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Hermitian Matrix Models

Recall the Hermitian matrix model, defined as a formal power
series in g̃

Z (g̃) =

∫

dφ e
−Ntr

“

1
2 φ2− g̃

3 φ3
”

=

∞
∑

k=0

1
k!

∫

dφ e− 1
2 Ntr (φ2)

(

Ng̃
3

tr φ3
)k

,

dφ =
∏

α≤β

d Re φαβ

∏

α<β

d Im φαβ .
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The integral can be evaluated in the standard way by doing all
possible Wick contractions of (tr φ3)k and using

〈

φαβφα′β′

〉

= C
∫

dφ e− 1
2

P

αβ |φαβ |2φαβφα′β′ = δαβ′δβα′ ,

Geometric interpretation:
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dφ e− N
gs

tr V (φ) ∝ dU(N)

N
∏

i=1

dℓi e− N
gs

V (ℓi )
∏

i<j

|ℓi − ℓj |2

The “classical” limit is obtained for gs → 0, where all
eigenvalues are lumped together at ℓ0, where

V ′(ℓ0) = 0.

However, for gs > 0 the integration over the non-diagonal
matrix elements produces the Vandermonde determinant,
which acts as a “quantum” correction, a repulsion between
different eigenvalues. Result: eigenvalues are smeared out
over an interval around ℓ0, even in the large N limit.
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Example:
1
gs

V (φ) =
1
gs

(

− gφ +
1
2

φ2 − g
3

φ3
)
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Large N saddelpoint equation:

w(z) :=

〈

1
N

tr
1

z − φ

〉

=
1
Z

∫

dφ
1
N

1
z − φ

e− N
gs

tr V (φ)

For V (φ) = −gφ + 1
2φ2 − g

3φ3 one has

w(z) =
1

2gs

(

V ′(z) + g(z − b)
√

(z − c)(z − d)
)

The constants b, c and d are determined by the requirement
that w(z) → 1/z for z → ∞.

In the large N expansion one has to any order the same square
root structure.
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The conventional scaling limit

The usual scaling limit of the matrix model is obtained (for fixed
gs) by adjusting g such that b(g) = c(g). At this point the
analytic structure of w(z) changes from
(z − c(g))1/2 → (z − c(g))3/2, and this change can only be
accommodated by invoking arbitrary high k in the sum

∞
∑

k=0

1
k!

∫

dφ e− N
2gs

tr (φ2)
(

Ng
3gs

tr φ3
)k

,

This is why one geometrically can imagine a “continuum” limit
where the size of each triangle shrinks to zero while the
continuum size of the surface stays constant.
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g = gc(1 − Λa2), z = c(gc) + aZ , a → 0

w(z) =
1
2

(

V ′(z) + g
√

c(gc) − d(gc) a3/2WE(Z ,Λ)
)

WE (Z ,Λ) = (Z −
√

2Λ/3)

√

Z + 2
√

2Λ/3

a has the interpretation as the length of the side of the
triangles (polygons) which appear in V (φ).

Notice the non-scaling part V ′(z)/2 which dominates when
a → 0 and renders the average number of polygons present in
the ensemble with partition function w(z) finite, even at the
critical point. This somewhat embarrassing fact can be
circumvented by differentiating w(z) a sufficient number of
times with respect to g and z, after which these “non-universal”
contributions vanish.
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The new scaling limit

Two limits:
“classical limit”: gs = 0
and
conventional scaling limit: gs > 0 and g → gc(gs).

Is it possible to find a new, non-trivial scaling limit, closer to the
classical limit when gs → 0 ?
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Close to criticallity b(gc) = c(gc):

gc(gs) =
1
2
(1 − 3

2
g2/3

s + O(g4/3
s )),

zc(gs) = c(gc , gs) = 1 + g1/3
s + O(g2/3

s ),

c(gc) − d(gc) = 4g1/3
s + 0(g2/3

s )

A non-trivial scaling is obtained for gs = Gsa3.

