CELLULAR AUTOMATA & BRANCHING BALLISTIC ANNIHILATION

PHILIPPE CHASSAING, LUCAS GERIN, MAXIM KRIKUN INSTITUT ELIE CARTAN

SERGUEI POPOV

IME-USP

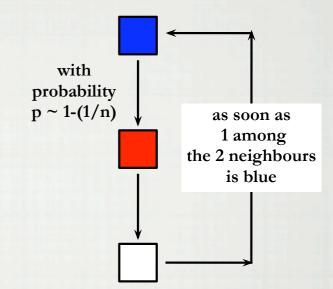
Random geometries, Nordita, 2010

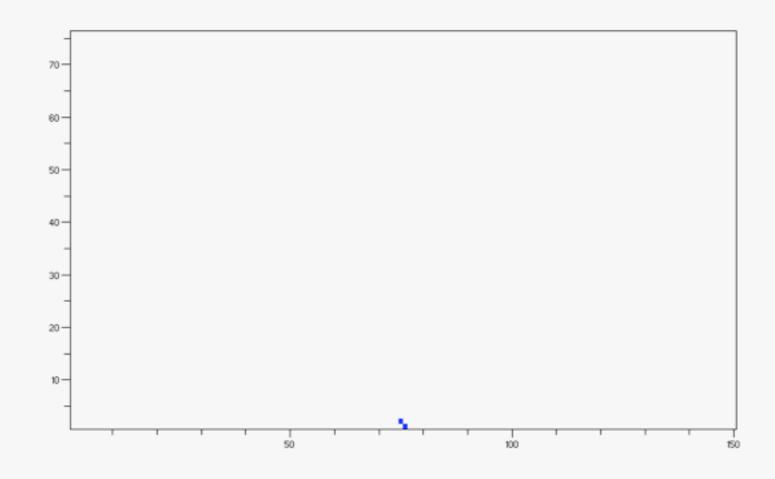
SIMPLE CELLULAR AUTOMATA #2

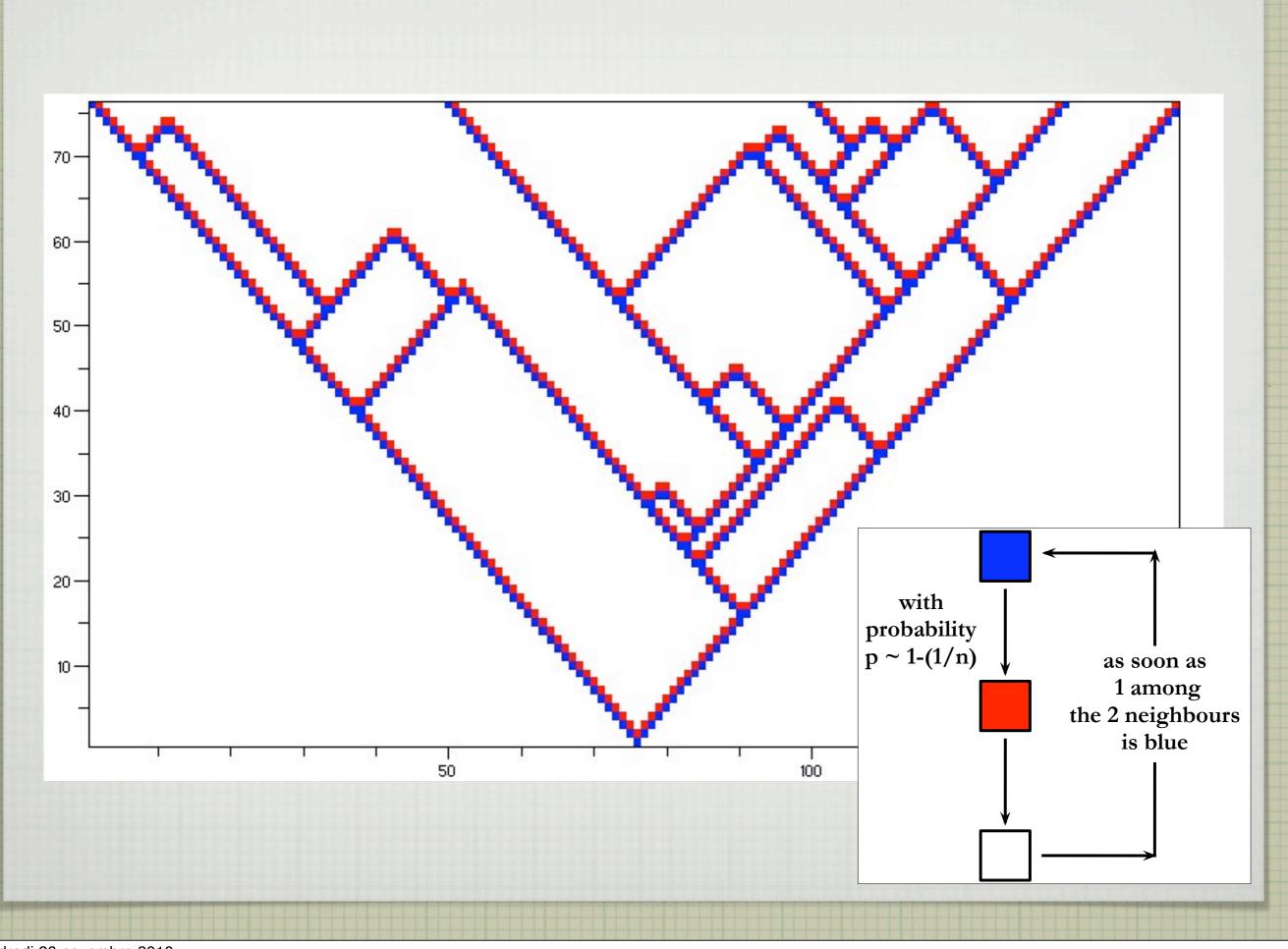
Let us see the set Z of integers as a set of cells with 3 possible colors

