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1. Characterizing large scale structure

dH is blind to some sorts of connectivity eg in 
the Euclidean metric

1. Choose a point  r0

2.Find all points BR(r0) within graph  distance R of r0 
3.   ｜ BR(r0)｜∼ R  as R→∞, independent of r0 

dH

dH = 2 for Z2 & Spanning Tree

Hausdorff dimension dH -- we assume ∞ graphs



Spectral dimension dS

1. Choose a point  r0

2.Random walker leaves  r0 at time 0 and returns 
at time t with probability qG(t;r0)

 but 16∕13 for 

qG(t;r0) ∼ t        as t→∞−dS∕2prob = σ-1

Random walk sees connectivity:

dS = 2 for Z2 



2. A curious result from quantum gravity 

μν
g (x,t)Gravity’s dynamical degree of freedom is the metric

Classically              obeys Einstein’s equations:g (x,t)
μν

Quantum mechanics is different: 

 〈g (x), t=T｜g (x), t=0〉∼ab

g (x,t)
μν

                     g (x,0)
μν

space

time

ga gb∑w(g) 
g∈Γ

Probability amplitude for evolution from g to g ba



How are Γ and w defined ? 

Several approaches; some non-stringy ones ....
1. Continuum field theoretical -- exact RG looking 
for non-Gaussian fixed points where QG non-
perturbatively renormalizable (asymptotic safety) 

2. Discretized -- Causal Dynamical Triangulations Γ is a 
set of graphs and we look for a critical point (or line) 
where a continuum limit can be taken to recover QG  

Curiosity is that both indicate ds=4  at large distance scales 
but   ds=2   at small distance scales

hep-th/0508202 

hep-th/0505113 



3. Defining scale dependent ds 

QG(x,L) = 1+∑ qG(t;r0) (1-x)t/2
t=2

∞

∼ x-1+ds/2 as x ➝ 0

Convenient to use generating fn 

∼Q(ξ,λ) =                           
a    0➝
lim a1/2 Q( aξ, (λ/a)Δ)

Now define (if the limit exists),

And split the sum    ∑..... = ∑..... +    ∑......
t=2

∞ T

t=2

∞

t=T

Make suitable choices of T and bound one of the sums



T =  ________________
aξ log (1 + (ξλ)-1 )

1

Q(ξ,λ) (1 - e-ξλ)  <      a1/2 ∑ qG(t) (1-aξ)t/2 < Q(ξ,λ)
a    0➝
lim

T

t=2

∼ ∼

Choose

  Q(ξ➝∞,λ) describes walks of continuum duration < λ∼

T =   ___________
aξ 

 log (1 + ξλ)Choose

∞

t=T
Q(ξ,λ) - ea1/2√T <      a1/2 ∑ qG(t) (1-aξ)t/2 < Q(ξ,λ)

a    0➝
lim∼ ∼

  Q(ξ➝0,λ) describes walks of continuum duration > λ∼



1 + ds/2 =  ξ    ∞➝
lim

log Q(ξ,λ)
log ξ

_______
∼

1 + ds/2 =  ξ    0➝
lim

log Q(ξ,λ)
log ξ

_______
∼

So define spectral dimension at long distances by

and at short distances by

The existence and ordering of the limits are crucial



4. AN easy example 

∞ spine

∞ teeth

root

L edges between teeth

Q(x,L) can be calculated exactly 

Q(ξ,λ) =                           ∼
a    0➝
lim a1/2 Q( aξ, (λ/a)1/2)

2
 ξ1/2 ( 5 + 4 coth(λξ)1/2 )1/2
__________________=

ξ    0, ds=3/2➝

ξ    ∞, ds=1➝



5. random ensembles  after hep-th/0509191

∞  spine

tooth length i.i.d. π(0) = 1 - 1/L, 
                          π(n > 0) = C n-α/L

dH = 3 - α,
dS = 2 - α/2

Interesting range is 1 < α ≤ 2 ; for L fixed  

lim
a    0➝

〈Q(ξ,λ)〉 ∼ =     a1/2 〈Q( aξ, (λ/a)1-α/2)〉

True both for expectation values and a.s. for a single 
comb. The right scaling limit is 



First return probabilities
related by

3-PA-PB

1-x______PC =
B

AC      = 1
1 - PG(x)
⎯⎯⎯⎯=QG(x)  

Jensen’s inequality gives lower bound

Graph moves give upper bound



ξ    ∞, ds=1➝ξ    0, ds=2-α/2➝

c
 ξ1/2 ( 1 + b (λξ)α/2-1 )1/2
________________   < Q(ξ,λ) <             F(λξ)1

ξ1/2
__

F(v) ∼  const,   v ➝ ∞
         vα/4,   v ➝ 0

with

Altogether we get



6. conclusions

1. Spectral dimension can be defined on different scales

2. Order of limits is very important

3. We have considered only “kinematics” -- the probabilities 
π(n)  were put in by hand

4. Interesting to find solvable models where the affect  
appears dynamically


