Planar maps and continued fractions

Jérémie Bouttier, Emmanuel Guitter Institut de Physique Théorique, CEA Saclay

Nordita - 3 November 2010

Maps: graphs embedded in surfaces (sphere in planar case) considered up to deformation (\Rightarrow finite number of maps with E edges) a.k.a. planar diagrams, fatgraphs, dynamical random tessellations...

Maps: graphs embedded in surfaces (sphere in planar case) considered up to deformation (\Rightarrow finite number of maps with E edges) a.k.a. planar diagrams, fatgraphs, dynamical random tessellations...

Motivations

- combinatorics [Tutte 1963]
- large N expansion of matrix integrals [Brézin-Itzykson-Parisi-Zuber 1979]
- 2D quantum gravity
- statistical physics on dynamical random surfaces
- probability theory: "Brownian map", connection with conformally-invariant processes

General model:

Each face of valency k comes with fugacity g_{k} :

$$
Z=\sum_{\operatorname{maps}} \prod_{k \geq 1} g_{k}^{\#\{k-\text { valent faces }\}}
$$

Simple models: triangulations (resp. quadrangulations)

$$
g_{k}=\left\{\begin{array}{l}
g \text { for } k=3 \quad(\text { resp. } k=4) \quad Z=\sum_{\substack{\text { (ri) } \\
\text { (ruadr)-- } \\
\text { angulations }}} g^{\text {"area" }} \text { otherwise }
\end{array}\right.
$$

General model:

Each face of valency k comes with fugacity g_{k} :

$$
Z=\sum_{\operatorname{maps}} \prod_{k \geq 1} g_{k}^{\#\{k-\text { valent faces }\}}
$$

Simple models: triangulations (resp. quadrangulations)

$$
g_{k}= \begin{cases}g \text { for } k=3 & (\text { resp. } k=4) \quad Z=\sum_{\substack{\text { (tri) } u \text { uadr)-- } \\ \text { angulations }}} g^{\text {"area" }} \text { " }{ }^{\text {otherwise }}\end{cases}
$$

Here no extra "matter" degrees of freedom.

Outline

(1) First problem: maps with a boundary (review)
(2) Second problem: maps with two points at given distance

Computing the partition function is an enumeration problem. It is simpler to count rooted maps

Computing the partition function is an enumeration problem. It is simpler to count rooted maps with fixed root degree n

Computing the partition function is an enumeration problem. It is simpler to count rooted maps with fixed root degree n

Computing the partition function is an enumeration problem. It is simpler to count rooted maps with fixed root degree n i.e compute their generating function
$F_{n} \equiv F_{n}\left(\left\{g_{k}\right\}_{k \geq 1}\right)=\frac{\partial Z}{\partial g_{n}}$ (w / o weight g_{n} for the root face).

Computing the partition function is an enumeration problem. It is simpler to count rooted maps with fixed root degree n i.e compute their generating function
$F_{n} \equiv F_{n}\left(\left\{g_{k}\right\}_{k \geq 1}\right)=\frac{\partial Z}{\partial g_{n}}$ (w / o weight g_{n} for the root face).
$F(z)=1+\sum_{n=1}^{\infty} F_{n} z^{n}$ is the disk amplitude.

Connection with matrix models

Consider a random $N \times N$ Hermitian matrix M with measure

$$
d M \exp N\left(-\frac{\operatorname{Tr} M^{2}}{2}+\sum_{k \geq 1} g_{k} \frac{\operatorname{Tr} M^{k}}{k}\right)
$$

then we have informally

$$
\begin{align*}
F_{n} & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\operatorname{Tr} M^{n}\right\rangle \\
F(z) & =\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\operatorname{Tr}(1-z M)^{-1}\right\rangle \tag{resolvent}
\end{align*}
$$