- blue (= infected),
- · red (= healing),
- white (= healthy),

evolving according to the following synchronous rule:







MOTIVATIONS

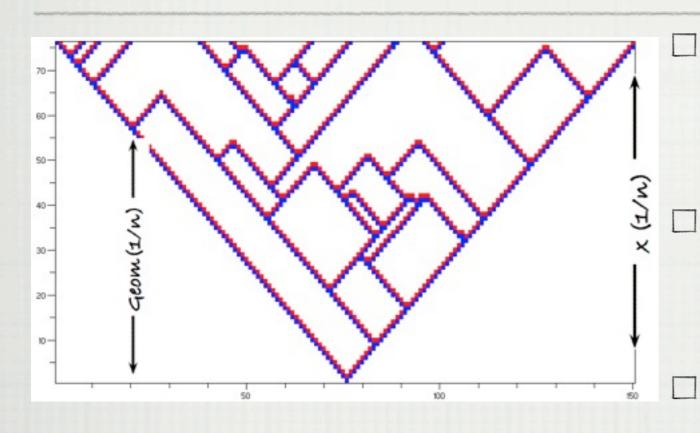
CELLULAR AUTOMATA IN GENERAL

Computer scientist (Schabanel, Fates, Bournez e.g.) intend to study how to tune local rules to obtain a suitable global behaviour.
Motivation: parallel computation, specially collaboration between agents (or processors) with a minimal cost devoted to sharing information (global interaction has a higher cost).
1-dimensional, 2-dimensional, synchronous, asynchronous automata exhibit very different behaviours: game of life, conflagration, etc Despite a small number of simple rules, rich and chaotic or complex behaviour.

THIS MODEL

Ferrari, Belitsky, Blythe, Cafri, Evans, Cardy, ... use similar models for the modelisation of some chemical reactions, of highway traffic, etc ...

THE ASYMPTOTIC MODEL



- On the real axis, coexist two species of particles:
 - positive particles, that move at speed
 +1,
 - □ negative particles, that move at speed -1.

- When a collision occurs, it causes the annihilation of the two particles involved (ballistic annihilation).
- Branching: each particle gives birth to a particle of the other species, after an exponential time with parameter 1.
- The state of the system at time t,

$$x_t = (x_t^+, x_t^-),$$

is a couple of (multi) sets.

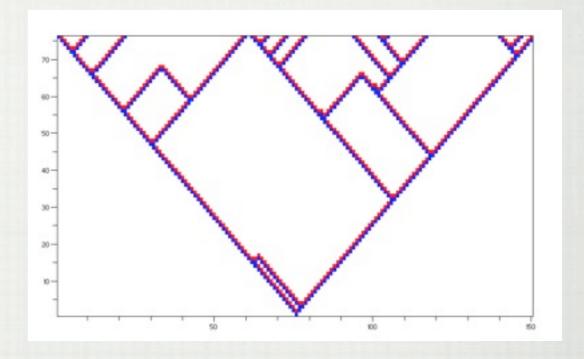
- \Box Here $x_0 = (\{0\}, \{0\}).$
- Law of Xt?
 - Asymptotic behaviour?

