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Stochastic models (General)
Problems and methodology
Three (subjective) examples

Modelling a social network
Modelling the spread of an infection
Modelling vaccination

Social networks

Two features have equal importance in disease spreading: disease
agent (transmissability) and social structure

Social structure: Graph/Network: nodes (individuals) and edges
(“friendship”)
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

Modelling a social network
Modelling the spread of an infection
Modelling vaccination

Random networks

Social structure only partly known: modelled using random
graph/network with structure

Some (potentially observed) local structures

D = # friends of randomly selected individual (degree
distribution)

c = P(two friends of an individual are friends) (clustering)

ρ = correlation of degrees in a randomly selected friendship
(degree correlation)

Households (not treated further)

Other features unobserved =⇒ Random network
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

Modelling a social network
Modelling the spread of an infection
Modelling vaccination

Stochastic epidemic model ön network”

Also spreading is uncertain =⇒ stochastic epidemic model

Simplest model: an infected person infects each susceptible friend
independently with prob p and then recovers (one index case)

Effect on graph: thinning – each edge is removed with prob 1− p

Interpretation: remaining edges reflect “potential spreading”

(More realistic models may have p random between different
individuals and/or dependent for different friends =⇒ more
complicated graphs)
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Modelling a social network
Modelling the spread of an infection
Modelling vaccination

Graph and its thinned version

The thinned graph is also a random graph

Those connected to index case make up final outbreak
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Modelling a social network
Modelling the spread of an infection
Modelling vaccination

Intervention – Control

One epidemiological reason for modelling epidemics is to
understand effects of control measures.

Control measures may either aim at reducing transmission
probability (vaccination, condoms, ...) and/or altering social
structure (isolation, school closure, reduce travelling, ...)

Today: “vaccination” – assuming a vaccinated person cannot get
infected nor spread the disease

=⇒ corresponds to thinning of nodes
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

Scientific questions

Given social structure (random network) + epidemic model (p):

Can a big outbreak occur? (Does thinned random graph have
a giant component?)

If so, how many will get infected? (Size of giant component?)

P(major outbreak)? (Closely related to size of giant)

How about when vaccination is put into place?

What is a good vaccination scheme and how many need to be
vaccinated to surely avoid an outbreak?
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Probabilistic methods involved

Construction of social network

Configuration model (e.g. Bollobás, 2001)

Preferential attachment (Barabási and Albert, 1999)

Inhomogeneous graphs (Bollobás, Janson, Riordan, 2007)

Many different constructions!
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Probabilistic methods involved

Initial phase of epidemic (also with vaccination)

Couple epidemic with “suitable” branching process:

“giving birth” corresponds to “infecting”

“individual” may correspond to something else (household,
individual + links,...)

R0 = mean of offspring distribution (R0 > 1 – super-critical)

Gives P(outbreak) and relative final size (if one giant
component)
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Extensions and additional questions

Multitype nodes: adults – children for influenza, or male – females
in STIs

Multitype edges: close – distant friends, or steady – short term
relationships for STIs

More general epidemic model: often leads to directed and
dependent edges

Time-dynamic graphs: of interest when studying long term
behaviour – endemic situations
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Three subjective examples

We now present four “case studies”
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1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
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4. Maximizing outbreak w.r.t. deg.distr.

The degree distribution and its effect on R0

Britton, Janson and Martin-Löf (2007)

Model

Social structure: Individuals have degree distribution
D ∼ {pk} and friends are chosen completely at random

Epidemic model: each susc. friend is infected with prob p

index case randomly selected, n − 1 susceptible

What is R0?

R0 = pE (D)?– Wrong!

R0 = p(E (D)− 1)?– Wrong!
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1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

The basic reproduction number

What is the degree distribution of infectives (during early stages)?

Answer: {p̃k ; k ≥ 1}, where p̃k = const · kpk = kpk/E (D)

=⇒ R0 = p(E (D̃)− 1) = · · · = p

(
E (D) +

V (D)− E (D)

E (D)

)

Empirical networks have heavy-tailed degree distributions ...
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The probability and size of an outbreak

The initial phase of epidemic ≈ branching process

=⇒ π = π(p, {pk}) := P(major outbreak) can be computed

τ = fraction infected = P(random ind. belongs to giant)

= P(index case belongs to giant) = P(major outbreak) = π

=⇒ outbreak size can also be derived
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Vaccination

Suppose a fraction v are vaccinated prior to outbreak

Who are vaccinated?

a) Randomly chosen individuals

=⇒ Rv = p(1− v)(E (D̃)− 1) = (1− v)R0

=⇒ if v ≥ 1− 1/R0 then Rv ≤ 1 =⇒ no outbreak!

Critical vaccination coverage: vC = 1− 1/R0

Problem: If R0 large (e.g. due to large V (D)), vC ≈ 1 =⇒
impossible
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1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Vaccination, cont’d

Can we do better?