Tutte's equation (1968) a.k.a. loop equation

The F_{n} are fully determined by the quadratic equation

$$
F_{n}=\sum_{i=0}^{n-2} F_{i} F_{n-2-i}+\sum_{k \geq 1} g_{k} F_{n+k-2}
$$

Tutte's equation (1968) a.k.a. loop equation

The F_{n} are fully determined by the quadratic equation

$$
F(z)=1+z^{2} F(z)^{2}+\sum_{k \geq 1} g_{k} z^{2-k}\left(F(z)-\sum_{j=0}^{k-2} z^{j} F_{j}\right)
$$

Tutte's equation (1968) a.k.a. loop equation

The F_{n} are fully determined by the quadratic equation

$$
F(z)=1+z^{2} F(z)^{2}+\sum_{k \geq 1} g_{k} z^{2-k} F(z)+P\left(z^{-1}\right)
$$

Review of the solution of Tutte's equation

By the previous equation

$$
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k} \pm \sqrt{\Delta(z)}\right)
$$

Review of the solution of Tutte's equation

By the previous equation

$$
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k} \pm \sqrt{\Delta(z)}\right)
$$

By Brown's lemma/one-cut hypothesis

$$
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k}-\Gamma\left(z^{-1}\right) \sqrt{1+\kappa_{1} z+\kappa_{2} z^{2}}\right)
$$

with $\Gamma\left(z^{-1}\right)$ a polynomial or power series in z^{-1}.

Review of the solution of Tutte's equation

By the previous equation

$$
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k} \pm \sqrt{\Delta(z)}\right)
$$

By Brown's lemma/one-cut hypothesis

$$
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k}-\Gamma\left(z^{-1}\right) \sqrt{1+\kappa_{1} z+\kappa_{2} z^{2}}\right)
$$

with $\Gamma\left(z^{-1}\right)$ a polynomial or power series in z^{-1}.
But $F(z)$ contains only nonnegative powers of z ! This constraint allows to deduce explicit expressions for $\Gamma\left(z^{-1}\right), \kappa_{1}, \kappa_{2}$.

Example: quadrangulations

For $g_{k}=\left\{\begin{array}{l}g \text { for } k=4 \\ 0 \text { otherwise }\end{array}\right.$ this method leads to

$$
F_{2 n}=\sum_{a=0}^{\infty} \frac{(2 n)!}{n!(n-1)!} \frac{(2 a+n-1)!}{a!(a+n+1)!}(3 g)^{a} \quad F_{2 n+1}=0
$$

Example: quadrangulations

For $g_{k}=\left\{\begin{array}{l}g \text { for } k=4 \\ 0 \text { otherwise }\end{array}\right.$ this method leads to

$$
F_{2 n}=\sum_{a=0}^{\infty} \frac{(2 n)!}{n!(n-1)!} \frac{(2 a+n-1)!}{a!(a+n+1)!}(3 g)^{a} \quad F_{2 n+1}=0
$$

The sum converges for $g \leq g_{c}=1 / 12$. Similar expressions exist for triangulations (where $g_{c}=\sqrt{4 / 27}$). It is now easily to analyze the (well-known) critical behaviour:

- for fixed finite n, as $g \rightarrow g_{c}, \partial F_{n} / \partial g$ and $\partial^{2} Z / \partial g^{2}$ have a square-root singularity (" $\gamma_{\text {string }}=-1 / 2$ "),
- the relevant scaling is $n \propto 1 / \sqrt{g_{c}-g}$: the dominant singular term of F_{n} corresponds to the universal disk amplitude of pure gravity.

General combinatorial structure of the solution

$$
\begin{equation*}
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k}-\Gamma\left(z^{-1}\right) \sqrt{1+\kappa_{1} z+\kappa_{2} z^{2}}\right) \tag{1}
\end{equation*}
$$

General combinatorial structure of the solution

$$
\begin{equation*}
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k}-\Gamma\left(z^{-1}\right) \sqrt{1+\kappa_{1} z+\kappa_{2} z^{2}}\right) \tag{1}
\end{equation*}
$$

Trick: replace the unknowns κ_{1}, κ_{2} by R, S with

$$
\kappa(z) \equiv 1+\kappa_{1} z+\kappa_{2} z^{2}=(1-S z)^{2}-4 R z^{2}
$$

General combinatorial structure of the solution

$$
\begin{equation*}
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k}-\Gamma\left(z^{-1}\right) \sqrt{1+\kappa_{1} z+\kappa_{2} z^{2}}\right) \tag{1}
\end{equation*}
$$

