik and Liljeros, 2007)
o D = # sex-partners (e.g. during a year)
o p = P(transmission in a relationship)
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The model (Britton, Nordvik and Liljeros, 2007)
o D = # sex-partners (e.g. during a year)
o p = P(transmission in a relationship)
o Heterosexual community: D¢, D, pf, Pm
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The model (Britton, Nordvik and Liljeros, 2007)
o D = # sex-partners (e.g. during a year)
o p = P(transmission in a relationship)
o Heterosexual community: D¢, D, pf, Pm
= bipartite graph
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A model for an STl in a heterosexual community

The model (Britton, Nordvik and Liljeros, 2007)
o D = # sex-partners (e.g. during a year)
o p = P(transmission in a relationship)
o Heterosexual community: D¢, D, pf, Pm
= bipartite graph
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It can be shown that

\/Pf E(Dy) + “Cpr))

V(Dm)—E(Dm
X\/Pm m)+ ( Esz)( )>

Similar to before:

A heavy-tailed degree distribution makes Ry large.
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It can be shown that

\/Pf E(Dy) + “Cpr))

V(Dm)—E(Dm
X\/Pm m)+ ( Esz)( )>

Similar to before:
A heavy-tailed degree distribution makes Ry large. =—

promiscuous people (super-spreaders) play an important role
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Improved analysis

However:
o P(transmission) depends on # sex-acts in relationship
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Improved analysis

However:
o P(transmission) depends on # sex-acts in relationship

o Promiscuous individuals tend to have fewer sex-acts per

partner
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Improved analysis

However:
o P(transmission) depends on # sex-acts in relationship

o Promiscuous individuals tend to have fewer sex-acts per

partner
o This should reduce Rp!
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Improved analysis: continued

Extended model: short and long term relationships
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Improved analysis: continued

Extended model: short and long term relationships
— two types of edges (with different trans prob)
New (complicated) expression for Ry

The effect of different transmission probabilities depends on
calibration
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Calibration using survey on sexual habits

Data:
o (Anonymous) study of sexual habits in Gotland
o ~ 800 people (17-28 yrs)
o Among other things: How many sex-partners during last year
and how many sex-acts in each relationship
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Calibration using survey on sexual habits

Data:
o (Anonymous) study of sexual habits in Gotland
o ~ 800 people (17-28 yrs)

o Among other things: How many sex-partners during last year
and how many sex-acts in each relationship

P(transmission|p) for short/long relationship estimated as cohort
mean of:

P(transmission) = 1—(1—p)# sex-acts -, — per sex-act trans prob

Tom Britton Random networks and epidemics
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Stochastic models (General)
Problems and methodology
Three (subjective) examples
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Data:
o (Anonymous) study of sexual habits in Gotland
o ~ 800 people (17-28 yrs)
o Among other things: How many sex-partners during last year
and how many sex-acts in each relationship

P(transmission|p) for short/long relationship estimated as cohort
mean of:

)# sex-acts

P(transmission) = 1—(1—p , p = per sex-act trans prob

Ry fitted to data and computed as a function of p: for one type of
relationship, and two separations of short vs long

Tom Britton Random networks and epidemics
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Ry as function of p (fitted to Gotland data)
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Random networks and epidemics
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Conclusions:

Heavy-tailed degree distribution (promiscuity) increases Ry
Acknowledging short and long-term relationships reduces this

effect
3. Endemicity not possible (for realistic p's)

1.
2.
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Conclusions:
1. Heavy-tailed degree distribution (promiscuity) increases Ry

2. Acknowledging short and long-term relationships reduces this

effect
3. Endemicity not possible (for realistic p's) but maybe in

sub-communities ...
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Maximizing outbreak w.r.t. degree distribution

Stochastic models (General)
Problems and methodology
Three (subjective) examples

Britton and Trapman (2010)

Consider all networks with degree distr D with fixed mean
E(D) = u (otherwise uniform, i.e. Configuration model)

Epidemic: transmission prob p (also fixed). Random index case

Special case of interest: Poissonian random graphs:
o Nodes are given i.i.d. weights X; with mean p.
o P(i and j share an edge) = X;X;/un
o = D ~ MixPoisson(X)

Tom Britton Random networks and epidemics
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Maximizing outbreak w.r.t. degree distribution

Britton and Trapman (2010)

Consider all networks with degree distr D with fixed mean
E(D) = u (otherwise uniform, i.e. Configuration model)

Epidemic: transmission prob p (also fixed). Random index case

Special case of interest: Poissonian random graphs:
o Nodes are given i.i.d. weights X; with mean p.
o P(i and j share an edge) = X;X;/un
o = D ~ MixPoisson(X)

Question: Which distribution D or X maximizes/minimizes
m = P(outbreak) and 7 = size of outbreak? (p = 1: giant in
original network)

Tom Britton Random networks and epidemics
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Stochastic models (General)
Problems and methodology
Three (subjective) examples
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Maximizing outbreak size w.r.t. degree distribution
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Answer, Minimizing: (Easy) Choose X or D heavytailed =
T=7~0

Answer, Maximizing:

Poissonian random graphs:

- If pp > pe =~ 1.756: m = 7 are maximized by setting X = u (i.e.

Erdds-Renyi-graph)

- If pp < pe = 1.756: m = 7 are maximized by setting X = 0 and

X = pc/p (with suitable probabilities)

Tom Britton Random networks and epidemics
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Maximizing outbreak size w.r.t. degree distribution

Stochastic models (General)
Problems and methodology
Three (subjective) examples

Configuration model:
- ™ = 7 is maximized when D has mass only at three points:
0, k, k + 1 for some k

Intuitive explanation (for both models):
- Degree distribution should be as little random as possible

- If pp is small enough some nodes have to be "sacrificed” (or
saved) for the remaining network to be "well-connected”

Tom Britton Random networks and epidemics
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