

A message-passing scheme for non-equilibrium stationary states

NORDITA Seminar December 2, 2010

E.A., H. Mahmoudi (2010) [in preparation]

I. Neri, D. Bollé, J. Stat Mech. (2009) P08009 Y. Kanoria, A. Montanari (2009) arXiv:0907.0449

March 10, 2010

Message-passing schemes are ways to approximately compute marginals of probability distributions.

In Artificial Intelligence known as Belief Propagation (BP); in Information Theory known as iterative decoding.

Bethe-Peierls approximation = Belief Propagation

JS Yedidia, WT Freeman, Y Weiss (2001) M Mézard, A Montanari Physics, Oxford University Press (2009)

Configuration space; N discrete variables

Cost or energy function; sum of local terms

Marginal (one-spin) probabilities

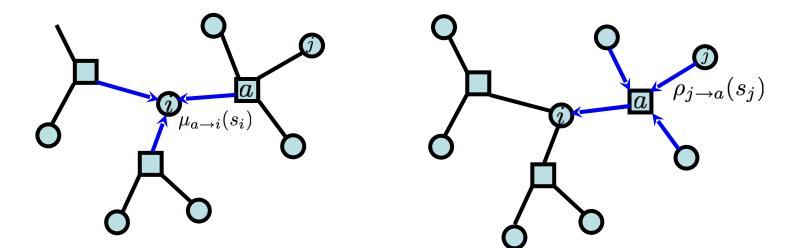
 $ec{s} \in \{1, ..., q\}^N$ $\mathcal{H}(ec{s}) = \sum_{a=1}^M e_a(ec{s}_a)$ $p_i(s_i) = rac{1}{Z} \sum_{ec{s} \setminus s_i} e^{-eta \, \mathcal{H}(ec{s})}$

In statistical physics, artificial intelligence and information theory, such marginals (magnetizations, correlation functions etc) are typically what one wants to compute (or use)

$$\begin{cases} p(\vec{s}) \propto \frac{\prod_{a=1}^{M} p_a(\vec{s}_a)}{\prod_{i=1}^{N} (p_i(s_i))^{d_i-1}} & \blacksquare & Bethe-Peterls approximation \\ p_i(s_i) = \sum_{\vec{s}_a \setminus s_i} p_a(\vec{s}_a) & \blacksquare & Belief propagation \end{cases}$$

Factor graph representation illustrates canonical BP

KTH/CSC



The 'messages" $\mu_{a
ightarrow i}(s_i)$ and $ho_{j
ightarrow a}(s_j)$ are Lagrange multipliers.

They enforce the conditions that the marginal probabilities p_a over the spins partaking in one interaction a, summed over all those spins except i, is the marginal probability p_i , over that last spin.

$$p_i(s_i) = D_i \prod_{a \in \partial i} \mu_{a \to i}(s_i)$$

$$\mu_{a \to i}(s_i) = C_{a \to i} \sum_{\vec{s}_a \setminus i} \exp\left(-\beta e_a(\vec{s}_a)\right) \prod_{j \in \partial a \setminus i} \rho_{j \to a}(s_j) \quad \bullet$$

 $\rho_{i \to a}(s_i) = D_{i \to a} \prod_{b \in \partial i \setminus a} \mu_{b \to i}(s_i)$

- Iterative procedure to find fixed points of BP equations
- Exact on trees and an approximation on loopy graphs
- No guarantee to converge

March 10, 2010

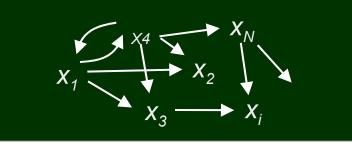
Non-equilibrium is the domain of kinetic theory.

There is no Gibbs measure as there is in equilibrium.

But can one nevertheless compute marginals by a message-passing scheme?

