Emergence of a vertex of infinite degree in non-generic trees

Sigurður Örn Stefánsson, Nordita

3 November 2010

Random Geometry and Applications, workshop

Outline

- Definition of the model
- Results in the generic phase (old and recent)
- Results in the non-generic phase (old and new)
- Conclusions

Rooted, planar trees

- A tree is a graph with no loops.
- Single out one vertex (take it to have degree 1) and call it the root (r).
- Planarity - trees are embedded in the plane. Edges are not allowed to cross.

Two trees are the same if one can be deformed into the other without crossing edges.

Rooted, planar trees

- A tree is a graph with no loops.
- Single out one vertex (take it to have degree 1) and call it the root (r).
\rightarrow Planarity - trees are embedded in the plane. Edges are not allowed to cross.
Two trees are the same if one can be deformed into the other without crossing edges.

Rooted, planar trees

- A tree is a graph with no loops.
- Single out one vertex (take it to have degree 1) and call it the root (r).
- Planarity - trees are embedded in the plane. Edges are not allowed to cross.

Two trees are the same if one can be deformed into the other without crossing edges.

Rooted, planar trees

- A tree is a graph with no loops.
- Single out one vertex (take it to have degree 1) and call it the root (r).
- Planarity - trees are embedded in the plane. Edges are not allowed to cross.

Two trees are the same if one can be deformed into the other without crossing edges.

Rooted, planar trees

- A tree is a graph with no loops.
- Single out one vertex (take it to have degree 1) and call it the root (r).
- Planarity - trees are embedded in the plane. Edges are not allowed to cross.

Two trees are the same if one can be deformed into the other without crossing edges.

Denote the set of trees on N edges by Γ_{N}.

Physical motivation

Trees code information of surfaces

- 2D causal dynamical triangulations (Ambjørn and Loll)

Planar trees

- A more general bijection exists between planar maps and well labelled trees.

A "tree phase" is observed in 2D quantum gravity interacting with conformal matter.

Equilibrium statistical mechanical (ESM) model

- Let w_{1}, w_{2}, \ldots be nonnegative numbers - branching weights.
- Define the weight of a tree $\tau \in \Gamma_{N}$ by

$$
w(\tau)=\prod_{v \in V(\tau) \backslash\{r\}} w_{\operatorname{deg}(\mathrm{v})}
$$

$w(\tau)=w_{1}^{6} w_{2} w_{4} w_{5}$

- Define a probability distribution ν_{N} on Γ_{N} by

is a normalization - called the finite volume partition function

Equilibrium statistical mechanical (ESM) model

- Let w_{1}, w_{2}, \ldots be nonnegative numbers - branching weights.
- Define the weight of a tree $\tau \in \Gamma_{N}$ by

$$
w(\tau)=\prod_{v \in V(\tau) \backslash\{r\}} w_{\operatorname{deg}(\mathrm{v})}
$$

$w(\tau)=w_{1}^{6} w_{2} w_{4} w_{5}$

- Define a probability distribution ν_{N} on Γ_{N} by

$$
\nu_{N}(\tau)=Z_{N}^{-1} w(\tau) \quad \text { where } \quad Z_{N}=\sum_{\tau^{\prime} \in \Gamma_{N}} w\left(\tau^{\prime}\right)
$$

is a normalization - called the finite volume partition function.

Generating functions

Define the generating functions

$$
\mathcal{Z}(\zeta)=\sum_{N=1}^{\infty} Z_{N} \zeta^{N} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} w_{n} z^{n-1}
$$

with radii of convergence ζ_{0} and ρ, respectively. They obey the relation

$$
\mathcal{Z}(\zeta)=\zeta g(\mathcal{Z}(\zeta))
$$

Define $\mathcal{Z}_{0}=\mathcal{Z}\left(\zeta_{0}\right)$.

- $\mathcal{Z}_{0}<\rho$: Generic, g analytic at \mathcal{Z}_{0} !
- $Z_{0}=\rho:$ Non-generic.

Generating functions

Define the generating functions

$$
\mathcal{Z}(\zeta)=\sum_{N=1}^{\infty} Z_{N} \zeta^{N} \quad \text { and } \quad g(z)=\sum_{n=1}^{\infty} w_{n} z^{n-1}
$$

with radii of convergence ζ_{0} and ρ, respectively. They obey the relation

$$
\mathcal{Z}(\zeta)=\zeta g(\mathcal{Z}(\zeta))
$$

Define $\mathcal{Z}_{0}=\mathcal{Z}\left(\zeta_{0}\right)$.

