SIMPLE MODELS FOR SCALE DEPENDENT SPECTRAL DIMENSION

John Wheater
 University of Oxford

Max Atkin, Georgios Giasemidis, JW in preparation
Bergfinnur Durhuus, Thordur Jonsson, JW arXiv: hep-th / 0509191, math-ph / 0607020

SIMPLE MODELS FOR SCALE DEPENDENT SPECTRAL DIMENSION

I. Characterizing large scale structure of graphs
2. A curious result from quantum gravity
3. A definition
4. An easy example
5. An example using random graph ensembles
6. Conclusions

1. CHARACTERIZING LARGE SCALE STRUCTURE

Hausdorff dimension d_{H}-- we assume ∞ graphs
I. Choose a point r_{0}
2. Find all points $B_{R}\left(r_{0}\right)$ within graph distance R of r_{0}
3. $\left|B_{R}\left(r_{0}\right)\right| \sim R^{d_{H}}$ as $R \rightarrow \infty$, independent of r_{0}
d_{H} is blind to some sorts of connectivity eg in the Euclidean metric

Spectral dimension d_{s}

I. Choose a point r_{0}
2. Random walker leaves r_{0} at time 0 and returns at time t with probability $\mathrm{q}_{\mathrm{G}}\left(\mathrm{t} ; \mathrm{r}_{\mathrm{O}}\right)$

$$
q_{G}\left(t ; r_{0}\right) \sim t^{-d_{s} / 2} \text { as } t \rightarrow \infty
$$

Random walk sees connectivity:

$$
d_{s}=2 \text { for } z^{2}
$$

but $16 / 13$ for

2. A CURIOUS RESULT FROM QUANTUM GRAVITY

Gravity's dynamical degree of freedom is the metric $q_{\mu v}(x, t)$
Classically $\mathrm{g}_{\mu \mathrm{v}}(x, t)$ obeys Einstein's equations:

$$
g_{\mu \nu}(x, 0) \longmapsto g_{\mu \nu}(x, t)
$$

Quantum mechanics is different:

$$
\left\langle g^{b}(x), t=T \mid g^{a}(x), t=0\right\rangle \sim \text { space }
$$

Probability amplitude for evolution from g^{a} to g^{b}

How are Γ and w defined?

Several approaches; some non-stringy ones

1. Continuum field theoretical -- exact RG looking for non-Gaussian fixed points where QG nonperturbatively renormalizable (asymptotic safety) hep-th / 0508202
2. Discretized -- Causal Dynamical Triangulations $\boldsymbol{\Gamma}$ is a set of graphs and we look for a critical point (or line) where a continuum limit can be taken to recover QG hep-th/ 0505113

Curiosity is that both indicate $d_{s}=4$ at large distance scales but $d_{s}=2$ at small distance scales

3. DEFINING SCALE DEPENDENT d_{s}

Convenient to use generating fn

$$
\begin{aligned}
Q_{G}(x, L) & =1+\sum_{t=2}^{\infty} q_{G}\left(t ; r_{0}\right)(1-x)^{t / 2} \\
& \sim x^{-1+d s / 2} \text { as } x \rightarrow 0
\end{aligned}
$$

Now define (if the limit exists),

$$
\widetilde{Q}(\xi, \lambda)=\lim _{a \rightarrow 0} a^{1 / 2} Q\left(a \xi,(\lambda / a)^{\Delta}\right)
$$

And split the sum

$$
\sum_{t=2}^{\infty} \ldots . . .=\sum_{t=2}^{T} \ldots . .+\sum_{t=T}^{\infty} \ldots \ldots
$$

Make suitable choices of T and bound one of the sums

Choose

$$
T=\frac{1}{a \xi \log \left(1+(\xi \lambda)^{-1}\right)}
$$

$\widetilde{Q}(\xi, \lambda)\left(1-e^{-\xi \lambda}\right)<\lim _{a \rightarrow 0} a^{1 / 2} \sum_{t=2}^{T} q_{G}(t)(1-a \xi)^{t / 2}<\widetilde{Q}(\xi, \lambda)$
$\widetilde{Q}(\xi \rightarrow \infty, \lambda)$ describes walks of continuum duration $<\lambda$
Choose

$$
T=\frac{\log (1+\xi \lambda)}{a \xi}
$$

$\widetilde{Q}(\xi, \lambda)-e a^{1 / 2} \sqrt{ } T<\lim _{a \rightarrow 0} a^{1 / 2} \sum_{t=T}^{\infty} q_{G}(t)(1-a \xi)^{t / 2}<\widetilde{Q}(\xi, \lambda)$
$\widetilde{Q}(\xi \rightarrow 0, \lambda)$ describes walks of continuum duration $>\lambda$

So define spectral dimension at long distances by

$$
1+d_{s} / 2=\lim _{\xi \rightarrow 0} \frac{\log \widetilde{Q}(\xi, \lambda)}{\log \xi}
$$

and at short distances by

$$
1+d_{s} / 2=\lim _{\xi \rightarrow \infty} \frac{\log \widetilde{Q}(\xi, \lambda)}{\log \xi}
$$

The existence and ordering of the limits are crucial

4. AN EASY EXAMPLE

$Q(x, L)$ can be calculated exactly
$\widetilde{Q}(\xi, \lambda)=\lim _{a \rightarrow 0} a^{1 / 2} Q\left(a \xi,(\lambda / a)^{1 / 2}\right)$

$$
=\frac{2}{\xi^{1 / 2}\left(5+4 \operatorname{coth}(\lambda \xi)^{1 / 2}\right)^{1 / 2}} \xi \rightarrow \infty, d_{s}=1
$$

5. RANDOM ENSEMBLES after hep-th/0509191

Interesting range is $1<\alpha \leq 2$; for L fixed

$$
\begin{aligned}
& d_{H}=3-\alpha, \\
& d_{s}=2-\alpha / 2
\end{aligned}
$$

True both for expectation values and a.s. for a single comb. The right scaling limit is

$$
\langle\widetilde{Q}(\xi, \lambda)\rangle=\lim _{a \rightarrow 0} a^{1 / 2}\left\langle Q\left(a \xi,(\lambda / a)^{1-\alpha / 2}\right)\right\rangle
$$

First return probabilities

 related by$$
\begin{aligned}
& P_{C}=\frac{1-x}{3-P_{A}-P_{B}} \\
& Q_{G}(x)=\frac{1}{1-P_{G}(x)}
\end{aligned}
$$

Jensen's inequality gives lower bound

Graph moves give upper bound

Altogether we get
$\frac{c}{\xi^{1 / 2}\left(1+b(\lambda \xi)^{\alpha / 2-1}\right)^{1 / 2}}<Q(\xi, \lambda)<\frac{1}{\xi^{1 / 2}} F(\lambda \xi)$
with
$F(v)$ ~ const, $v \rightarrow \infty$ $v^{\alpha / 4}, \quad v \rightarrow 0$

$$
\xi \rightarrow 0, d_{s}=2-\alpha / 2
$$

$$
\xi \rightarrow \infty, d_{s}=1
$$

6. CONCLUSIONS

1. Spectral dimension can be defined on different scales
2. Order of limits is very important
3. We have considered only "kinematics" -- the probabilities $\pi(n)$ were put in by hand
4. Interesting to find solvable models where the affect appears dynamically