Today's case study: diluted asymmetric spin glass

KTH/CSC



S Kauffman (1969) J Hopfield (1982)

B Derrida (1987) A Crisanti, H Sompolinski (1988)and many others

$$\frac{d}{dt}p(\vec{\sigma}(t)) = W(t)\,p(\vec{\sigma}(t))$$

Fully asynchronous updates (master equations); not yet done

$$p(\vec{\sigma}(0)...\vec{\sigma}(t)) = \prod_{s=1}^{t} W[\vec{\sigma}(s) | \vec{h}(s)] p(\vec{\sigma}(0))$$
 Synchronous updates; which
can yet be varied in several
$$W[\vec{\sigma}(s) | \vec{h}(s)] = \prod_{i=1}^{N} \frac{\exp(\beta h_i(s) \sigma_i(s))}{2\cosh(\beta h_i(s))}$$
 ways (here in two ways)

$$h_i(t) = \sum_{j \in \partial i} c_{ji} J_{ji} \sigma_j(t-1) + \theta_i(t)$$

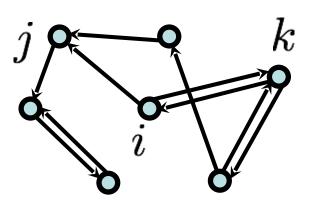
- parallel : simultaneously update all spins

- sequential : one spin updated at a time

 $\sigma_i(t+1) = +1 \quad \text{with probability } \{1 + \exp(2\beta h_i(t))\}^{-1}$ $\sigma_i(t+1) = -1 \quad \text{with probability } \{1 + \exp(-2\beta h_i(t))\}^{-1}$ March 10, 2010 Erik Aurell, KTH Computational Biology

Dilution, asymmetry, and interaction strength

KTH/CSC



 $\begin{array}{rcl} \text{connectivity} & \to & c \\ & \text{asymmetry} & \to & \epsilon \end{array}$

Derrida (1987) parametrization

connectivity
$$c_{ij} (i \rightarrow j)$$

$$p(c_{ij}) = \frac{c}{N} \delta_{c_{ij},1} + (1 - \frac{c}{N}) \delta_{c_{ij},0}$$

Starts as directed Erdős-Renyi graphs; where average connectivity would be *c*

Connections $i \to j$ and $j \to i$ dependent $p(c_{ji}|c_{ij}) = \epsilon \, \delta_{c_{ij},c_{ji}} + (1 - \epsilon) \, p(c_{ji})$

Gaussian or binary
$$J_{ij} \longrightarrow h_i(t) = \sum_{j \in \partial i} c_{ji} J_{ji} \sigma_j(t-1) + \theta_i(t)$$

Mean-field theory for magnetizations and correlations

$$p(\sigma_{i}(0), ..., \sigma_{i}(t)) = \sum_{\vec{\sigma} \setminus i(0), ..., \vec{\sigma} \setminus i(t)} p(\vec{\sigma}(0), ..., \vec{\sigma}(t)) \longrightarrow m_{i}(t)$$

$$p_{ij}(\sigma_{i}(0), ..., \sigma_{i}(t), \sigma_{j}(0), ..., \sigma_{j}(t')) = \sum_{\vec{\sigma} \setminus i, j(0), ..., \vec{\sigma} \setminus i, j(t)} p(\vec{\sigma}(0), ..., \vec{\sigma}(t))$$

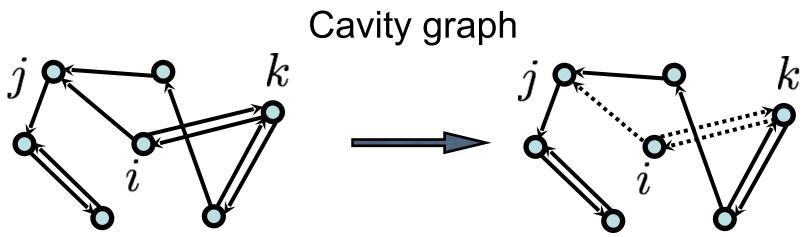
$$\frac{d m_{i}(t)}{dt} = -m_{i}(t) + \langle \tanh(\beta H_{i}(t)) \rangle \xrightarrow{C_{ij}(t, t')} C_{ij}(t, t')$$

$$\frac{d c_{ij}(t, t')}{dt} = -c_{ij}(t, t') + \langle \tanh(\beta \sigma_{j}(t')H_{i}(t)) \rangle$$

$$\text{nMF} \quad m_{i} = \tanh \left[\beta(\sum_{j} J_{ji}m_{j} + \theta_{i})\right] \xrightarrow{C_{ij}(1 - m_{j})^{2}} \qquad \text{Crisanti, Sompolinski (1988)} \\ \text{Hertz et al (2010)} \\ \text{Hertz, Roudi arXiv:1001.6216}$$