Trick: replace the unknowns κ_{1}, κ_{2} by R, S with

$$
\kappa(z) \equiv 1+\kappa_{1} z+\kappa_{2} z^{2}=(1-S z)^{2}-4 R z^{2}
$$

then

$$
\sqrt{\kappa(z)}=1-S z-2 R z^{2} \sum_{n=0}^{\infty} P^{+}(n ; R, S) z^{n}
$$

General combinatorial structure of the solution

$$
\begin{equation*}
F(z)=\frac{1}{2 z^{2}}\left(1-\sum_{k \geq 1} g_{k} z^{2-k}-\Gamma\left(z^{-1}\right) \sqrt{1+\kappa_{1} z+\kappa_{2} z^{2}}\right) \tag{1}
\end{equation*}
$$

Trick: replace the unknowns κ_{1}, κ_{2} by R, S with

$$
\kappa(z) \equiv 1+\kappa_{1} z+\kappa_{2} z^{2}=(1-S z)^{2}-4 R z^{2}
$$

then

$$
\sqrt{\kappa(z)}=1-S z-2 R z^{2} \sum_{n=0}^{\infty} P^{+}(n ; R, S) z^{n}
$$

$P^{+}(n ; R, S)$ is the generating function for Motzkin paths of length n, with weight R (resp. S) per down-step (resp. level-step).

$P^{+}(n ; R, S)_{\equiv}$

General combinatorial structure of the solution

(1) immediately yields

$$
\begin{equation*}
F_{n}=R \sum_{q \geq 0} \gamma_{q} P^{+}(n+q ; R, S) \tag{2}
\end{equation*}
$$

The only dependence in n is via the path length!

General combinatorial structure of the solution

(1) immediately yields

$$
\begin{equation*}
F_{n}=R \sum_{q \geq 0} \gamma_{q} P^{+}(n+q ; R, S) \tag{2}
\end{equation*}
$$

The only dependence in n is via the path length!
By now writing that (1) (divided by $\sqrt{\kappa(z)}$) contains no negative powers in z and that its constant term is 1 , we may obtain:

- algebraic equations determining the "master unknowns" R, S
- expressions for the γ_{q} in terms of R, S.

General combinatorial structure of the solution

(1) immediately yields

$$
\begin{equation*}
F_{n}=R \sum_{q \geq 0} \gamma_{q} P^{+}(n+q ; R, S) \tag{2}
\end{equation*}
$$

The only dependence in n is via the path length!
By now writing that (1) (divided by $\sqrt{\kappa(z)}$) contains no negative powers in z and that its constant term is 1 , we may obtain:

- algebraic equations determining the "master unknowns" R, S
- expressions for the γ_{q} in terms of R, S.

Remark: these may also be given a combinatorial interpretation via

$$
1 / \sqrt{\kappa(z)}=\sum_{n=0}^{\infty} P(n ; R, S) z^{n}
$$

Summary/conclusion on the first problem

- Maps with a boundary can be enumerated effectively via Tutte's equation.
- A remarkable combinatorial/algebraic structure related to the physical one-cut hypothesis.
- $F(z)$ is a master function in terms of which generating functions for maps with several boundaries and of higher genus ("global observables") can be expressed.
- Generalizations to models with matter are known.

Outline

(1) First problem: maps with a boundary (review)

(2) Second problem: maps with two points at given distance

Geodesic/graph distance: minimal number of edges connecting two given vertices

 (i.e each edge has length 1)What are the metric properties of large random maps?

Simple observable: the distance-dependent two-point function [Ambjørn-Watabiki 1996] is the generating function for maps with two marked points at given distance. Computing it is again an enumeration problem!

Probabilistic interpretation: it encodes the distribution of distances between two uniformly chosen random random points.

By a transfer matrix approach, Ambjørn and Watabiki successfully predicted the universal scaling form of the two-point function for pure gravity.