- $\mathcal{Z}_{0}<\rho$: Generic, g analytic at \mathcal{Z}_{0} !
- $\mathcal{Z}_{0}=\rho$: Non-generic.

The Galton-Watson branching process
$\left(p_{n}\right)_{n \geq 0}$ non-negative numbers such that $\sum_{n} p_{n}=1$.

Generates a probability measure μ on the set of finite trees. Useful fact:

The Galton-Watson branching process
$\left(p_{n}\right)_{n \geq 0}$ non-negative numbers such that $\sum_{n} p_{n}=1$.

Generates a probability measure μ on the set of finite trees. Useful fact: with $p_{n}=\zeta_{0} w_{n+1} Z_{0}^{n-1}$

The Galton-Watson branching process
$\left(p_{n}\right)_{n \geq 0}$ non-negative numbers such that $\sum_{n} p_{n}=1$.

Generates a probability measure μ on the set of finite trees. Useful fact:

The Galton-Watson branching process
$\left(p_{n}\right)_{n \geq 0}$ non-negative numbers such that $\sum_{n} p_{n}=1$.

Generates a probability measure μ on the set of finite trees. Useful fact:

The Galton-Watson branching process
$\left(p_{n}\right)_{n \geq 0}$ non-negative numbers such that $\sum_{n} p_{n}=1$.

Generates a probability measure μ on the set of finite trees. Useful fact:

$$
\tau \in \Gamma_{N}
$$

with $p_{n}=\zeta_{0} w_{n+1} Z_{0}^{n-1}$

The Galton-Watson branching process
$\left(p_{n}\right)_{n \geq 0}$ non-negative numbers such that $\sum_{n} p_{n}=1$.

Generates a probability measure μ on the set of finite trees. Useful fact:

$$
\nu_{N}(\tau)=\frac{\mu(\tau)}{\mu\left(\Gamma_{N}\right)}, \quad \tau \in \Gamma_{N}, \quad \text { with } \quad p_{n}=\zeta_{0} w_{n+1} \mathcal{Z}_{0}^{n-1}
$$

ESM on Γ_{N} can be viewed as a GW process conditioned on size N.

The Galton-Watson branching process

Define $m=\sum_{n=0}^{\infty} n p_{n}$. m is the mean offspring probability of the GW process.
Galton Watson processes are divided into three categories according to the value of m :

- $m<1$: Sub-critical. Dies out with probability one, "fast"
- $m=1$: Critical. Dies out with probability one, "slower"
- $m>1$: Super-critical. Survives forever with nonzero probability.

The ESM model corresponds to either size-conditioned sub-critical GW processes or size-conditioned critical GW processes with

$$
m=\mathcal{Z}_{0} \frac{g^{\prime}\left(\mathcal{Z}_{0}\right)}{g\left(\mathcal{Z}_{0}\right)} \leq 1
$$

Follows from

$$
\mathcal{Z}(\zeta)=\zeta g(\mathcal{Z}(\zeta))
$$

Things to do

Identify different phases.
Bialas and Burda, 1996.

Prove convergence of ν_{N}, as
$N \rightarrow \infty$ to a measure ν on
infinite trees.

Generic (G) - long trees
Nongeneric (NG) - crumpled trees

```
- Meir and Moon, 1978
- Iansan 2006
    Flajolet and Sedgewick, 2009 (AC)
- Bialas and Burda, 1996.
    With assumption that scaling
    exponent exists
    Jonsson, Stefánsson, 2010.
```


Things to do

Identify different phases.
Bialas and Burda, 1996.
Calculate Z_{N} for N large.

Generic (G) - long trees
Nongeneric (NG) - crumpled trees
G - Meir and Moon, 1978.
G/NG

- Janson, 2006.

Flajolet and Sedgewick, 2009 (AC).
NG - Bialas and Burda, 1996. With assumption that scaling exponent exists.
Jonsson, Stefánsson, 2010.

- Durhuus, Jonsson, Wheater, 2007.
- Jonsson. Stefánsson, 2010.

Things to do

Identify different phases.
Bialas and Burda, 1996.
Calculate Z_{N} for N large.

