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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Maps: graphs embedded in surfaces (sphere in planar case)
considered up to deformation (⇒ finite number of maps with E edges)

a.k.a. planar diagrams, fatgraphs, dynamical random tessellations...

Motivations

combinatorics [Tutte 1963]

large N expansion of matrix
integrals [Brézin-Itzykson-Parisi-Zuber

1979]

2D quantum gravity

statistical physics on dynamical
random surfaces

probability theory: “Brownian
map”, connection with
conformally-invariant processes
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

General model:

Each face of valency k comes with fugacity gk :

Z =
∑
maps

∏
k≥1

g
#{k−valent faces}
k

Simple models: triangulations (resp. quadrangulations)

gk =

{
g for k = 3 (resp. k = 4)

0 otherwise
Z =

∑
(tri|quadr)-
angulations

g“area”

Here no extra “matter” degrees of freedom.
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Computing the partition
function is an enumeration
problem. It is simpler to
count rooted maps

with
fixed root degree n i.e
compute their generating
function
Fn ≡ Fn({gk}k≥1) = ∂Z

∂gn
(w/o weight gn for the root face).

F (z) = 1 +
∑∞

n=1 Fnz
n is

the disk amplitude.
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Connection with matrix models

Consider a random N × N Hermitian matrix M with measure

dM expN

−Tr M2

2
+
∑
k≥1

gk
Tr Mk

k


then we have informally

Fn = lim
N→∞

1

N
〈Tr Mn〉

F (z) = lim
N→∞

1

N
〈Tr (1− zM)−1〉 (resolvent)
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Tutte’s equation (1968) a.k.a. loop equation

The Fn are fully determined by the quadratic equation

Fn =
n−2∑
i=0

FiFn−2−i +
∑
k≥1

gkFn+k−2
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The Fn are fully determined by the quadratic equation

F (z) = 1 + z2F (z)2 +
∑
k≥1

gkz
2−k

F (z)−
k−2∑
j=0

z jFj
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Review of the solution of Tutte’s equation

By the previous equation

F (z) =
1

2z2

1−
∑
k≥1

gkz
2−k ±

√
∆(z)



By Brown’s lemma/one-cut hypothesis

F (z) =
1

2z2

1−
∑
k≥1

gkz
2−k − Γ(z−1)

√
1 + κ1z + κ2z2


with Γ(z−1) a polynomial or power series in z−1.

But F (z) contains only nonnegative powers of z! This constraint
allows to deduce explicit expressions for Γ(z−1), κ1, κ2.
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Example: quadrangulations

For gk =

{
g for k = 4

0 otherwise
this method leads to

F2n =
∞∑
a=0

(2n)!

n!(n − 1)!

(2a + n − 1)!

a!(a + n + 1)!
(3g)a F2n+1 = 0

The sum converges for g ≤ gc = 1/12. Similar expressions exist
for triangulations (where gc =

√
4/27). It is now easily to analyze

the (well-known) critical behaviour:

for fixed finite n, as g → gc , ∂Fn/∂g and ∂2Z/∂g2 have a
square-root singularity (“γstring = −1/2”),

the relevant scaling is n ∝ 1/
√
gc − g : the dominant singular

term of Fn corresponds to the universal disk amplitude of pure
gravity.
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

General combinatorial structure of the solution

F (z) =
1

2z2

1−
∑
k≥1

gkz
2−k − Γ(z−1)

√
1 + κ1z + κ2z2

 (1)

Trick: replace the unknowns κ1, κ2 by R,S with

κ(z) ≡ 1 + κ1z + κ2z
2 = (1− Sz)2 − 4Rz2

then √
κ(z) = 1− Sz − 2Rz2

∞∑
n=0

P+(n;R,S)zn

P+(n;R,S) is the generating function
for Motzkin paths of length n, with
weight R (resp. S) per down-step (resp.
level-step).

R

S

(0,0) n

P
+
n(  ;   ,   )SR

(  ,0)
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

General combinatorial structure of the solution

(1) immediately yields

Fn = R
∑
q≥0

γqP
+(n + q;R,S) (2)

The only dependence in n is via the path length!