Yes! Vaccinate social people

But social network usually not observed ...

b) Acquaintance vaccination strategy

Choose individuals at random

vaccinate one of their friends

Vaccinees will have degree distribution {p̃k} rather than {pk}

=⇒ much more efficient
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Proportion infected as function of v , D ∼ Poisson
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1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Graphs with clustering

Britton, Deijfen, Lager̊as and Lindholm (2008)

Random networks with clustering

In many social networks (perhaps not sexual networks!) two
friends of an individual are quite often friends themselves

c := P(two friends of an individual are friends)

How construct a random network with predefined clustering c?
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

One solution: bipartite graphs

Specific construction using bipartite graphs:

1. Type 1: “true individuals” (n), Type 2: “groups” (βn)

2. An individual is attached to a group, independently, with prob
γ/n

3. Project the graph on “true individuals”: individuals that share
a common group are connected

4. An infected individual infects each not yet infected “friend”
with prob p and then recovers.
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Illustration of bipartite graph
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Resulting graph:

Conclusions from analysis

Positive clustering: c = 1
1+βγ

E (D) = βγ2 (D is mixed Poisson)

How is the epidemic affected by c?

Next slide: R0 and P(major outbreak) as functions of c , (for fixed
E (D) = 4 and p = 0.2, 0.3, 0.4)
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A model for an STI in a heterosexual community

The model (Britton, Nordvik and Liljeros, 2007)

D = # sex-partners (e.g. during a year)

p = P(transmission in a relationship)

Heterosexual community: Df , Dm, pf , pm

=⇒ bipartite graph
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Stochastic models (General)
Problems and methodology
Three (subjective) examples

1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

It can be shown that

R0 =

√
pf

(
E (Df ) + V (Df )−E(Df )

E(Df )

)
×

√
pm

(
E (Dm) + V (Dm)−E(Dm)

E(Dm)

)

Similar to before:

A heavy-tailed degree distribution makes R0 large.

=⇒

promiscuous people (super-spreaders) play an important role
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Problems and methodology
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1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Improved analysis

However:

P(transmission) depends on # sex-acts in relationship

Promiscuous individuals tend to have fewer sex-acts per
partner

This should reduce R0!
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Improved analysis: continued

Extended model: short and long term relationships

=⇒ two types of edges (with different trans prob)

New (complicated) expression for R0

The effect of different transmission probabilities depends on
calibration
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Stochastic models (General)
Problems and methodology
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1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Calibration using survey on sexual habits

Data:

(Anonymous) study of sexual habits in Gotland

≈ 800 people (17-28 yrs)

Among other things: How many sex-partners during last year
and how many sex-acts in each relationship

P(transmission|p) for short/long relationship estimated as cohort
mean of:

P(transmission) = 1−(1−p)# sex-acts, p = per sex-act trans prob

R0 fitted to data and computed as a function of p: for one type of
relationship, and two separations of short vs long
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R0 as function of p (fitted to Gotland data)
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Stochastic models (General)
Problems and methodology
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1. Arbitrary D and vaccination (c = ρ = 0)
2. Effect of Clustering on epidemic (ρ = 0)
3. Effects of promiscuity in STIs
4. Maximizing outbreak w.r.t. deg.distr.

Conclusions:

1. Heavy-tailed degree distribution (promiscuity) increases R0

2. Acknowledging short and long-term relationships reduces this
effect

3. Endemicity not possible (for realistic p’s)

but maybe in
sub-communities ...
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Maximizing outbreak w.r.t. degree distribution

Britton and Trapman (2010)

Consider all networks with degree distr D with fixed mean
E (D) = µ (otherwise uniform, i.e. Configuration model)

Epidemic: transmission prob p (also fixed). Random index case

Special case of interest: Poissonian random graphs:

Nodes are given i.i.d. weights Xi with mean µ.

P(i and j share an edge) = XiXj/µn

=⇒ D ∼ MixPoisson(X )

Question: Which distribution D or X maximizes/minimizes
π = P(outbreak) and τ = size of outbreak? (p = 1: giant in
original network)
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Maximizing outbreak size w.r.t. degree distribution

Answer, Minimizing: (Easy) Choose X or D heavytailed =⇒
π = τ ≈ 0

Answer, Maximizing:

Poissonian random graphs:

- If pµ ≥ µc ≈ 1.756: π = τ are maximized by setting X ≡ µ (i.e.
Erdös-Renyi-graph)

- If pµ < µc ≈ 1.756: π = τ are maximized by setting X = 0 and
X = µc/p (with suitable probabilities)
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Maximizing outbreak size w.r.t. degree distribution

Configuration model:
- π = τ is maximized when D has mass only at three points:
0, k, k + 1 for some k

Intuitive explanation (for both models):
- Degree distribution should be as little random as possible

- If pµ is small enough some nodes have to be ”sacrificed” (or
saved) for the remaining network to be ”well-connected”
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