Prove convergence of ν_{N}, as $N \rightarrow \infty$ to a measure ν on infinite trees.

Generic (G) - long trees
Nongeneric (NG) - crumpled trees

G - Meir and Moon, 1978.
G/NG - Janson, 2006.
Flajolet and Sedgewick, 2009 (AC).
NG - Bialas and Burda, 1996. With assumption that scaling exponent exists.
Jonsson, Stefánsson, 2010.
G - Durhuus, Jonsson, Wheater, 2007.
NG - Jonsson, Stefánsson, 2010.

The phase structure

For simplicity choose

- $w_{1} \quad-\quad$ as a free parameter, and
- $w_{n} \sim n^{-\beta}$ - with $\beta \in \mathbb{R}$ a free parameter.

If $w_{n}=0$ for all $n>d$ then always generic - no vertex of large deg. appears.

The generic phase
Theorem. (Meir and Moon, '78) $\quad Z_{N}=\left(\frac{g\left(\mathcal{Z}_{0}\right)}{2 \pi g^{\prime \prime}\left(\mathcal{Z}_{0}\right)}\right)^{\frac{1}{2}} N^{-\frac{3}{2}} \zeta_{0}^{-N}\left(1+O\left(N^{-1}\right)\right)$.
Proof follows rather easily from the fact that g is analytic at \mathcal{Z}_{0}.
Let Γ be the set of all trees, finite and infinite.
Theorem. (Durhuus, Jonsson and Wheater, 2007)
The measures ν_{N}, viewed as probability measures on Γ, converge weakly as $N \rightarrow \infty$ to a probability measure v which is concentrated on the set of trees which have exactly one simple path from the root to infinity (a spine). The number of left and right branches i and j, from a vertex on the spine are independently distributed by

The branches attached to the spine are i.i.d. critical Galton-Watson processes with branching weights

$$
p_{n}=\zeta_{0} w_{n+1} \mathcal{Z}_{0}^{n-1}
$$

The generic phase

Theorem. (Meir and Moon, '78) $\quad Z_{N}=\left(\frac{g\left(\mathcal{Z}_{0}\right)}{2 \pi g^{\prime \prime}\left(\mathcal{Z}_{0}\right)}\right)^{\frac{1}{2}} N^{-\frac{3}{2}} \zeta_{0}^{-N}\left(1+O\left(N^{-1}\right)\right)$.
Proof follows rather easily from the fact that g is analytic at \mathcal{Z}_{0}.
Let Γ be the set of all trees, finite and infinite.
Theorem. (Durhuus, Jonsson and Wheater, 2007)
The measures ν_{N}, viewed as probability measures on Γ, converge weakly as $N \rightarrow \infty$ to a probability measure ν which is concentrated on the set of trees which have exactly one simple path from the root to infinity (a spine). The number of left and right branches i and j, from a vertex on the spine are independently distributed by

$$
\phi(i, j)=\zeta_{0} w_{i+j+2} \mathcal{Z}_{0}^{i+j}
$$

The branches attached to the spine are i.i.d. critical Galton-Watson processes with branching weights

$$
p_{n}=\zeta_{0} w_{n+1} \mathcal{Z}_{0}^{n-1}
$$

Definition of Γ

$\left(D_{R}\right)_{R>0}$ a sequence of finite, ordered sets. D_{0} and D_{1} have one element. If $D_{S}=\emptyset$ for some S then $D_{R}=\emptyset$ for all $R>S$.
$\left(\phi_{R}\right)_{R>1}$ a sequence of order preserving maps $\phi_{R}: D_{R} \rightarrow D_{R-1}$.
Γ is defined as the set of all pairs of such sequences (modulo sequences of order isomorphisms which are consistent with the maps ϕ_{R})

Definition of Γ

$\left(D_{R}\right)_{R>0}$ a sequence of finite, ordered sets. D_{0} and D_{1} have one element. If $D_{S}=\emptyset$ for some S then $D_{R}=\emptyset$ for all $R>S$.
$\left(\phi_{R}\right)_{R>1}$ a sequence of order preserving maps $\phi_{R}: D_{R} \rightarrow D_{R-1}$.
Γ is defined as the set of all pairs of such sequences (modulo sequences of order isomorphisms which are consistent with the maps ϕ_{R}).