By now writing that (1) (divided by
√
κ(z)) contains no negative

powers in z and that its constant term is 1, we may obtain:

algebraic equations determining the “master unknowns” R, S

expressions for the γq in terms of R,S .

Remark: these may also be given a
combinatorial interpretation via

1/
√
κ(z) =

∞∑
n=0

P(n;R,S)zn

R

S

n(  ;   ,   )SRP

(0,0) n(  ,0)
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Summary/conclusion on the first problem

Maps with a boundary can be enumerated effectively via
Tutte’s equation.

A remarkable combinatorial/algebraic structure related to the
physical one-cut hypothesis.

F (z) is a master function in terms of which generating
functions for maps with several boundaries and of higher
genus (“global observables”) can be expressed.

Generalizations to models with matter are known.
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

2v

v1

Geodesic/graph distance:
minimal number of edges
connecting two given vertices
(i.e each edge has length 1)

What are the metric properties of
large random maps?
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

2v

d12

v1

Simple observable: the
distance-dependent two-point
function [Ambjørn-Watabiki 1996] is
the generating function for maps
with two marked points at given
distance. Computing it is again
an enumeration problem!

Probabilistic interpretation: it
encodes the distribution of
distances between two uniformly
chosen random random points.
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

By a transfer matrix approach, Ambjørn and Watabiki successfully
predicted the universal scaling form of the two-point function for
pure gravity.

Scaling: distance ∝ (gc − g)−1/4 ∝ (area)1/4

In a canonical ensemble (maps of fixed area), the rescaled distance
between two uniform random points admits a limiting distribution:

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

∼ d3 for d → 0

∼ e−Cd
4/3

for d →∞
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

An exact discrete expression whose scaling form agrees with the
Ambjørn-Watabiki prediction was found for quadrangulations and,
more generally, maps with even face valencies. [B., Di Francesco, Guitter

2003]

Ingredients:

coding of maps by trees (Schaeffer’s bijection and generalizations)

identification of the two-point function with tree g.f.

equation following from recursive decomposition of such trees

guess of the solution!
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Example: quadrangulations

The discrete two-point function is the solution of the equation

Rn = 1 + gRn(Rn−1 + Rn + Rn+1) (n ≥ 1,R0 = 0)

Explicit solution

Rn = R
unun+3

un+1un+2
(3)

R = 1 + 3gR2 un = 1− xn x +
1

x
+ 1 =

1

gR2

There are also equations with explicit solutions in more general
cases! The form (3) still holds (but un gets more complicated).
Why?
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

New approach [B., Guitter 2010]

The two-point function is encoded in the continued fraction
expansion of the disk amplitude F (z)!

Maps with even face valencies: Stieljes fraction

F (z) ≡
∞∑
n=0

F2nz
2n =

1

1− R1z
2

1− R2z
2

1− · · ·
Maps with arbitrary face valencies: Jacobi fraction

F (z) ≡
∞∑
n=0

Fnz
n =

1

1− S0z −
R1z

2

1− S1z −
R2z

2

1− · · ·

(4)
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Elements of the proof:

the combinatorial theory of continued fractions [Flajolet 1980]

Combinatorial equivalent of (4)

Fn is equal to the generating function for Motzkin paths of length
n, with weight Rm (resp. Sm) per down-step (resp. level-step)
starting at height m.

a suitable decomposition of maps with a boundary (via trees
or “slices”): Motzkin paths code the distances from the origin
to the vertices incident to the root face.

n(  ,0)
external face of degree n

(0,0)

−1

Rm

Sm

m

m

m

Fn

Z 0,0 n(  )
+
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First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Knowing Fn, how do we obtain Rn and Sn?

Via Hankel determinants:

Rn =
HnHn−2

H2
n−1

Hn = det
0≤i ,j≤n

Fi+j

Sn =
H̃n

Hn
− H̃n−1

Hn−1
H̃n = det

0≤i ,j≤n
Fi+j+δj,n

Even face valencies: Sn = H̃n = 0, Hn factorizes as:

H2n = h
(0)
n h

(1)
n−1 H2n+1 = h

(0)
n h

(1)
n h

(e)
n = det

0≤i ,j≤n
F2i+2j+2e

This essentially explains the form (3).

