Model gene regulatory networks under mutation-selection balance

Marcin Zagórski

Institute of Physics, Jagiellonian University, Kraków, Poland

in collaboration with

Zdzislaw Burda, Andre Krzywicki and Olivier C. Martin

6 December 2010

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- What are gene regulatory networks (GRNs)?
- Biological aspects of GRNs
- GRN model
- Main results
- Conclusions and outlook

Genomes

Number of protein-coding genes

E. coli	\sim	4000
Yeast	\sim	6000
Fruit fly	\sim	14000
Human	\sim	22000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Genomes

$\begin{array}{rcl} \textit{E. coli} & \sim & 4000 \\ \textrm{Yeast} & \sim & 6000 \\ \textrm{Fruit fly} & \sim & 14000 \\ \textrm{Human} & \sim & 22000 \end{array}$	

It seems, we are not even an order of magnitude better than bacteria...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Gene regulation

Number of regulatory genes grows faster than linearly with the total number of genes.

Gene regulation

Number of regulatory genes grows faster than linearly with the total number of genes.

Gene products

- structural proteins
- enzymes
- transcription factors (TFs) serve only to activate (deactivate) other genes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Gene regulation

Number of regulatory genes grows faster than linearly with the total number of genes.

Gene products

- structural proteins
- enzymes
- transcription factors (TFs) serve only to activate (deactivate) other genes.

Gene regulatory network

GRN consists of interactions mediated by TFs (edges) which are products of certain genes (nodes).

Activators

TF bound to DNA target site in promoter region can enhance protein production rate.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Repressors

In case of repressors the protein production rate is reduced.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Transcriptional Networks

Biological features

- a given gene is generally influenced by a "small" number of other genes
- some genes have effect on multiple target genes (pleiotropic effect)
- GRNs seem to be robust to random change (e.g., to environmental fluctuations or to mutations)

In terms of network terminology, GRNs are sparse with narrow in-degree distribution and broad out-degree distribution.

Phenotype

$$m{S} = (S_1, S_2, \dots, S_N)$$

 $S_i \in [0, 1]$

Genotype **W** is matrix
$$N \times N$$

Dynamics
$$\mathbf{S}(t+1) = G(\mathbf{S}(t), \mathbf{W})$$

$$\underbrace{\mathbf{S}(0)}_{\mathbf{S}^{(initial)}} \xrightarrow{\mathbf{W}} \mathbf{S}(1) \xrightarrow{\mathbf{W}} \dots \xrightarrow{\mathbf{W}} \underbrace{\mathbf{S}(t) \xrightarrow{\mathbf{W}} \mathbf{S}(t+1)}_{\text{fixed point phenotype}}$$

Fitness
$$F(\mathbf{S}) = \exp(-f\sum_i |S_i - S_i^{(target)}|)$$

• *S_i* a level of gene *i* expression

- *W_{ij}* interaction between gene *i* and TF *j*
- **S**^(target) corresponds to cell's function
- we sample space of genotypes which lead from S^(initial) to S^(target)

Molecular genotype

Specific binding

$$\rho_{ij} = \frac{1}{1 + \exp\left(\varepsilon d_{ij} - \log nS_j\right)} = \frac{1}{1 + 1/W_{ij}n_j}$$

æ

Expression pattern dynamics

$$egin{aligned} S_i(t+1) &= 1 - \prod_j (1 - p_{ij}(t)) \ p_{ij}(t) &= rac{1}{1 + \exp\left(arepsilon d_{ij} - \log nS_j(t)
ight)} \end{aligned}$$

Metropolis sampling of space of viable genotypes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

GRN as a directed weighted graph

Matrix **W** with corresponding GRN (only strong interactions).

・ロト ・ 雪 ト ・ ヨ ト

3

Mismatch distribution

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

Essential interactions

In-degree distribution

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

Ensemble of GRNs having one biological function

- GRNs as sparse as possible to maintain their function
- in- and out-degree distribution qualitatively agree with those observed in real GRNs

heterogeneous mutational robustness

Conclusions

Ensemble of GRNs having one biological function

- GRNs as *sparse* as possible to maintain their function
- in- and out-degree distribution qualitatively agree with those observed in real GRNs
- heterogeneous mutational robustness

References

- Z. Burda, A. Krzywicki, O.C. Martin, M. Zagórski, Distribution of essential interactions in model gene regulatory networks under mutation-selection balance, Phys. Rev. E 82, 011908 (2010).
- U. Alon, An Introduction To Systems Biology: Design Principles Of Biological Circuits, Chapman & Hall 2006.
- M. Lässig, From biophysics to evolutionary genetics: statistical aspects of gene regulation, BMC Bioinformatics 2007, 8:S7.
- U. Gerland, J.D. Moroz, T. Hwa, *Physical constraints and functional characteristics of transcription factor-DNA interaction*, PNAS 2002, 99(19):12015-12020.

Thank you for your attention

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