Bethe - Peierls approximation for spin histories

KTH/CSC

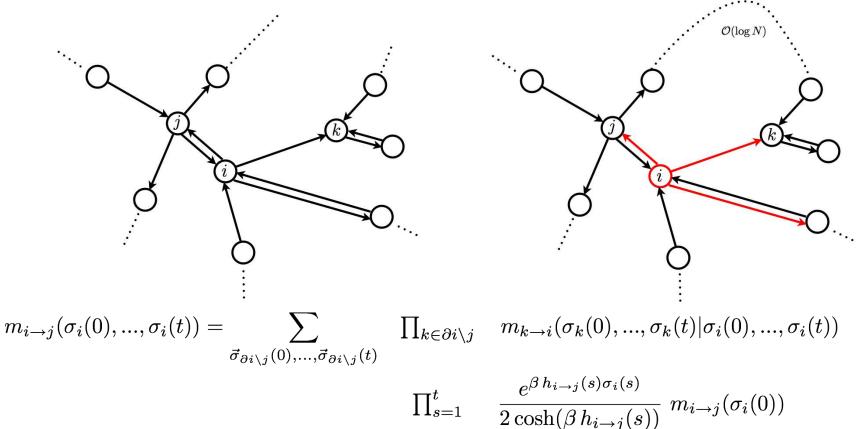


 $p(\vec{\sigma}(0)...\vec{\sigma}(t)) = p^{(i)}(\vec{\sigma}(0),...,\vec{\sigma}(t) | \sigma_i(0),...,\sigma_i(t)) \quad p_i(\sigma_i(0),...,\sigma_i(t))$

The cavity assumption: spins in cavity independent $p^i(\vec{\sigma}(0),...,\vec{\sigma}(t)|\sigma_i(0),...,\sigma_i(t)) = \prod_{k\in\partial i} m_{k\to i}(\sigma_k(0),...,\sigma_k(t)|\sigma_i(0),...,\sigma_i(t))$ The "messages" $m_{k\to j}$ are conditional probabilities

The (dynamic) cavity equation (parallel updates)

KTH/CSC



In static (equilibrium) case this would be BP, Here history dependent, hence hard to use directly.

The time-factorized approximation (parallel updates)

KTH/CSC

$$m_{i \to j}(\sigma_i(0), ..., \sigma_i(t)) = \prod_{s=0}^t m_{i \to j}(\sigma_i(s))$$

$$m_{i \to j}(\sigma_i(t)) = \sum_{\sigma_i(t-2), \vec{\sigma}_{\partial i \setminus j}(t-1)} \prod_{k \in \partial i \setminus j} m_{k \to i}(\sigma_k(t-1) | \sigma_i(t-2))$$

$$\frac{e^{\beta(\sum_{j \in \partial i} J_{ji} \sigma_j(t-1) + \theta_i)\sigma_i(t)}}{2\cosh(\beta(\sum_{j \in \partial i} J_{ji} \sigma_j(t-1) + \theta_i))} m_{i \to j}(\sigma_i(t-2))$$

(formally) time-dependent magnetization

I Neri, D Bolle (2009) Y Kanoria, A Montanari (2009)

Aurell, Mahmoudi (2010)

$$m_i(t) = \sum_{\vec{\sigma}_{\partial i}(t-1)} \prod_{j \in \partial i} m_{j \to i}(\sigma_j(t-1)) \tanh \left[\beta(\sum_{j \in \partial i} \frac{c_{ij}}{c} J_{ji} \sigma_j(t-1) + \theta_i) \right]$$

The sequential update model (poor man's Master eq.)