By a transfer matrix approach, Ambjørn and Watabiki successfully predicted the universal scaling form of the two-point function for pure gravity.

Scaling: distance $\propto\left(g_{c}-g\right)^{-1 / 4} \propto(\text { area })^{1 / 4}$
In a canonical ensemble (maps of fixed area), the rescaled distance between two uniform random points admits a limiting distribution:

$$
\begin{gathered}
\sim d^{3} \text { for } d \rightarrow 0 \\
\sim e^{-C d^{4 / 3}} \text { for } d \rightarrow \infty
\end{gathered}
$$

An exact discrete expression whose scaling form agrees with the Ambjørn-Watabiki prediction was found for quadrangulations and, more generally, maps with even face valencies. [B., Di Francesco, Guitter 2003]

An exact discrete expression whose scaling form agrees with the Ambjørn-Watabiki prediction was found for quadrangulations and, more generally, maps with even face valencies. [B., Di Francesco, Guitter 2003]

Ingredients:

- coding of maps by trees (Schaeffer's bijection and generalizations)
- identification of the two-point function with tree g.f.
- equation following from recursive decomposition of such trees
- guess of the solution!

Example: quadrangulations

The discrete two-point function is the solution of the equation

$$
R_{n}=1+g R_{n}\left(R_{n-1}+R_{n}+R_{n+1}\right) \quad\left(n \geq 1, R_{0}=0\right)
$$

Example: quadrangulations

The discrete two-point function is the solution of the equation

$$
R_{n}=1+g R_{n}\left(R_{n-1}+R_{n}+R_{n+1}\right) \quad\left(n \geq 1, R_{0}=0\right)
$$

Explicit solution

$$
\begin{gather*}
R_{n}=R \frac{u_{n} u_{n+3}}{u_{n+1} u_{n+2}} \tag{3}\\
R=1+3 g R^{2} \quad u_{n}=1-x^{n} \quad x+\frac{1}{x}+1=\frac{1}{g R^{2}}
\end{gather*}
$$

Example: quadrangulations

The discrete two-point function is the solution of the equation

$$
R_{n}=1+g R_{n}\left(R_{n-1}+R_{n}+R_{n+1}\right) \quad\left(n \geq 1, R_{0}=0\right)
$$

Explicit solution

$$
\begin{gather*}
R_{n}=R \frac{u_{n} u_{n+3}}{u_{n+1} u_{n+2}} \tag{3}\\
R=1+3 g R^{2} \quad u_{n}=1-x^{n} \quad x+\frac{1}{x}+1=\frac{1}{g R^{2}}
\end{gather*}
$$

There are also equations with explicit solutions in more general cases! The form (3) still holds (but u_{n} gets more complicated). Why?

New approach [B., Guitter 2010]

The two-point function is encoded in the continued fraction expansion of the disk amplitude $F(z)$!

- Maps with even face valencies: Stieljes fraction

$$
F(z) \equiv \sum_{n=0}^{\infty} F_{2 n} z^{2 n}=\frac{1}{1-\frac{R_{1} z^{2}}{1-\frac{R_{2} z^{2}}{1-\cdots}}}
$$

- Maps with arbitrary face valencies: Jacobi fraction

$$
\begin{equation*}
F(z) \equiv \sum_{n=0}^{\infty} F_{n} z^{n}=\frac{1}{1-S_{0} z-\frac{R_{1} z^{2}}{1-S_{1} z-\frac{R_{2} z^{2}}{1-\cdots}}} \tag{4}
\end{equation*}
$$

Elements of the proof:

- the combinatorial theory of continued fractions [Flajolet 1980]

Combinatorial equivalent of (4)

F_{n} is equal to the generating function for Motzkin paths of length n, with weight R_{m} (resp. S_{m}) per down-step (resp. level-step) starting at height m.

Elements of the proof:

- the combinatorial theory of continued fractions [Flajolet 1980]

Combinatorial equivalent of (4)

F_{n} is equal to the generating function for Motzkin paths of length n, with weight R_{m} (resp. S_{m}) per down-step (resp. level-step) starting at height m.