Again the scaling parameter a can be given the geometric
interpretation as the link lengths of the polygons in V (φ).
Note that the length of the cut goes to zero as a → 0, thus we
are closer to the “classical” limit. However, it will survive in the
continuum limit:
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g = gc(gs)(1 − a2Λ) = ḡ(1 − a2Λcdt + O(a4))

z = zc + aZ = z̄ + aZcdt + O(a2)

Λcdt ≡ Λ +
3
2

G2/3
s , ḡ =

1
2
, Zcdt ≡ Z + G1/3

s , z̄ = 1.

Using these definitions one computes in the limit a → 0 that

w(z) =
1
a

Λcdt − 1
2Z 2

cdt + 1
2(Zcdt − H)

√

(Zcdt + H)2 − 4Gs
H

2Gs
.

h3 − h +
2Gs

(2Λcdt)3/2
= 0, h = H/

√

2Λcdt

w(z) =
1
a

Wcdt(Zcdt,Λcdt, Gs)
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Gs → 0 : Wcdt(Zcdt,Λcdt, Gs) →
1

Zcdt +
√

2Λcdt

Gs → ∞ :
(Zcdt − H)

√

(Zcdt + H)2 − 4Gs
H

2Gs
→

G−5/6
s

(

Z −
√

2Λ/3
)

√

Z + 2
√

2Λ/3

In the first case the cut disappear and one can say that this
result is “classical” in a way that will be made precise shortly.

In the second case one recover the standard scaling WE (Z ,Λ).
However, the part not related to the square root will not scale, in
accordance with the previous discussion of standard scaling.
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The matrix model

The new scaling can be obtained by a change of variables:

φ → z̄ Î + aΦ + O(a2)

Up to a φ independent term we then have:

V (φ) = V̄ (Φ), V̄ (Φ) ≡ ΛcdtΦ − 1
6Φ3

2Gs

Z (g, gs) = aN2
Z (Λcdt, Gs), Z (Λcdt, Gs) =

∫

dΦ e−Ntr V̄ (Φ)

1
z − φ

=
1
a

1
Zcdt − Φ

⇒ w(z) =
1
a

Wcdt(Zcdt,Λcdt, Gs)

Relation correct to all order in N. The new scaling limit is itself a
matrix model defined by V̄ (Φ)..
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V̄ (Φ) ∝ 2ΛcdtΦ − 1
3
Φ3,

V̄ ′(ℓ0) = 0 ⇒ ℓ0 = −
√

2Λcdt.

Thus the “classical” limit of
the matrix integral with
potential V̄ (Φ), when only
the minimum plays a role,
leads to the following
expectation value:

1
N

〈

tr
1

Zcdt − Φ

〉

=
1

Zcdt +
√

2Λcdt
= lim

Gs→0
Wcdt(Zcdt,Λcdt, Gs).
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Geometric interpretation (trivial topology)

Disk amplitude: Wλ,Gs(ℓ) and Wλ,Gs(x) where

Wλ,Gs(x) =

∫ ∞

0
dℓ e−xℓ Wλ,Gs(ℓ)

“Propagator” of a boundary as a function of the geodesic
distance from the boundary: Gλ,Gs(ℓ1, ℓ2; t) and Gλ,Gs(x , y ; t)
where:

Gλ,Gs(x , y ; t) =

∫ ∞

0
dℓ1

∫ ∞

0
dℓ2 e−xℓ1−yℓ2 Gλ,Gs(ℓ1, ℓ2; t).
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Propagator for Gs = 0:

G0
λ(x , y ; t) =

4λ e−2
√

λt

(
√

λ + x) + e−2
√

λt(
√

λ − x)

× 1

(
√

λ+x)(
√

λ+y)−e−2
√

λt(
√

λ−x)(
√

λ−y)

G(0)
λ (l1, l2; t) =

e−[coth
√

λt]
√

λ(l1+l2)

sinh
√

λt

√
λl1l2
l2

I1

(

2
√

λl1l2
sinh

√
λt

)
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The following geometric picture couples W and G and leads to
consistency relations for the scaling of W :

−∂Wλ,Gs(x)

∂λ
=

∫ ∞

0
dt

∫ ∞

0
dℓ Gλ,Gs(x , ℓ; t) ℓWλ,Gs (ℓ).

t

x

Wreg −−−→
a→0

aη Wλ(x), η < 0,

treg −−−→
a→0

t/aε, ε = 1.