KTH/CSC

$$\frac{dp(\vec{\sigma}(t))}{dt} = \sum_{i=1}^{N} \{ w_i (F_i \vec{\sigma}(t)) \ p(F_i \vec{\sigma}(t)) - w_i(\vec{\sigma})(t) \ p(\vec{\sigma})(t) \} \}$$

Fully asynchronous updates (Master equations) is not yet done. In sequential updates one (randomly picked) spin is updated at a time.

$$p(\vec{\sigma}(t)) = \sum_{\vec{\sigma}(t-1)} W(\vec{\sigma}(t) \,|\, \vec{\sigma}(t-1)) \, p(\vec{\sigma}(t-1))$$
$$W(\vec{\sigma}(t) \,|\, \vec{\sigma}(t-1)) = \delta_{\vec{\sigma}(t),\vec{\sigma}(t-1)} + \frac{1}{N} \sum_{i=1}^{N} \left\{ w_i(F_i \vec{\sigma}(t)) \,\delta_{\vec{\sigma}(t),F_i \vec{\sigma}(t-1)} - w_i(\vec{\sigma}(t)) \,\delta_{\vec{\sigma}(t),\vec{\sigma}(t-1)} \right\}$$

When N goes to infinity, it is reasonable to expect that sequential update tends to fully asynchronous updates. But at finite N there will be a difference.

The dynamic cavity equations for sequential updates

KTH/CSC

The full dynamic cavity equations :

$$m_{i \to j}(\sigma_{i}(0), ..., \sigma_{i}(t)) = \sum_{\vec{\sigma}_{\partial i \setminus j}(0), ..., \vec{\sigma}_{\partial i \setminus j}(t)} \prod_{k \in \partial i \setminus j} m_{k \to i}(\sigma_{k}(0), ..., \sigma_{k}(t) | \sigma_{i}(0), ..., \sigma_{i}(t))$$

$$\prod_{s=1}^{t} \left[\frac{1}{N} \frac{e^{\beta h_{i}^{(j)}(s)\sigma_{i}(s)}}{2\cosh(\beta h_{i}^{(j)}(s))} + (1 - \frac{1}{N})\delta_{\sigma_{i}(s), \sigma_{i}(s-1)} \right] m_{i \to j}(\sigma_{i}(0))$$

The time factorized approximation :

$$m_{i \to j}(\sigma_{i}(t)) = \frac{1}{N} \sum_{\vec{\sigma}_{\partial i \setminus j}(t-1), \sigma_{i}(t-2)} \prod_{k \in \partial i \setminus j} m_{k \to i}(\sigma_{k}(t-1) | \sigma_{i}(t-2)) - \frac{e^{\beta h_{i}^{(j)}(t)\sigma_{i}(t)}}{2\cosh(\beta h_{i}^{(j)}(t))} m_{i \to j}(\sigma_{i}(t-2)) + (1 - \frac{1}{N}) \sum_{\sigma_{i}(t-1)} m_{i \to j}(\sigma_{i}(t-1)) \delta_{\sigma_{i}(t), \sigma_{i}(t-1)}$$

Aurell, Mahmoudi (2010)

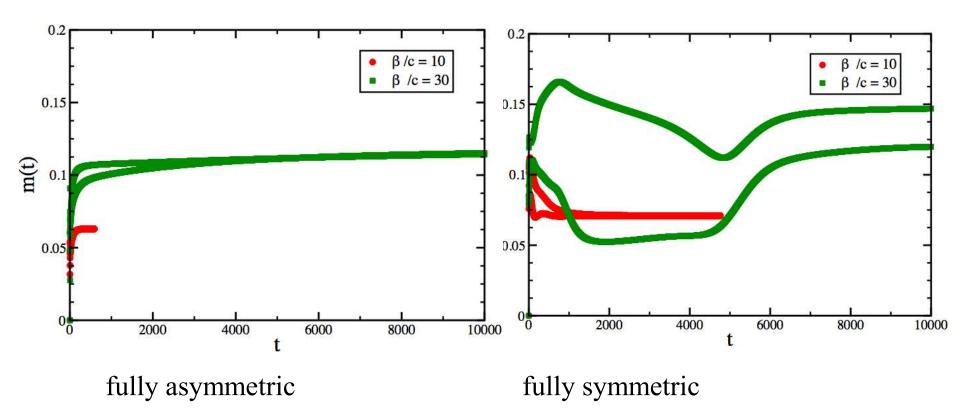
Comparing dynamic cavity equations to Monte Carlo

work in progress...