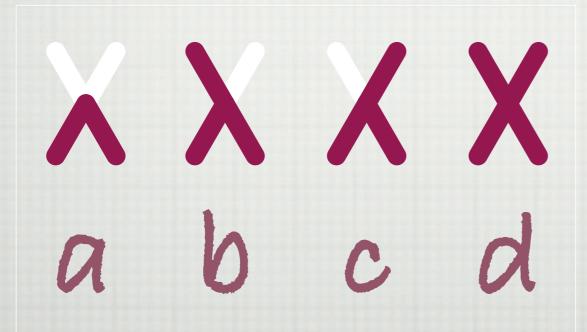
BRANCHING BALLISTIC ANNIHILATION

- Ballistic variation of a model introduced by Cardy & Täuber (1996)
- \square (1,0,0,0)-variant of a more general (a,b,c,d)-model (Blythe et al. 2000)

$$a+b+c+d=1$$
,

in which no birth, but 4 kinds of behaviour are considered after a collision:





- We shall consider 3 cases
 - \square pure branching: (0,0,0,1),
 - □ symmetric: (0,0.5,0.5,0),
 - \square annihilation: (1,0,0,0).

PURE BRANCHING: (0,0,0,1)

Assume the system starts with 1 positive particle at 0, and set:

$$\mathbb{E}\left[\langle X_t, f \rangle\right] = \mathbb{E}\left[\sum_{\xi \in X_t} f(\xi)\right] = \langle \delta_t, f \rangle + \langle \psi(t, \cdot), f \rangle$$

Theorem (M. Krikun).

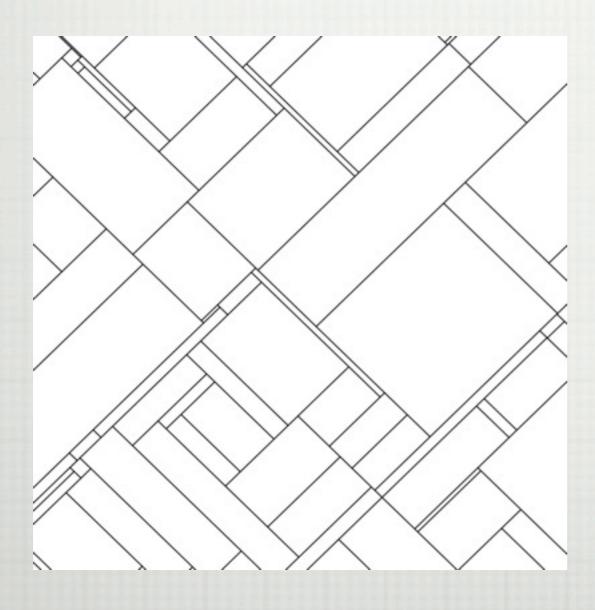
$$\lim_{t \to \infty} \psi(t, z\sqrt{t}) e^{-t} \sqrt{t} = \frac{e^{-\frac{1}{2}z^2}}{\sqrt{2\pi}}$$

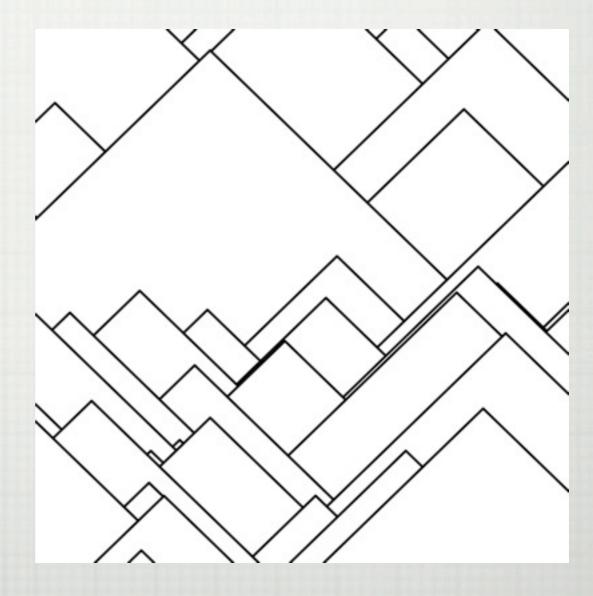
- ☐ The total mass is et.
- ☐ Most of it is supported by an O(Vt)-wide interval around o.

