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Rooted, planar trees

I A tree is a graph with no loops.

I Single out one vertex (take it to have degree 1) and call it the root (r).

I Planarity - trees are embedded in the plane. Edges are not allowed to cross.

Two trees are the same if one can be deformed into the other without
crossing edges.

Denote the set of trees on N edges by �N . 3 / 22
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Physical motivation

Trees code information of surfaces

I 2D causal dynamical triangulations Planar trees
(Ambjørn and Loll)

I A more general bijection exists between planar maps and well labelled trees.

A �tree phase� is observed in 2D quantum gravity interacting with conformal
matter.
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Equilibrium statistical
mechanical (ESM) model

I Let w1; w2; : : : be nonnegative numbers
- branching weights.

I De�ne the weight of a tree � 2 �N by

w(� ) =
Y

v2V (�)nfrg

wdeg(v)

I De�ne a probability distribution �N on �N by

�N (� ) = Z�1N w(� ) where ZN =
X

� 02�N

w(� 0)

is a normalization - called the �nite volume partition function.
5 / 22



Equilibrium statistical
mechanical (ESM) model

I Let w1; w2; : : : be nonnegative numbers
- branching weights.

I De�ne the weight of a tree � 2 �N by

w(� ) =
Y

v2V (�)nfrg

wdeg(v)

I De�ne a probability distribution �N on �N by

�N (� ) = Z�1N w(� ) where ZN =
X

� 02�N

w(� 0)

is a normalization - called the �nite volume partition function.
5 / 22



Generating functions

De�ne the generating functions

Z(�) =

1X
N=1

ZN�
N and g(z) =

1X
n=1

wnz
n�1

with radii of convergence �0 and �, respectively. They obey the relation

Z(�) = �g(Z(�))

De�ne Z0 = Z(�0).

I Z0 < �: Generic, g analytic at Z0!

I Z0 = �: Non�generic.
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The Galton�Watson branching process

(pn)n�0 non�negative numbers such that
P

n pn = 1.

Generates a probability measure � on the set of �nite trees. Useful fact:

�N (� ) =
�(� )

�(�N )
; � 2 �N ; with pn = �0wn+1Z

n�1
0

ESM on �N can be viewed as a GW process conditioned on size N . 7 / 22



The Galton�Watson branching process

(pn)n�0 non�negative numbers such that
P

n pn = 1.

Generates a probability measure � on the set of �nite trees. Useful fact:

�N (� ) =
�(� )

�(�N )
; � 2 �N ; with pn = �0wn+1Z

n�1
0

ESM on �N can be viewed as a GW process conditioned on size N . 7 / 22



The Galton�Watson branching process

(pn)n�0 non�negative numbers such that
P

n pn = 1.

Generates a probability measure � on the set of �nite trees. Useful fact:

�N (� ) =
�(� )

�(�N )
; � 2 �N ; with pn = �0wn+1Z

n�1
0

ESM on �N can be viewed as a GW process conditioned on size N . 7 / 22



The Galton�Watson branching process

(pn)n�0 non�negative numbers such that
P

n pn = 1.

Generates a probability measure � on the set of �nite trees. Useful fact:

�N (� ) =
�(� )

�(�N )
; � 2 �N ; with pn = �0wn+1Z

n�1
0

ESM on �N can be viewed as a GW process conditioned on size N . 7 / 22



The Galton�Watson branching process

(pn)n�0 non�negative numbers such that
P

n pn = 1.

Generates a probability measure � on the set of �nite trees. Useful fact:

�N (� ) =
�(� )

�(�N )
; � 2 �N ; with pn = �0wn+1Z

n�1
0

ESM on �N can be viewed as a GW process conditioned on size N . 7 / 22



The Galton�Watson branching process

(pn)n�0 non�negative numbers such that
P

n pn = 1.

Generates a probability measure � on the set of �nite trees. Useful fact:

�N (� ) =
�(� )

�(�N )
; � 2 �N ; with pn = �0wn+1Z

n�1
0

ESM on �N can be viewed as a GW process conditioned on size N . 7 / 22



The Galton�Watson branching process

De�ne m =
P1

n=0 npn. m is the mean o�spring probability of the GW process.

Galton Watson processes are divided into three categories according to the value
of m:

I m < 1: Sub�critical. Dies out with probability one, �fast�

I m = 1: Critical. Dies out with probability one, �slower�

I m > 1: Super�critical. Survives forever with nonzero probability.

The ESM model corresponds to either size�conditioned sub�critical GW
processes or size�conditioned critical GW processes with

m = Z0
g0(Z0)

g(Z0)
� 1:

Follows from
Z(�) = �g(Z(�))
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Things to do

Identify di�erent phases.
Bialas and Burda, 1996.

Generic (G) - long trees
Nongeneric (NG) - crumpled trees

Calculate ZN for N large. G - Meir and Moon, 1978.

G/NG - Janson, 2006.

Flajolet and Sedgewick, 2009 (AC).

NG - Bialas and Burda, 1996.
With assumption that scaling

exponent exists.

Jonsson, Stefánsson, 2010.

Prove convergence of �N , as
N !1 to a measure � on
in�nite trees.

G - Durhuus, Jonsson, Wheater, 2007.

NG - Jonsson, Stefánsson, 2010.
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The phase structure

For simplicity choose

I w1 - as a free parameter, and

I wn � n�� - with � 2 R a free parameter.

If wn = 0 for all n > d then always generic - no vertex of large deg. appears.

2

Non-generic
Subcritical, 

Generic
Critical, 

Non-generic
Critical,
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The generic phase

Theorem. (Meir and Moon, '78) ZN =
�

g(Z0)
2�g00(Z0)

� 1

2

N� 3

2 ��N0 (1+O(N�1)):

Proof follows rather easily from the fact that g is analytic at Z0.