- a suitable decomposition of maps with a boundary (via trees or "slices"): Motzkin paths code the distances from the origin to the vertices incident to the root face.

external face of degree n

Knowing F_{n}, how do we obtain R_{n} and S_{n} ?

Knowing F_{n}, how do we obtain R_{n} and S_{n} ?
Via Hankel determinants:

$$
\begin{gathered}
R_{n}=\frac{H_{n} H_{n-2}}{H_{n-1}^{2}} \\
S_{n}=\frac{H_{n}=\operatorname{det}_{n} \operatorname{det}_{0 \leq i, j \leq n} F_{i+j}}{H_{n}}-\frac{\tilde{H}_{n-1}}{H_{n-1}} \quad \tilde{H}_{n}=\operatorname{det}_{0 \leq i, j \leq n} F_{i+j+\delta_{j, n}}
\end{gathered}
$$

Knowing F_{n}, how do we obtain R_{n} and S_{n} ?
Via Hankel determinants:

$$
\begin{gathered}
R_{n}=\frac{H_{n} H_{n-2}}{H_{n-1}^{2}} \\
S_{n}=\frac{H_{n}=\operatorname{det}_{n} \operatorname{det}_{0 \leq i, j \leq n} F_{i+j}}{H_{n}}-\frac{\tilde{H}_{n-1}}{H_{n-1}} \quad \tilde{H}_{n}=\operatorname{det}_{0 \leq i, j \leq n} F_{i+j+\delta_{j, n}}
\end{gathered}
$$

Even face valencies: $S_{n}=\tilde{H}_{n}=0, H_{n}$ factorizes as:

$$
H_{2 n}=h_{n}^{(0)} h_{n-1}^{(1)} \quad H_{2 n+1}=h_{n}^{(0)} h_{n}^{(1)} \quad h_{n}^{(e)}=\operatorname{det}_{0 \leq i, j \leq n} F_{2 i+2 j+2 e}
$$

This essentially explains the form (3).

Knowing F_{n}, how do we obtain R_{n} and S_{n} ?
Via Hankel determinants:

$$
\begin{gathered}
R_{n}=\frac{H_{n} H_{n-2}}{H_{n-1}^{2}} \\
S_{n}=\frac{H_{n}=\operatorname{det}_{n} \operatorname{det}_{0 \leq i, j \leq n} F_{i+j}}{H_{n}}-\frac{\tilde{H}_{n-1}}{H_{n-1}} \quad \tilde{H}_{n}=\operatorname{det}_{0 \leq i, j \leq n} F_{i+j+\delta_{j, n}}
\end{gathered}
$$

Even face valencies: $S_{n}=\tilde{H}_{n}=0, H_{n}$ factorizes as:

$$
H_{2 n}=h_{n}^{(0)} h_{n-1}^{(1)} \quad H_{2 n+1}=h_{n}^{(0)} h_{n}^{(1)} \quad h_{n}^{(e)}=\operatorname{det}_{0 \leq i, j \leq n} F_{2 i+2 j+2 e}
$$

This essentially explains the form (3).
These relations hold in the general theory of continued fractions. In our map model, the specific form of F_{n} lead to specific Hankel determinants, which are symplectic Schur functions $\operatorname{sp}_{2 p}(\lambda, \mathbf{x})$.

The general formula for F_{n} is

$$
F_{n}=\sum_{q=0}^{p} A_{q} P^{+}(n+q)
$$

Substituting into the Hankel determinant

$$
\begin{aligned}
H_{n} & =\operatorname{det}_{0 \leq i, j \leq n}\left(\sum_{q=0}^{p} A_{q} P^{+}(i+j+q)\right) \\
& \propto \operatorname{det}_{0 \leq k, \ell \leq n}\left(\sum_{q=0}^{p} A_{q}\left(P_{k-\ell}(q)-P_{k+\ell+2}(q)\right)\right) \\
& \propto \operatorname{sp}_{2 p}\left(\lambda_{p, n+1}, \mathbf{x}\right) \\
& \propto \operatorname{det}_{1 \leq i, j \leq p}\left(x_{i}^{n+j}-x_{i}^{-n-j}\right)
\end{aligned}
$$