SIMULATIONS

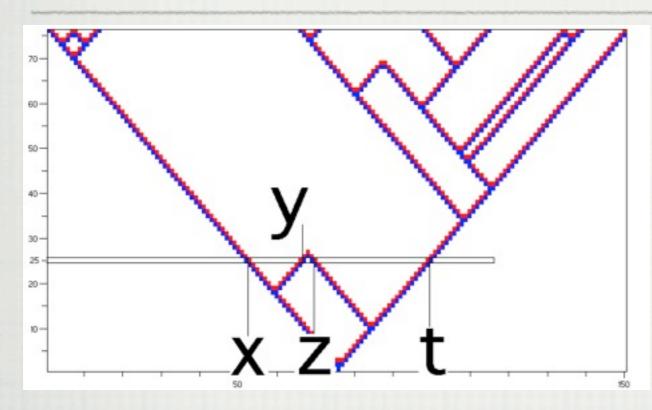
(0,0.5,0.5,0)

(1,0,0,0)





GLOSSARY: POINT PROCESSES ON THE LINE



- \square multiset = counting measure $\pi = \{x, x, x, y, z, z, t\} = 3 \delta_x + \delta_y + 2 \delta_z + \delta_t$
- \square state of the system at time t(=25)

$$(\delta_y + \delta_t, \delta_x + \delta_z) = (\pi^+, \pi^-) = x_t$$

 \Box notation for the integral against π $\langle \pi, \phi \rangle = 3 \phi(x) + \phi(y) + 3 \phi(z) + \phi(t)$

$$\langle \pi, \phi \rangle = 3 \phi(x) + \phi(y) + 2 \phi(z) + \phi(t)$$
$$\langle \pi, 1_A \rangle = \#(\pi \cap A)$$

- locally finite: has a finite intersection with any bounded interval.
- ☐ good multiset: locally finite and unbounded in both directions.
- point process: random multiset.
- \square Laplace transform at ϕ of the point process Π :

$$(\mathcal{L}\Pi)(\varphi) = \mathbb{E}\left[e^{\langle \varphi, \Pi \rangle}\right]$$

$$(\mathcal{L}\Pi) (a1_A) = \mathbb{E} \left[e^{a \# (\Pi \cap A)} \right]$$

POISSON POINT PROCESSES

$$(\mathcal{L}\Pi) (\varphi) = e^{\int (e^{\varphi} - 1)d\mu}$$

$$(\mathcal{L}\Pi) (a1_A) = e^{\mu(A)(e^a - 1)}$$

$$= \mathbb{E} \left[e^{a \# (\Pi \cap A)} \right]$$

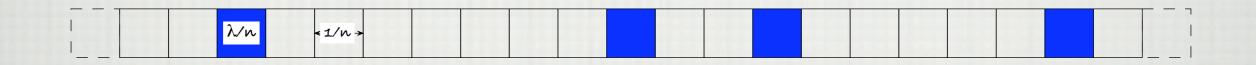
$$(\mathcal{L}\Pi) (a1_A + b1_B) = e^{\mu(A)(e^a - 1) + \mu(B)(e^b - 1)}$$

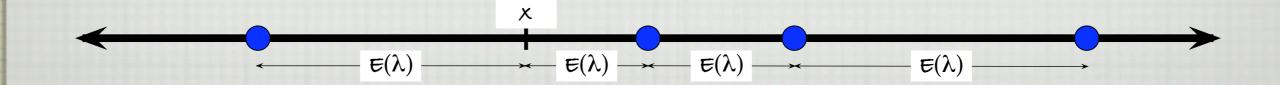
= $\mathbb{E} \left[e^{a \# (\Pi \cap A) + b \# (\Pi \cap B)} \right]$

If $A\cap B=\emptyset$, then $\#(\Pi\cap A)$ and $\#(\Pi\cap B)$ are independent Poisson random variables with respective expectations $\mu(A)$ and $\mu(B)$.