Weak convergence

In order for this to make sense we need a topology on Γ. Define a metric d on Γ by

$$
d\left(\tau, \tau^{\prime}\right)=\inf \left\{\frac{1}{R}: B_{R}(\tau)=B_{R}\left(\tau^{\prime}\right)\right\}
$$

where $B_{R}(\tau)$ is a graph ball of radius R centered at the root of τ. That the measures ν_{N} converge weakle to a measure ν means that for any bounded, continuos (w.r.t. d) function f on Γ,

$$
\int_{\Gamma} f d \nu_{N} \rightarrow \int_{\Gamma} f d \nu
$$

as $N \rightarrow \infty$.

Definition of the metric d

Definition of the metric d

$B_{1}(\tau)$

Definition of the metric d

$B_{2}(\tau)$

Definition of the metric d

$B_{3}(\tau)$

Definition of the metric d

The metric space (Γ, d) has some nice properties and to prove week convergence of ν_{N} we only need to prove the following:

- For any $R \geq 1$ and every tree τ_{0} of height R the sequence

$$
\nu_{N}\left(\left\{\tau \in \Gamma: B_{R}(\tau)=\tau_{0}\right\}\right)
$$

is convergent.

- Tightness. For any $\epsilon>0$ there exists a compact set $K \subset \Gamma$ such that

$$
\nu_{N}(\Gamma \backslash K)<\epsilon \quad \text { for all } N .
$$

If Γ is compact this condition is obviously fulfilled. In the present case Γ is not compact and proving this amounts to showing that very large vertices are unlikely.

Non-generic phase - calculation of Z_{N}

Theorem. (Jonsson, Stefánsson, 2010. Confirms Bialas and Burda, 1996) For the NG branching weights $w_{n} \sim n^{-\beta}$ which satisfy $m<1$ it holds that

$$
Z_{N}=(1-m)^{-\beta} N^{-\beta} \zeta_{0}^{1-N}(1+o(1)) .
$$

Idea of proof:

$$
Z_{N}=Z_{1, N}+E_{N} .
$$

$Z_{1, N}=$ contribution from

Can write down an exact expression for $Z_{1, N}$ using truncated versions of $\mathcal{Z}(\zeta)$.
Using Lagrange's Inversion formula we can get estimates of $Z_{1, N}$ in terms of probalities of the sum of i.i.d. random variables.

Using inequalities from probability theory we find that the main contribution to $Z_{1, N}$ is from terms where $i \sim(1-m) N . E_{N}$ is small compared to $Z_{1, N}$.

Non-generic phase - calculation of Z_{N}

Theorem. (Jonsson, Stefánsson, 2010. Confirms Bialas and Burda, 1996) For the NG branching weights $w_{n} \sim n^{-\beta}$ which satisfy $m<1$ it holds that

$$
Z_{N}=(1-m)^{-\beta} N^{-\beta} \zeta_{0}^{1-N}(1+o(1)) .
$$

Idea of proof:

$$
Z_{N}=Z_{1, N}+E_{N} .
$$

Can write down an exact expression for $Z_{1, N}$ using truncated versions of $\mathcal{Z}(\zeta)$. Using Lagrange's Inversion formula we can get estimates of $Z_{1, N}$ in terms of probalities of the sum of i.i.d. random variables.

Using inequalities from probability theory we find that the main contribution to $Z_{1, N}$ is from terms where $i \sim(1-m) N . E_{N}$ is small compared to $Z_{1, N}$.

Non-generic phase - weak convergence of ν_{N}

Γ is not a good space any more - need vertices of infinite degree.
$\left(D_{R}\right)_{R \geq 0}$ a sequence of countable, ordered sets. $\left(\phi_{R}\right)_{R \geq 1}$ a sequence of order preserving maps $\phi_{R}: D_{R} \rightarrow D_{R-1}$. If $\left|\phi_{R}^{-1}(v)\right|=\infty, v \in D_{R}$ then $\phi_{R}^{-1}(v)$ is ordered as \mathbb{N}.
Define $\bar{\Gamma}$ as the set of all pairs of such sequences (modulo sequences of order isomorphisms which are consistent with the maps ϕ_{R}).