The x 's are roots of

$$
\sum_{r=-p}^{p} \sum_{q=0}^{p} A_{q} P_{r}(q) x^{r}=0
$$

$\lambda_{p, n+1}$ is the "rectangular" partition

Remark

We make use of two different formulas for F_{n} involving Motzkin paths:

- as a sum (2) over Motzkin paths of variable length $n, \ldots, n+p$ and height-independant weights R, S per step
- as a sum (4) over Motzkin paths of fixed length n and height-dependant weights R_{m}, S_{m} per step

Remark

We make use of two different formulas for F_{n} involving Motzkin paths:

- as a sum (2) over Motzkin paths of variable length $n, \ldots, n+p$ and height-independant weights R, S per step
- as a sum (4) over Motzkin paths of fixed length n and height-dependant weights R_{m}, S_{m} per step

Caveat

The expression involving Schur functions assumes that face valencies are bounded: $g_{k}=0$ for $k>p+2 . H_{n}$ may then be rewritten as a $p \times p$ determinant (rather than $(n+1) \times(n+1)$), easier to study in the limit of large distance n.

Example \& combinatorial interpretation: triangulations

Suppose that $g_{k}=0$ for $k \neq 3$ (faces are triangles), i.e $p=1$:

$$
F_{n}=A_{0} P^{+}(n ; R, S)+A_{1} P^{+}(n+1 ; R, S)
$$

Example \& combinatorial interpretation: triangulations

Suppose that $g_{k}=0$ for $k \neq 3$ (faces are triangles), i.e $p=1$:

$$
F_{n}=A_{0} P^{+}(n ; R, S)+A_{1} P^{+}(n+1 ; R, S)
$$

Example \& combinatorial interpretation: triangulations

Suppose that $g_{k}=0$ for $k \neq 3$ (faces are triangles), i.e $p=1$:

$$
F_{n}=A_{0} P^{+}(n ; R, S)+A_{1} P^{+}(n+1 ; R, S)
$$

F_{i+j} can be interpreted as paths on a weighted graph. By the Lindström-Gessel-Viennot lemma, the determinant H_{n} counts configurations of non-intersecting lattice paths on this graph

Such configurations of non-intersecting lattice paths are highly constrained and, actually, in bijection with configurations of 1D dimers.

Counting 1D dimer configurations is easy, we obtain

$$
H_{n} \propto \frac{1}{(1+y)^{n+1}} \frac{1-y^{n+2}}{1-y}
$$

with y related to the dimer weight $-g_{3}^{2} R^{3}$ by

$$
y+\frac{1}{y}+2=\frac{1}{g_{3}^{2} R^{3}}
$$

It yields the simple formula

$$
R_{n}=R \frac{\left(1-y^{n}\right)\left(1-y^{n+2}\right)}{\left(1-y^{n+1}\right)^{2}}
$$

and similarly

$$
S_{n}=S-g_{3} R^{2} y^{n} \frac{(1-y)\left(1-y^{2}\right)}{\left(1-y^{n+1}\right)\left(1-y^{n+2}\right)}
$$

Conclusion and outlook

- We have shown that the disk amplitude and the two-point function are encoded in the same function $F(z)$.
- Our results are purely discrete. One may now turn to asymptotic analysis. The generic behaviour is pure gravity ("Brownian map").
- Possible directions:
- Connections with orthogonal polynomials and matrix models
- Other distance-related observables (not so many known! radius, three-point function, numbers of geodesics...)
- Generalizations to models with matter
- Maps with large faces?

References:

- J. Bouttier, P. Di Francesco and E. Guitter, Nucl.Phys. B663 (2003) 535-567, arXiv:cond-mat/0303272,
- J. Bouttier and E. Guitter, arXiv:1007.0419.

First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Summary: the two facets of $F(z)$

Summary: the two facets of $F(z)$