POISSON PROCESSES ON THE LINE

- Π is a Poisson process on the line with intensity $\lambda > 0$ if $\mu = \lambda x$ (Lebesgue measure)
- If $A \cap B = \emptyset$, then $\#(\Pi \cap A)$ and $\#(\Pi \cap B)$ are independent Poisson random variables with respective expectations $\lambda |A|$ and $\lambda |B|$.
- Other descriptions:





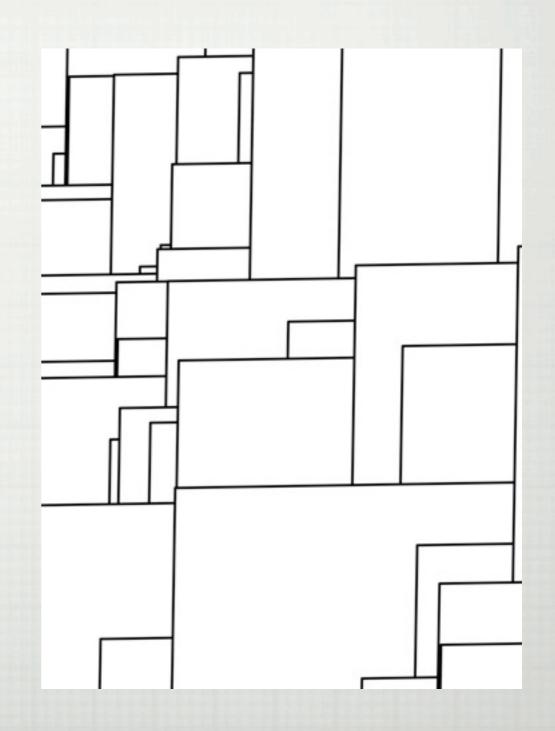
THE TILTED PROCESS

BRANCHING BALLISTIC ANNIHILATION (1,0,0,0)

Start with the line $x+t=a\sqrt{2}$, with a locally finite population X_a of positive particles.

EVOLUTION

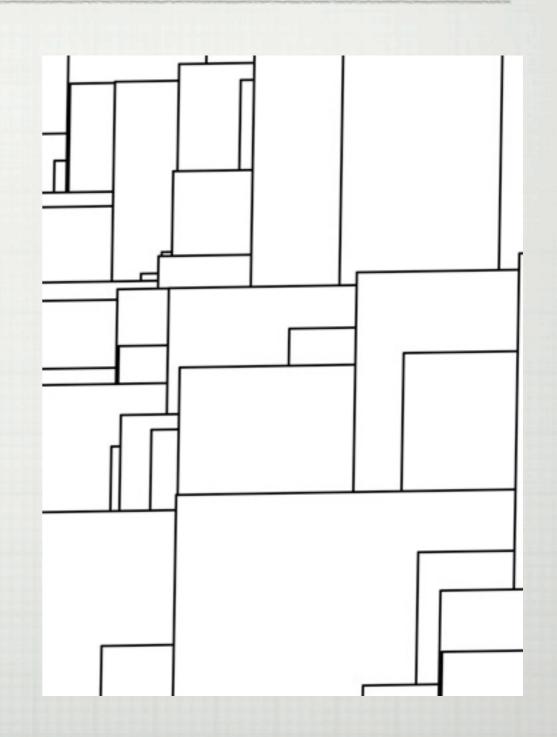
- Each particle, with rate $1/\sqrt{2}$, shoots and kills its nearest neighbour on the left;
- The interval between the two particles is filled with an independent copy of a PPP $(1/\sqrt{2})$.



STATIONARY MEASURE OF TILTED PROCESSES # I

*Theorem. For the annihilation case — parameter (1,0,0,0) — PPP $(1/\sqrt{2})$ is the unique stationary probability measure supported by good multisets (infinite in both directions and locally finite);

