"Explosive Percolation"

S. N. Dorogovtsev

University of Aveiro and Ioffe Institute, St. Petersburg

R. A. da Costa, SND, A. V. Goltsev, and J. F. F. Mendes, "Explosive percolation" transition is actually continuous, arXiv:1009.2534

D. Achlioptas, R. M. D'Souza, and J. Spencer, Science **323**, 1453 (2009).

How can it be?: discontinuity coexisting with critical power-law distributions and scaling above and below this transition - ??? Representative model of "explosive percolation"

ordinary percolation: "explosive percolation" (m = 2):

Relation between models

Simulations 2×10^9 nodes:

eta pprox 0.0476 pprox 1/18, $\delta = t - t_c$

Estimate

Suppose $\beta = 1/18$ and $N = 10^{18}$. The smallest time interval is 1/N. Then a single step from the percolation threshold gives

$$S \sim (10^{-18})^{1/18} \sim 0.1$$

So simulations are virtually useless. We must study the infinite system.

Distributions

n(s) and P(s) are for clusters

$$P(s) = sn(s)/\langle s
angle,$$

$$\sum_{s} P(s) = 1 - S$$

Q(s) is for merging clusters,

$$\sum_{s} Q(s) = 1 - S^2$$

$$Q_{
m cum}(s)+S^2=[P_{
m cum}(s)+S]^2$$

$$egin{aligned} Q(s) &= [P_{ ext{cum}}(s) + P_{ ext{cum}}(s+1) + 2S]P(s) \ &= [2 - 2P(1) - 2P(2) - \ldots - 2P(s-1) - P(s)]P(s) \end{aligned}$$

Equations

$$\frac{\partial P(s,t)}{\partial t} = s \sum_{u+v=s} Q(u,t)Q(v,t) - 2sQ(s,t)$$

exactly describe the evolution of the distributions in the full range of t for the infinite system.

We solved numerically 10^6 equations, which gives precise description of the distributions for $s \le 10^6$.

Fitting by the law $S_0 + C\delta^{\beta}$ gives $S_0 < 0.005$.

(arXiv:1009.2534)

$$s \le 10^{6}$$

Scaling functions $P(s,t) = s^{1-\tau} f(s \delta^{1/\sigma})$ $Q(s,t) = s^{3-2\tau} g(s \delta^{1/\sigma})$

Ordinary percolation: scaling functions

(arXiv:1009.2534)

Table: Percolation thresholds, critical exponents, and fractal and upper critical dimensions (m = 2)

	t _c	eta	au	σ	γ_{P}	γ_{Q}	d_f	d_u
Ordinary	1/2	1	5/2	1/2	1	_	4	6
Explosive	0.923207508(2)	0.0555(1)	2.04762(2)	0.857(3)	1.111(1)	1.0556(5)	2.333(1)	2.445(1)

$$egin{aligned} & & au = 1 + eta/(1+3eta), \quad \sigma = 1/(1+3eta), \quad \gamma_{ extsf{P}} = 1+2eta, \ & & \gamma_{ extsf{Q}} = 1+eta, \quad d_f = 2(1+3eta), \quad d_u = 2(1+4eta) \ & & & t_c(\infty) - t_c(N) \sim N^{-2/d_u} \end{aligned}$$

If the distributions are power-law at the critical point, then $S \sim \delta^{\beta}$. Indeed, above t_c , we have

$$Q(s)\cong 2SP(s)$$

at large s.

So the equation for the asymptotics contains only P(s) and S(t). This equation is very similar to that for ordinary percolation.

Using $P(s, t_c) = f(0)s^{1-\tau}$ as an initial condition, we solve this equation and find critical exponents and scaling functions above t_c .

Relation between τ and t_c

$$egin{aligned} & P(s=1,t_c)\sum_s s^{1- au}pprox 1 \ & P(s=1,t)=rac{2}{1+e^{4t}} \ & rac{2}{1+e^{4t_c}}\zeta(au-1)pprox 1 \end{aligned}$$

Substituting t_c gives $\tau - 2 \approx 0.05$.

With increasing m, t_c approaches 1 and β rapidly decreases with m, but the transition remains continuous.

There is no explosion in "explosive percolation".

Lectures on Complex Networks