Non-generic phase - weak convergence of ν_{N}

Γ is not a good space any more - need vertices of infinite degree.
$\left(D_{R}\right)_{R \geq 0}$ a sequence of countable, ordered sets. $\left(\phi_{R}\right)_{R \geq 1}$ a sequence of order preserving maps $\phi_{R}: D_{R} \rightarrow D_{R-1}$. If $\left|\phi_{R}^{-1}(v)\right|=\infty, v \in D_{R}$ then $\phi_{R}^{-1}(v)$ is ordered as \mathbb{N}.
Define $\bar{\Gamma}$ as the set of all pairs of such sequences (modulo sequences of order isomorphisms which are consistent with the maps ϕ_{R}).

Non-generic phase - weak convergence of ν_{N}

Γ is not a good space any more - need vertices of infinite degree.
$\left(D_{R}\right)_{R \geq 0}$ a sequence of countable, ordered sets. $\left(\phi_{R}\right)_{R \geq 1}$ a sequence of order preserving maps $\phi_{R}: D_{R} \rightarrow D_{R-1}$. If $\left|\phi_{R}^{-1}(v)\right|=\infty, v \in D_{R}$ then $\phi_{R}^{-1}(v)$ is ordered as \mathbb{N}.
Define $\bar{\Gamma}$ as the set of all pairs of such sequences (modulo sequences of order isomorphisms which are consistent with the maps ϕ_{R}).

A new metric

The metric d is no longer good. Look at the following example:

We can never approach graphs having vertices of infinite degree with finite graphs. Therefore, we don't expect the measures ν_{N} to converge. Define a metric \bar{d} on $\bar{\Gamma}$ by

$$
\bar{d}\left(\tau, \tau^{\prime}\right)=\inf \left\{\frac{1}{R}: L_{R}(\tau)=L_{R}\left(\tau^{\prime}\right)\right\}
$$

$L_{R}(\tau) \subset B_{R}(\tau)$ is the "left ball" of graph radius R (explain soon...)

The new metric

The new metric

Just to be sure:

The measure space $(\bar{\Gamma}, \bar{d})$ is compact $->$ don't have to prove tightness. Only have to show that

- For any $R \geq 1$ and every tree τ_{0} of maximum height R and with maximum vertex degree R the sequence $\nu_{N}\left(\left\{\tau \in \Gamma: L_{R}(\tau)=\tau_{0}\right\}\right)$ is convergent.

Works for both phases and critical line -> simplifies proof of the generic case.

Weak convergence of ν_{N}

Theorem

For the NG branching weights $w_{n} \sim n^{-\beta}$ which satisfy $m<1$ the measures ν_{N}, viewed as measures on $\bar{\Gamma}$, converge in a weak sense to a measure ν which is concentrated on the set of trees with exactly one vertex of infinite degree which we denote by t.

The length ℓ of the path (r, t) is distributed by $\psi(\ell)=(1-m) m^{\ell-1}$.
The outgrowths from the path (r, t) are finite, independent, subcritical Galton-Watson trees defined by the offspring probabilities $p_{n}=\zeta_{0} w_{n+1}$.

The numbers i and j of left and right outgrowths from a vertex $v \in(r, t), v \neq t$ are independently distributed by $\phi(i, j)=1 / m \zeta_{0} w_{i+j+2}$.

Conclusions

- Have proven weak convergence of the finite volume measures ν_{N} for NG trees. The new method applies to both phases and simplifies the proof in the generic phase.
- Can also prove convergence on the critical line. Use results (with mild generalizations) of Janson, 2006 and Flajolet and Sedgewick, 2009 about behaviour of Z_{N} on the critical line. Get same results as in the generic case (single spine having finite i.i.d. GW outgrowths). However the GW outgrowths can have $g^{\prime \prime}\left(\mathcal{Z}_{0}\right)=\infty->$ different properties, Hausdorff dimension from 2 to ∞, spectral dimension from $4 / 3$ to 2 (scaling assumptions).
- Calculation of the spectral dimension d_{s} - dimension seen by a random walker travelling on the graph. Due to the vertex of infinite degree d_{s} is a. s. infinite. However, defined in turns of ensemble average, it takes the value $2(\beta-1), \beta>2\left(w_{n} \sim n^{-\beta}\right)$. Different from the value 2 which was previously obtained using scaling assumptions (Correia and Wheater, 1998).
- This phenomenon of "condensation" appears in other models - ESM of caterpillars, zero-range process, simplicial gravity...