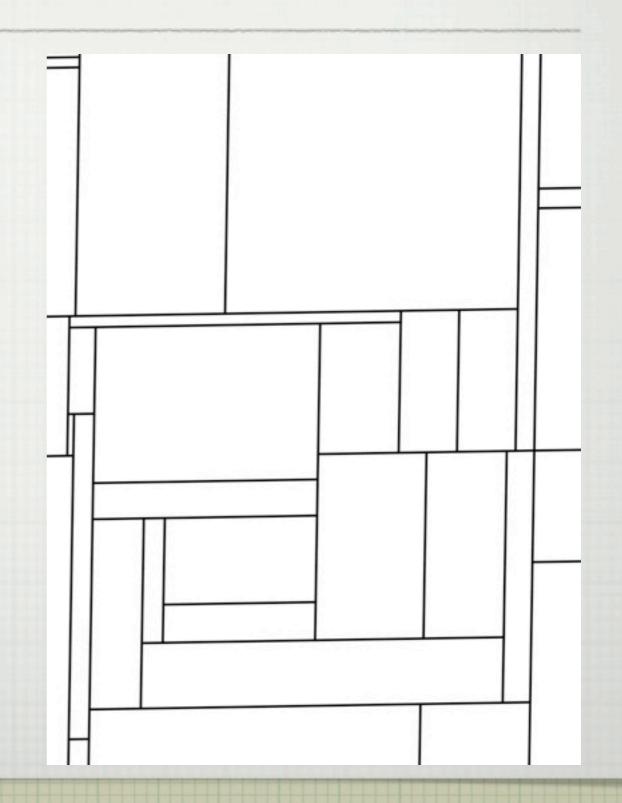
*Consequence: one may define a stationary process on the whole plane.



STATIONARY MEASURE OF TILTED PROCESSES #2

*Theorem. For the symmetric case, PPP($\sqrt{2}$) is the unique stationary probability measure supported by good multisets.

*Consequence: one may define a stationary process on the whole plane.



SYMMETRIC CASE (0,0.5,0.5,0): SYMMETRY GROUP

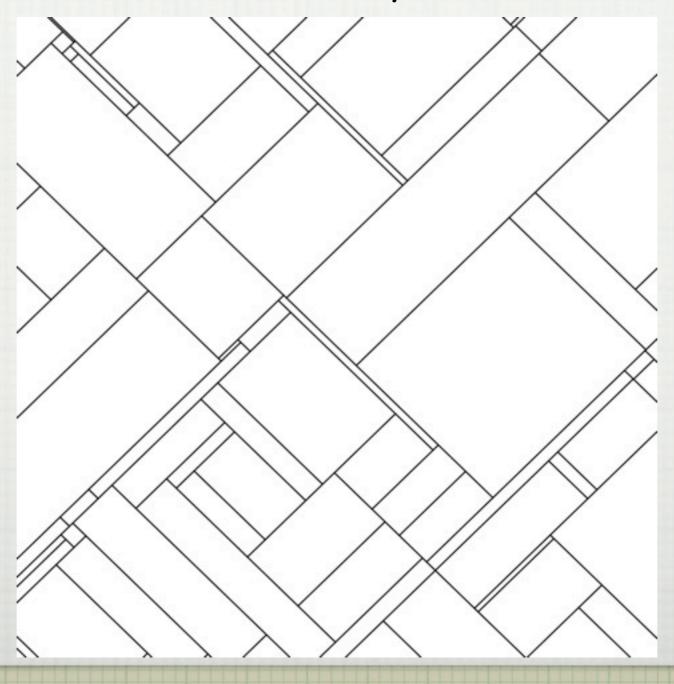
The process, once defined on the whole plane, can be seen as a random tessellation.

Theorem.

- The symmetry group of the random tessellation contains the diedral group of the square and the translations of the plane.
- In particular, the tilted processes (by any angle) are Markov, stationary and reversible.

SYMMETRIC CASE (0,0.5,0.5,0): SYMMETRY GROUP

"Proof" (empiric ...)



SYMMETRIC CASE (0,0.5,0.5,0): STATIONARY DISTRIBUTION

Theorem.

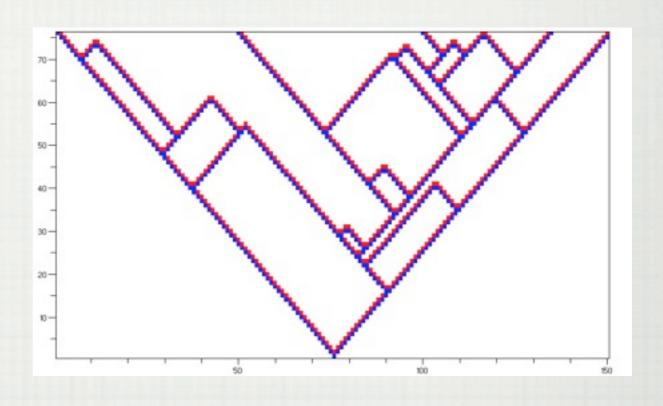
- ☐ The stationary distribution of the horizontal process is that of a couple of independent PPP(1).
- ☐ The stationary distribution of the a-tilted process is that of a couple of independent PPP() with respective parameters:
 - cos a + sín a and cos a-sín a.

