HORIZON LIDAU PROJECT PROJECT

Simulating the 21 cm signal in absorption during the early EoR

Benoit Semelin

Collaborators: S. Baek, P. Di Matteo, F. Combes, Y. Revaz

LERMA Observatoire de Paris

-It depends on the source model.

-Modeling the signal involves additional physics.

Simulating the 21 cm emission during the "late" EoR

For a standard cosmology , assuming T_{spin} >> T_{CMB} :

 $\delta T_B = T_B - T_{CMB} = 28.1 \,\mathrm{mK} \,(1+\delta) (1-x_i) \left(\frac{1+z}{10}\right)^{\bar{2}}$

T_{gas} is not needed !

 δ : Baryon overdensity

1-x_i: Neutral fraction

- E.g. : Mellema et al. 2006:
- DM simulation
- cst bias \Rightarrow gas distribution
- 3D RT simulation $\Rightarrow x_i$
- 21 cm computation.

Signal in emission !

δT (mK) at z=12.57 (Beam=3.0 arcmin, Bandwidth=0.2 MHz)

The 21 cm emission
during the early EoRS: Baryon overdensity1-x; Neutral fraction
$$\delta T_B = T_B - T_{cxdd} = 28.1 \,\mathrm{mK} \ (1+\delta)(1-x)\left(\frac{1+z}{10}\right)^{\frac{1}{2}}\left(\frac{T_S - T_{cxdd}}{T_S}\right)\left(1+\frac{1+z}{H(z)}\frac{dv_{||}}{dr_{||}}\right)$$
Spin Temperature : $T_S^{-1} = \frac{T_{cxdd}^{-1} + x_{cd}T_c^{-1} + x_{col}T_K^{-1}}{1+x_{a} + x_{col}}$ Coupling to T_{cxdd} :Note that the second se

Computing P_{α} :

is 3D Lyman-α line transfer necessary?

<u> P_{α} </u><u>definition</u>: Nb of scatterings per atom per second. Depends mainly on local Ly- α flux.

- P_{α} depends on redshift.
- P_{α} depends on position \Rightarrow additionnal fluctuations (Barkana & Loeb 2005)

Cosmological Lyman-α radiative transfer:

Difficulties:

From free streaming to full diffusion regime on short scales.

Easy aspects:

- No feedback on dynamics.
- Very little feeback on ionization.

P_α: non trivial RT effects (Semelin et al. 2007)

- Central source, flat spectrum
- Uniform gas medium ($T_{K}{=}30K,\,\rho_{gas}{=}~\rho_{crit}$, $z{\sim}10$)
- Central source, flat spectrum
- Filament overdensity: $\delta \rho / \rho = 63$
- Filament radius: R= 1 Mpc

P_{α} profile is **not 1/r² at r < 10 Mpc** because of **wing scattering**.

 P_{α} map: strong depletion in the filament (~ shielding effect).

(Baek et al. 2009) The simulation pipeline

Dynamical simulations: 3D radiative transfer (RT) : Ly- α line transfer: Acceleration scheme • DM + Baryons Ionizing continuum • 2x256³ particles Post •1000 CPU hours Post • up to 10⁹ photons treatment treatment • 20 and 100 h⁻¹.Mpc •10 Go Using **LICORICE** Using **LICORICE** By Y. Revaz: GADGET S20 z=6.69 z=42.5 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0.1 y [comoving Mpc/h] -10 -10 10 x [comoving Mpc/h] Revaz 08

(Baek et al. 2009) Our first source model

The first sources of light:

- ✓ Pop III stars, M> 100 M_{sol}
- ✓ QSOs✓ X-ray binaries (?)

No observations!

Our first model:

- ✓ Salpeter IMF with 100 M_{sol} cutoff (intermediate Pop III / Pop II stars)
- ✓ ~10 Myr lifetime for ionizing sources (degenerate with escape fraction)
- ✓ Star formation history from hydrodynamics (Schmidt law)
- ✓ 10% escape fraction for Ly-alpha, unlimited lifetime.
- ✓ No X-ray sources ! (no IGM preheating)

IONIZATION FRONT: From z~11 to z~6

Boxsize: 100 Mpc/h Enough for 21 cm!

Minimum halo mass:

~10¹⁰ M_{sol} Not really enough!

When and where is Ly-α important for 21cm ?

The usual assumption:

 $T_{S} >> T_{CMB} \Rightarrow$ No signal in aborption, no need for T_{K} and x_{α}

(Ciardi & Madau 2003, Mellema et al. 2006, Zahn et al. 2007, Lidz et al. 2007, Iliev et al. 2008, etc...)

- **OK** if Ly- α flux high and sufficient pre-heating in the voids.
- **Fails** early in the EoR or if little pre-heating \leftarrow Ly- α necessary !

The results from our simulations: (Baek et al. 2009)

3D Line transfer?... Really ?? No shortcut ???

Full RT vs homogenous flux $(x_{\alpha}(z))$

Up to 50 % difference in T_b locally

Visible effect in the 3D powerspectrum

(Directly observable by interferometers)

New source model (Baek et al., in prep)

New model:

- ✓ Salpeter IMF
- ✓ Lifetime weighted SED

✓ Sources with a constant X-ray fraction !

Specific behaviour: long mean free path in the IGM

$$\lambda_X \approx 4.9 \left(\frac{E}{300 \,\mathrm{eV}}\right)^3 \mathrm{Mpc}$$
 (comoving)

preheat IGM \Rightarrow turn 21 cm absorption to emission

mass $[M_{\odot}]$	$\log(L/L_{M_{\odot}})$	$\log(T_{eff})$	$t_{life}[Myr]$
120	6.3	4.7	3
60	5.8	4.6	4.5
40	5.6	4.5	6
30	5.2	4.5	7
20	4.8	4.45	10
15	4.65	4.4	14
12	4.2	4.37	20
9	3.8	4.3	34
5.9	2.92	4.18	120
2.9	1.73	3.97	700
1.6	0.81	3.85	3000

Derived from Meynet & Maeder (2005)

Integration with Salpeter IMF

Energy band	$10.24\mathrm{eV} \leqslant E < 13.6\mathrm{eV}$	$E \ge 13.6 \mathrm{eV}$
Luminosity[erg/s]	6.32×10^{44}	2.14×10^{45}
Life time[Myr]	20.36	8.03

Maps for 3 models

Brightness temperature

Conclusions and Prospects

Conclusion from recent work:

- Heating the IGM takes time!
- Absorption is probably not suppressed

Conclusion for SKA (and pathfinders):

- Observing strategy: don't neglect the early EoR (z~11-15)

Next steps:

- Include higher Lyman lines.
- Go to larger boxsize/ particle number / photon number:
 LIDAU Project with D. Aubert, 512³ to 1024³ in 100 to 250 Mpc/h ⇒ compute non-gaussian statistics.

Opening 2 post-doc positions in 2009/2010 ! (See AAS Jobregister)