March 10, 2010

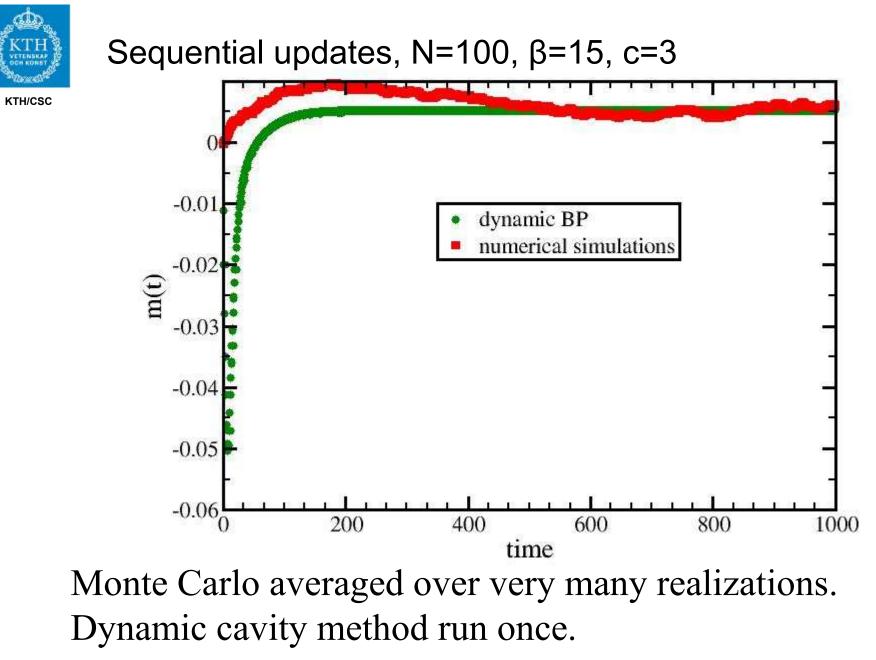
Parallel updates, different temperatures