ANNIHILATION (1,0,0,0): STATIONARY DISTRIBUTION

- *Theorem.
- ☐ The stationary distribution of the horizontal process of positive (resp. negative) particles is a PPP (1/2).
- ☐ But the two PPP are dependent.
- *Open problem: to describe the full stationary distribution, i.e. the joint law of positions of positive and negative particles.

ANNIHILATION (1,0,0,0): BACKTOTHE IST QUESTION

*Theorem. The station of a ry distribution of the horizontal process of positive (resp. negative) particles is a PPP(1/2).



*Theorem. The distribution in the quarter-plane is the restriction of the stationary distribution in the plane.

STATIONARY MEASURE: ANALYTIC APPROACH

Measure-valued Markov process:

Let X_s be the set of positions of positive particles on the line $\{x+t=s\sqrt{2}\}$. Assume the initial state $X_o=x$ to be a good multiset. Then, for ϕ positive, continuous, and with compact support,

$$G\left(e^{-\langle \varphi, \cdot \rangle}\right)(x) := \lim_{s \downarrow 0} s^{-1} \left(\mathbb{E}\left[e^{-\langle \varphi, X_s \rangle}\right] - e^{-\langle \varphi, x \rangle}\right)$$

is well defined.

Conjecture: If furthermore, a random multiset x (a.s. good) satisfies, for every ϕ positive, continuous, and with compact support,

$$\mathbb{E}\left[G\left(e^{-\langle\varphi,\cdot\rangle}\right)(X)\right] = 0,$$

then the law of x is a stationary measure of the Markov process. Result well known when the state space is locally compact, but here it is not.

SYMMETRIC CASE: SYMMETRY GROUP

Theorem.

- The symmetry group of the random tessellation contains the diedral group of the square and the translations.
- In particular, the tilted processes by any angle are Markov, stationary and reversible*.

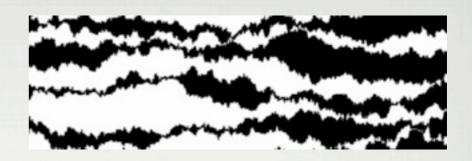
Proof. The generator of the tilted process is given by

$$Ge^{\langle \phi, . \rangle}(\pi) = e^{\langle \phi, \pi \rangle} \sum_{\{y, x\} \subset \pi, \ y < x} 2^{-\#[y, x) \cap \pi} \left(e^{-\langle \phi \mathbf{1}_{(y, x)}, \pi \rangle + \mu \int_y^x (e^{\phi(u)} - 1) du} - 1 \right).$$