These relations hold in the general theory of continued fractions.
In our map model, the specific form of Fn lead to specific Hankel
determinants, which are symplectic Schur functions sp2p(λ, x).
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determinants, which are symplectic Schur functions sp2p(λ, x).
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The general formula for Fn is

Fn =

p∑
q=0

AqP
+(n + q)

Substituting into the Hankel
determinant

Hn = det
0≤i ,j≤n

 p∑
q=0

AqP
+(i + j + q)


∝ det

0≤k,`≤n

 p∑
q=0

Aq(Pk−`(q)− Pk+`+2(q))


∝ sp2p(λp,n+1, x)

∝ det
1≤i ,j≤p

(xn+j
i − x−n−ji )

( )
+

R
1/2

R
1/2

S

) )
k+l+2k−l

( (

(
+

)k )(l
+

1−2 −1 0−i q2 q+j

qi j

i+j+q;R,SP

−Pq;R,S q;R,SP

i;R,SP j;R,SP

k

l

The x ’s are roots of

p∑
r=−p

p∑
q=0

AqPr (q)x r = 0

λp,n+1 is the “rectangular”
partition
(n + 1) + · · ·+ (n + 1)︸ ︷︷ ︸

p
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Remark

We make use of two different formulas for Fn involving Motzkin
paths:

as a sum (2) over Motzkin paths of variable length
n, . . . , n + p and height-independant weights R, S per step

as a sum (4) over Motzkin paths of fixed length n and
height-dependant weights Rm, Sm per step

Caveat

The expression involving Schur functions assumes that face
valencies are bounded: gk = 0 for k > p + 2. Hn may then be
rewritten as a p× p determinant (rather than (n + 1)× (n + 1)), easier to
study in the limit of large distance n.
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Example & combinatorial interpretation: triangulations

Suppose that gk = 0 for k 6= 3 (faces are triangles), i.e p = 1:

Fn = A0 P
+(n;R,S) + A1 P

+(n + 1;R,S)

R
R

S1

R3g R3g− −
3/2 3/2

1/2

1/2

j+11 2 3−i−2 −1 0

i+j
F

Fi+j can be interpreted as paths on a weighted graph. By the
Lindström-Gessel-Viennot lemma, the determinant Hn counts
configurations of non-intersecting lattice paths on this graph.
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Such configurations of non-intersecting lattice paths are highly
constrained and, actually, in bijection with configurations of 1D
dimers.

R3
g−

32

1 2 3−2 −1 0 +1n......

n

−n

n  n(   +1)

2R
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Counting 1D dimer configurations is easy, we obtain

Hn ∝
1

(1 + y)n+1

1− yn+2

1− y

with y related to the dimer weight −g2
3 R3 by

y +
1

y
+ 2 =

1

g2
3 R3

.

It yields the simple formula

Rn = R
(1− yn)(1− yn+2)

(1− yn+1)2

and similarly

Sn = S − g3 R
2yn

(1− y)(1− y2)

(1− yn+1)(1− yn+2)

Jérémie Bouttier Planar maps and continued fractions



First problem: maps with a boundary (review)
Second problem: maps with two points at given distance

Conclusion and outlook

We have shown that the disk amplitude and the two-point
function are encoded in the same function F (z).

Our results are purely discrete. One may now turn to
asymptotic analysis. The generic behaviour is pure gravity
(“Brownian map”).

Possible directions:
Connections with orthogonal polynomials and matrix models
Other distance-related observables (not so many known!
radius, three-point function, numbers of geodesics...)
Generalizations to models with matter
Maps with large faces?
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Summary: the two facets of F (z)

n z
n

Σ
n
FFn z

n
Σ
n
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1

−zS1

−zS1

−zS1 ...

1

1 2

0
−z  R

2

−z  R2

2
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