KTH/CSC

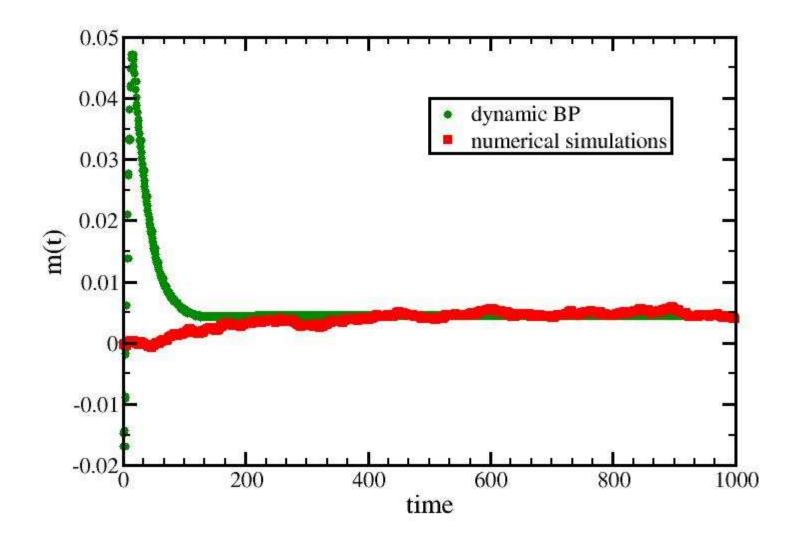


Average magnetization measured

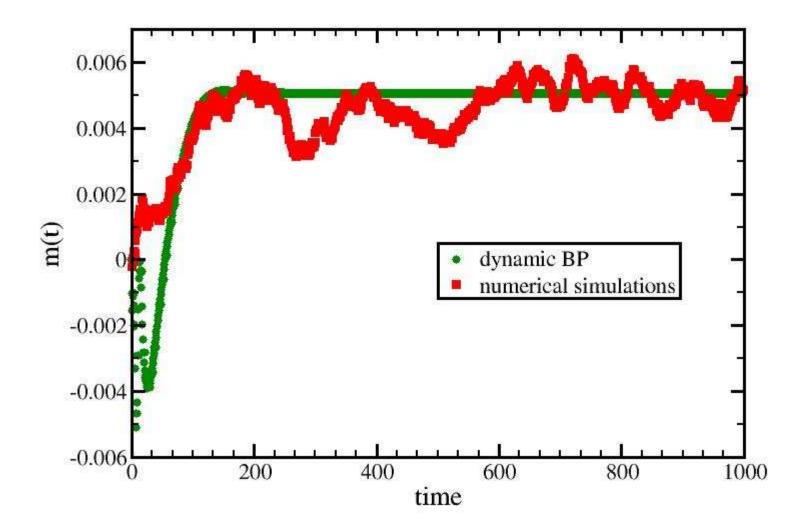
 $m(t) = \frac{1}{N} \sum_{i=1}^{N} m_i(t)$



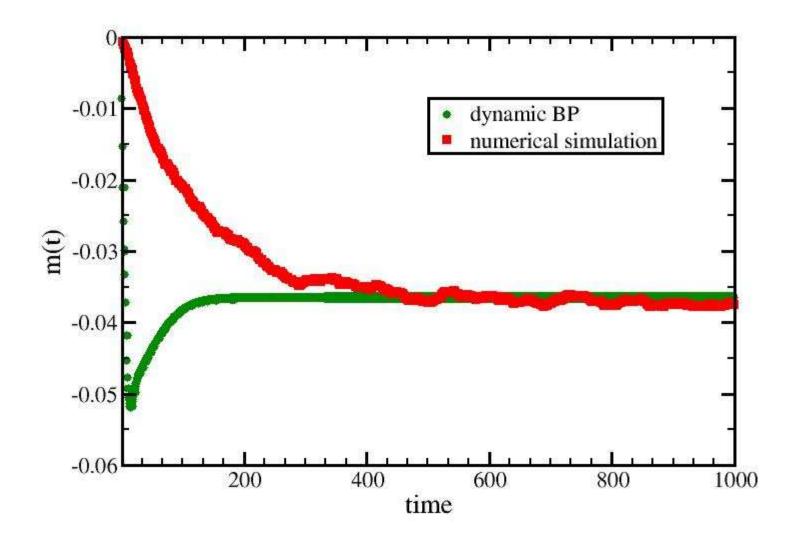
Some more sequential update cases....



Yet some more sequential update cases....



And yet more still.

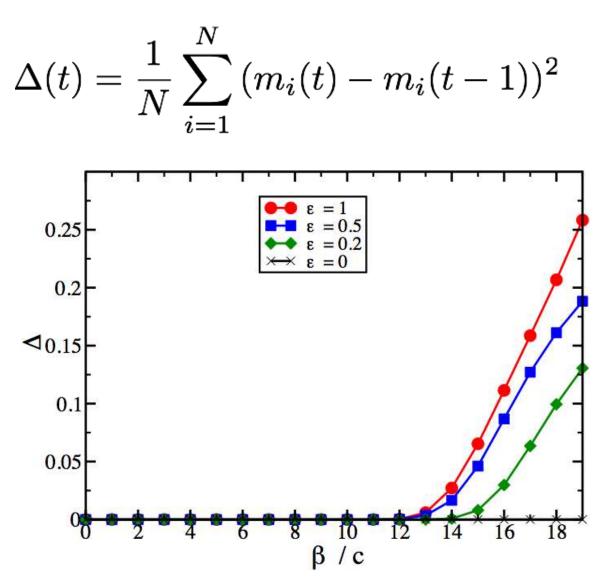


There seems to be something to it.

Therefore...to be continued...

March 10, 2010

Parallel updates can have cyclic behaviour



Erik Aurell, KTH Computational Biology

Thanks