Let � be the set of all trees, �nite and in�nite.

Theorem. (Durhuus, Jonsson and Wheater, 2007)
The measures �N , viewed as probability measures on �, converge weakly as
N !1 to a probability measure � which is concentrated on the set of trees
which have exactly one simple path from the root to in�nity (a spine). The
number of left and right branches i and j, from a vertex on the spine are
independently distributed by

�(i; j) = �0wi+j+2Z
i+j
0 :

The branches attached to the spine are i.i.d. critical Galton�Watson processes
with branching weights

pn = �0wn+1Z
n�1
0 :
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De�nition of �

(DR)R�0 a sequence of �nite, ordered sets. D0 and D1 have one element. If
DS = ; for some S then DR = ; for all R > S.

(�R)R�1 a sequence of order preserving maps �R : DR ! DR�1.

� is de�ned as the set of all pairs of such sequences (modulo sequences of order
isomorphisms which are consistent with the maps �R).
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Weak convergence

In order for this to make sense we need a topology on �. De�ne a metric d on �
by

d(�; � 0) = inf

�
1

R
: BR(� ) = BR(�

0)

�

where BR(� ) is a graph ball of radius R centered at the root of � . That the
measures �N converge weakle to a measure � means that for any bounded,
continuos (w.r.t. d) function f on �,

Z
�

fd�N !

Z
�

fd�

as N !1.
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De�nition of the metric d
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The metric space (�; d) has some nice properties and to prove week
convergence of �N we only need to prove the following:

I For any R � 1 and every tree �0 of height R the sequence

�N (f� 2 � : BR(� ) = �0g)

is convergent.

I Tightness. For any � > 0 there exists a compact set K � � such that

�N (� nK) < � for all N:

If � is compact this condition is obviously ful�lled. In the present case � is
not compact and proving this amounts to showing that very large vertices
are unlikely.
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Non�generic phase - calculation of ZN

Theorem. (Jonsson, Stefánsson, 2010. Con�rms Bialas and Burda, 1996)
For the NG branching weights wn � n�� which satisfy m < 1 it holds that

ZN = (1�m)��N���1�N0 (1 + o(1)) :

Idea of proof: ZN = Z1;N + EN .

Can write down an exact expression for Z1;N using truncated versions of Z(�).

Using Lagrange's Inversion formula we can get estimates of Z1;N in terms of
probalities of the sum of i.i.d. random variables.

Using inequalities from probability theory we �nd that the main contribution to
Z1;N is from terms where i � (1�m)N . EN is small compared to Z1;N .
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Non�generic phase - weak convergence of �N

� is not a good space any more - need vertices of in�nite degree.

(DR)R�0 a sequence of countable, ordered sets. (�R)R�1 a sequence of order

preserving maps �R : DR ! DR�1. If j�
�1
R (v)j =1; v 2 DR then ��1R (v) is

ordered as N.
De�ne �� as the set of all pairs of such sequences (modulo sequences of order
isomorphisms which are consistent with the maps �R).
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A new metric

The metric d is no longer good. Look at the following example:

We can never approach graphs having vertices of in�nite degree with �nite
graphs. Therefore, we don't expect the measures �N to converge.

De�ne a metric �d on �� by

�d(�; � 0) = inf

�
1

R
: LR(� ) = LR(�

0)

�

LR(� ) � BR(� ) is the �left ball� of graph radius R (explain soon...)
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The new metric
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The new metric

Just to be sure:

The measure space (��; �d) is compact -> don't have to prove tightness. Only
have to show that

I For any R � 1 and every tree �0 of maximum height R and with maximum
vertex degree R the sequence �N (f� 2 � : LR(� ) = �0g) is convergent.

Works for both phases and critical line -> simpli�es proof of the generic case.
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Weak convergence of �N

Theorem
For the NG branching weights wn � n�� which satisfy m < 1 the measures �N ,
viewed as measures on ��, converge in a weak sense to a measure � which is
concentrated on the set of trees with exactly one vertex of in�nite degree which
we denote by t.

The length ` of the path (r; t) is distributed by  (`) = (1�m)m`�1:

The outgrowths from the path (r; t) are �nite, independent, subcritical
Galton�Watson trees de�ned by the o�spring probabilities pn = �0wn+1.

The numbers i and j of left and right outgrowths from a vertex v 2 (r; t); v 6= t
are independently distributed by �(i; j) = 1=m�0wi+j+2:

r t
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Conclusions

I Have proven weak convergence of the �nite volume measures �N for NG
trees. The new method applies to both phases and simpli�es the proof in
the generic phase.

I Can also prove convergence on the critical line. Use results (with mild
generalizations) of Janson, 2006 and Flajolet and Sedgewick, 2009 about
behaviour of ZN on the critical line. Get same results as in the generic
case (single spine having �nite i.i.d. GW outgrowths). However the GW
outgrowths can have g00(Z0) =1 -> di�erent properties, Hausdor�
dimension from 2 to 1, spectral dimension from 4=3 to 2 (scaling
assumptions).

I Calculation of the spectral dimension ds - dimension seen by a random
walker travelling on the graph. Due to the vertex of in�nite degree ds is a.
s. in�nite. However, de�ned in turns of ensemble average, it takes the
value 2(� � 1), � > 2 (wn � n��). Di�erent from the value 2 which was
previously obtained using scaling assumptions (Correia and Wheater, 1998).

I This phenomenon of �condensation� appears in other models - ESM of
caterpillars, zero�range process, simplicial gravity...
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