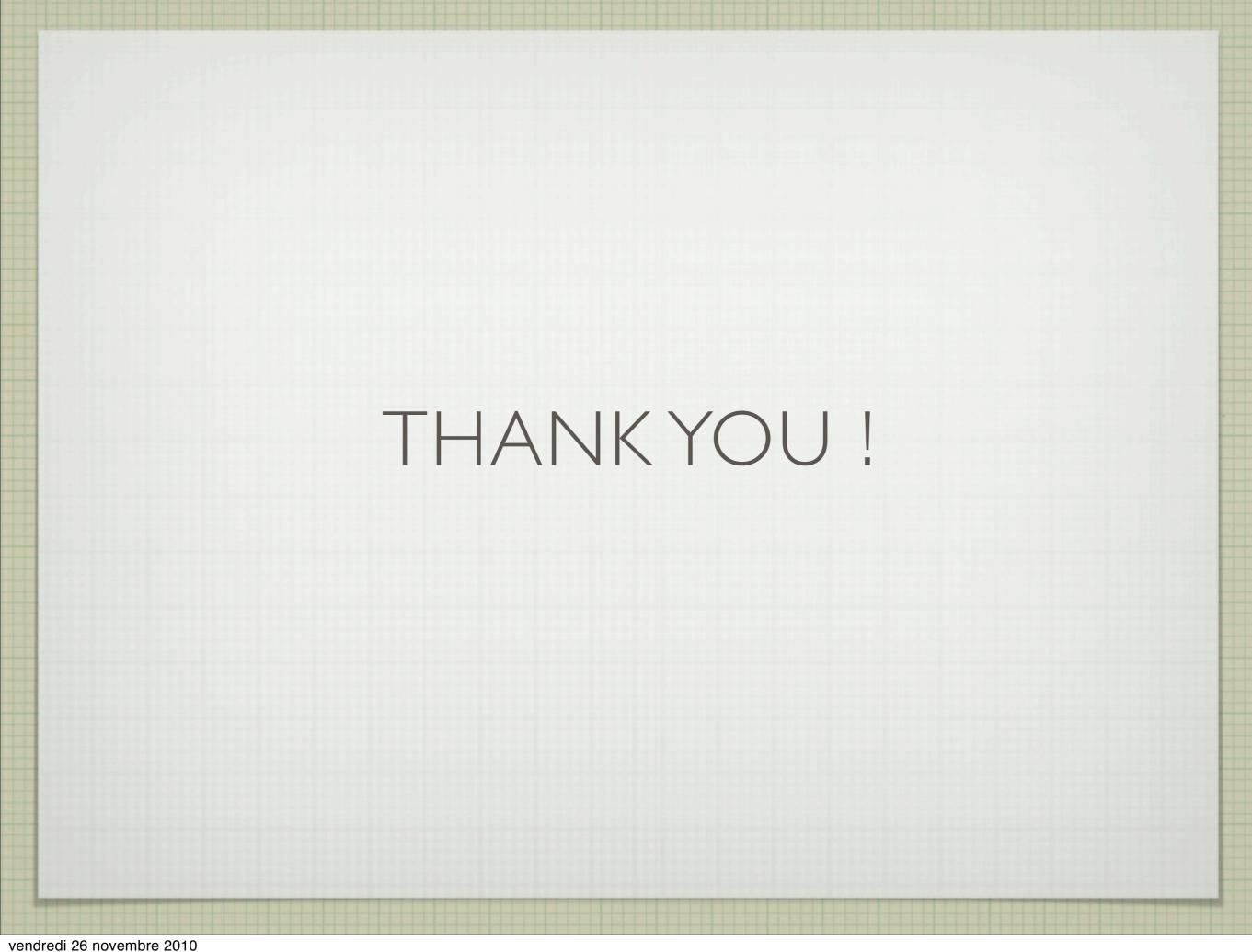
One has to check that for any symmetry T of the real axis (of the form T(x) = a - x):

$$Ge^{\langle \phi \circ T, .. \rangle}(\pi) = Ge^{\langle \phi, .. \rangle} \circ T(\pi).$$

RELATED RESULTS



R. A. Blythe, M. R. Evans & Y. Kafri, Stochastic Ballistic Annihilation and Coalescence, Phys. Rev. Lett. 85, 3750 - 3753, 2000. V. Belitsky & P. A. Ferrari, Invariant Measures and Convergence Properties for Cellular Automaton 184 and Related Processes, Journal of Statistical Physics, Vol. 118, Nos. 3/4, February 2005. J. Cardy & U. C. Täuber, Theory of Branching and Annihilating Random Walks, arxiv 2008. N. Fates & L. Gerin, Examples of Fast and Slow Convergence of 2D Asynchronous Cellular Systems, Proceedings of ACRI'08, 184-191, 2008. N. Fatès, M. Morvan, N. Schabanel, & E. Thierry, Fully asynchronous behavior of double-quiescent elementary cellular automata. Theoretical Computer Science, 362:1-16, 2006. P. Chassaing & L. Gerin, Asynchronous Cellular Automata and Brownian Motion, DMTCS Proceedings of 2007 International Conference on Analysis of Algorithms, 385-402, 2007. P. Daí Pra, P.-Y. Louis & S. Roelly, Stationary measures and phase transition for a class of Probabilistic Cellular Automata, ESAIM: PSS, Vol. 6, 89-104, May 2002.



CONSTRUCTION OF THE PROCESS

Theorem. For each 1-Lipshitz fonction f and for each locally finite set of points on

$$\partial f := \{(x,t) : t = f(x)\},\$$

the process in the half plane

$$f_{+} := \{(x, t) : t > f(x)\},\$$

is well defined.

idea:

- start with a pure branching process -> infinite trees
- cut wisely chosen branches
- the only problem arises when f(x) has slope ± 1 on an infinite interval: the past of a point of the half plane can contain infinitely many branching points.

MARKOV PROPERTY

- Property. Consider the process built from a configuration on a border ∂g . Then, for a border ∂f (s.t. g < f), the parts of the process below and under ∂f are independent, conditionally, given the process on ∂f .
- ☐ Conjecture: true for the 2 components inside and outside a Jordan curve, conditionally, given the process on the curve.