Wreg −−−→
a→0

const. + aη Wλ(x), η = 3/2

treg −−−→
a→0

t/aε, ε = 1/2,
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The propagator satisfies the following (integral) equation:

+= +

Shaded parts of graphs represent the full, Gs-dependent
propagator and disc amplitude, and non-shaded parts the CDT
propagator where Gs = 0. In all four graphs, the geodesic
distance from the final to the initial loop is given by t .
Differentiating the integral equation, corresponding to the figure
with respect to t leads to (gs = Gsa3)

aε ∂Gλ,Gs(x , y ; t)
∂t

= − ∂

∂x

[(

a(x2−λ)+2gs aη−1Wλ,Gs(x)
)

Gλ,Gs(x , y ; t)
]
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When η = 3/2 and ε = 1/2 we can take gs > 0 for a → 0
(corresponding to Gs → ∞):

∂Gλ,Gs(x , y ; t)
∂t

= − ∂

∂x

[

2gsWλ,Gs(x)Gλ,Gs(x , y ; t)
]

,

Alternatively, for η = −1, we have

∂Gλ,Gs(x , y ; t)
∂t

= − ∂

∂x

[

Ŵλ,Gs(x)Gλ,Gs(x , y ; t)
]

,

Ŵλ,Gs(x) = (x2 − λ) + 2Gs Wλ,Gs(x)

Ambjørn New scaling limit



When η < 0, i.e. when the disk amplitude scales, it satisfies the
following equation:

= +

Shaded parts represent the
full disc amplitude, unshaded
parts the CDT disc amplitude
and the CDT propagator. Gs

is associeted with branching.

Wλ,Gs(x) = W (0)
λ (x)+

Gs

∞
∫

0

dt

∞
∫

0

dℓ1dℓ2 (ℓ1 + ℓ2)G
(0)
λ (x , ℓ1 + ℓ2; t)Wλ,Gs(ℓ1)Wλ,Gs(ℓ2)
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The branching of baby-universes in the ordinary scaling limit is
the reason that “proper time” scales as a1/2 and not as a. We
have an infinite number of baby universes in the continuum
limit.
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In the new scaling limit the number of baby univeses is finite for
a universe with finite volume (i.e. area in 2d).
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String field theory

G(0)
λ (l1, l2; t) = 〈l2|e−tH0(l)|l1〉

H0(l) = −l
∂2

∂l2
+ λl .

Second quantization or third quantization

[Ψ(l),Ψ†(l ′)] = lδ(l − l ′)

Ψ(l)|0〉 = 〈0|Ψ†(l) = 0, Ψ†(l)|0〉 = |l〉.

G(0)
λ (l1, l2; t) = 〈0|Ψ(l2)e

−tĤ0Ψ†(l1)|0〉

Ĥ0 =

∫ ∞

0

dl
l

Ψ†(l)H0(l)Ψ(l)
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1l 1l

2l 2l

1l 2l+1l 2l+
l

Ĥ = Ĥ0 − Gs

∫

dl1

∫

dl2Ψ
†(l1)Ψ

†(l2)Ψ(l1 + l2)

−αGs

∫

dl1

∫

dl2Ψ
†(l1 + l2)Ψ(l2)Ψ(l1) −

∫

dl
l

ρ(l)Ψ(l),

Generalized disk amplitudes (Hartle-Hawking wave functions):

w(ℓ1, . . . , ℓn) ≡ lim
t→∞

〈0|e−tĤΨ†(ℓ1) · · ·Ψ†(ℓn)|0〉connect
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Unfinished stuff

For the ordinary matrix models we have a description of
conformal matter coupled to 2d quantum gravity by multicritical
one-matrix models and by two-matrix models.

It would be interesting to define the new scaling limit in these
cases provided it is simple. If the exponents are the same as in
flat space, it would the provide a simple realization of these
critical systems.
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