Max Atkin, Georgios Giasemidis, JW in preparation
Bergfinnur Durhuus, Thordur Jonsson, JW arXiv: hep-th /0509191, math-ph /0607020



SIMPLE MODELS FOR SCALE DEPENDENT
SPECTRAL DIMENSION
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4. An easy example
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I. CHARACTERIZING LARCGE SCALE STRUCTUKRE

Hausdorftf dimension dy -- we assume eo graphs
1. Choose a point 1o
2. Find all points Bgr(ro) within graph distance R of ro
3. | Bg(ro) | ~ RdH as R—co, independent of ro

du is blind to some sorts of connectivity eg in
the Euclidean metric

di =2 for Z- & Spanning Tree




Spectral dimension ds

1. Choose a point ro

2.Random walker leaves ro at time O and returns
at time t with probability qe(t;ro)

> Y prob = 0 q(firo) ~ 7' *as t—eo
Random walk sees connectivity: \\

ds = 2 for Z2 but 16 /13 for




2. A CURIOUS RESULT FROM QUANTUM GRAVITY

Gravity’s dynamical degree of freedom is the metric q (x.1)

Classically g (x,t) obeys Einstein’s equations:
0y,

IO / 1.
6 (0 g 09

Quantum mechanics is different:

<gb(X), =T | ga(X), '|'=O> ~  space

Probability amplitude for evolution from g*to g’



How are [ and w defined ?

Several approaches; some non-stringy ones ....

1. Continuum field theoretical -- exact RG looking
for non-Gaussian fixed points where QG non-

perturbatively renormalizable (asymptotic safety)
hep-th /0508202

2. Discretized -- Causal Dynamical Triangulations I is a

set of graphs and we look for a critical point (or line)

where a continuum limit can be taken to recover QG
hep-th /0505113

Curiosity is that both indicate ds=4 at large distance scales
but ds=2 atsmall distance scales



3. DEFINING SCALE DEPENDENT ds

Convenient to use generating fn

Qa(x.L) = 1+§2 as(tire) (1-x)"2

Now define (if the limit exists),

QEN) = lim a2 Q( a€, (\/a)?)

And split the sum 5 .
t=2 t=2 $=T

Make suitable choices of T and bound one of the sums



Choose T = L
ag log (1 + (EN)?)

QEN) (1 - ) < lim o 3 qelt) (1-aE)" < AEN

Q(E—0,\) describes walks of continuum duration < A
log (1 + EA)

ag
Q(EAN) - ea’2JT < ILTOGI/Z gTqG(f) (1-a€)"2 < Q(EN)

Choose T =

Q(E—0,\) describes walks of continuum duration > A



So define spectral dimension at long distances by

log Q(EN)
/2 =_lim ———
1 + d./2 : '—To oa B

and at short distances by

log Q(EN)
/2 =_lim ———
1 + d./2 : '_an o

The existence and ordering of the limits are crucial



4. AN EASY EXAMPLE

oo teeth

oot - o . co Spine

——e—+s oo L edges between teeth

Q(x,L) can be calculated exactly

QEN = lim a2 Q( at, (\a)2) €0, ds=3/2
2
€12 (5 4+ 4 coth(NE)/2 /2 | & — 00, ds=1



S. RANDOM ENSEMBLES after hep-th /0509191

tooth length i.i.d. m(0) = 1 - 1/L,
m(n > 0) = C n"%/L

° | l ----------------------- 00 spine

Interesting range is1 < o < 2 ; for L fixed

d|-|=3 - X,
ds= 2—0(/2

True both for expectation values and a.s. for a single
comb. The right scaling limit is

(@EN) = lim @’ (Q( aE, (Aa)-*2))



First return probabilities

related by
& 1-X

.-
3D

® ' @

Jensen’s inequality gives lower bound

Graph moves give upper bound



Altogether we get

Lt i . O s b ¥
EV2 (1 + b (Ag)*/2-1 )12 < QEA) < 3L (AE)
with F(v) ~ const, v — o

VO‘/4, v — 0

E =) O, ds=2-0(/2 E —» 00, ds=1



6. CONCLUSIONS

1. Spectral dimension can be defined on different scales

2. Order of limits is very important

3. We have considered only “kinematics” -- the probabilities
(n) were put in by hand

4. Interesting to find solvable models where the affect
appears dynamically



