21 cm Power Spectra & the MWA

Miguel F. Morales University of Washington Stockholm, August 17, 2009

Overview

- EoR power spectrum
- Foregrounds & Calibration
- Implications for cross-correlations
- MWA

Epoch of Reionization

HI during EoR

Furlanetto, Sokasian, Hernquist (2004)

EoR power spectrum

Morales & Hewitt (2004)

Spherical symmetry

Morales & Hewitt (2004)

Symmetry separation

Morales, Bowman & Hewitt (2006)

EoR k-space coverage

NOTE. — This table lists the scaling relationships of the key equations. In order, the variables in each column are: total array area holding the size of each antenna constant $A_t|_{dA}$ (adding antennas), total array area holding the number of antennas and distribution constant $A_t|_{N_A}$ (increasing antenna size), the size of each antenna with the total array area held constant $dA|_{A_t}$ (dividing area into more small antennas), the total bandwidth B, the sensitivity as a function of wavenumber length $|\mathbf{u}|$, and the total observing time t.

Morales (2005)

Survey speed with compact antenna distribution

Power spectrum

z = 8,360 hours of integration

Bowman, Morales & Hewitt (2005)

MWA sensitivity vs. redshift

Bowman, Morales & Hewitt (2005)

MWA vs. MWA5000

Power spectrum dynamics

McQuinn

PS dynamics

 $r_{LLS} = 256 Mpc/h$ -100.0 10 $k^{3}P_{21}(k)/(2\pi^{2})$ [mK²] 0. 9 redshift 8 . 7 -6 -5 --1.0 0.01 1.0 0.1 k [1/Mpc]

PS dynamics

 $r_{LLS} = 16 Mpc/h$ -100.0 10 $k^{3}P_{21}(k)/(2\pi^{2})$ [mK²] 9 redshift 8 . 7 -6 -5 --1.0 0.01 1.0 0.1 k [1/Mpc]

Alvarez

PS dynamics

Dark energy with HI

Wyithe & Loeb (2007)

Part 2: making it work

Foregrounds

- Faint point sources
- Galactic emission
- Radio recombination lines
- RFI
- Others!

Ionosphere & Polarization

325 MHz polarized flux, 6° x 6°,4' beam, 5 K peaks (de Bruyn)

Astrophysical foregrounds

Galactic emission

Bright sources

Subtract bright sources– deconvolution

Confusion level sources Bowman (2007) &

Bowman et al. (2008) Subtraction of confusion level sources with freq. dependent effects for MWA.

Bowman et al. (2008)

Symmetry separation

Morales, Bowman & Hewitt (2006)

Signal extraction

Morales, Bowman & Hewitt (2006)

Signal extraction

$$\Delta S(f) = \Delta a \, df^2 + \Delta b \, df + \Delta c$$

$$\langle P_s(\eta) \rangle = 2\Theta d\Omega B^2 \left[\frac{\sigma_a^2}{\pi^2 \eta^4} + \frac{\sigma_b^2}{\pi^2 \eta^2} + \sigma_{c'}^2 \delta^k(\eta) \right]$$

Signal extraction

Bowman et al. (2008)

Observational foregrounds

Western Australia

Very radio quiet

Western Australia

Very radio quiet

Ionospheric calibration

Up to 1500 sources with known location, fit every 8 seconds -> rubber sheet

Ionospheric calibration

(Doeleman, Ting)

Up to 1500 sources with known location, fit every 8 seconds → rubber sheet

Mode mixing

- Chromatic array beam (PSF) & residual source flux, residual frequency ripple
- Polarized foreground & polarization miscalibration, flux leakage from Q & U \rightarrow I
- Antenna beam dependence & point sources, decorrelation of visibilities at different frequencies

Mode mixing

- If both instrumental response and foregrounds were spectrally smooth, subtraction would be straight-forward
- Frequency dependent instrumental effects mix the positiondependent foreground into a frequency ripple
- Measurement fidelity of $10^{-4} 10^{-6}$, via combination of:
 - Calibration
 - Determination of foreground

Can be either calibration and/or measurement of foreground, it is the product that is important

Cross-correlations & *k*-space overlap

Radio k-space sensitivity

1st gen. radio noise sensitivity

Radio foreground limitations

OIR k-space sensitivity

Narrowband Lya

'Photo-z' OIR

 $\Delta z \approx 0.1$ gives only 2 modes overlap in k parallel

'Spectroscopic' OIR

Lessons

- Similar length scales is not sufficient, need *k*-space overlap for cross-correlations
- Requires good OIR spectral resolution
- Need good survey volume overlap (advantage LOFAR)

Murchison Widefield Array

MWA Collaboration

MIT Haystack Observatory MIT Kavli Institute Harvard CfA **University of Washington U. Melbourne** ANU/Stromlo Curtin U. Sydney U. **U. of Western Australia CSIRO Raman Research Institute**

MWA Collaboration

Murchison Widefield Array

- 512 16 dipole antennas
- 80-300 MHz
- Radio quiet Murchison site
- Very wide 20°- 40° field of view
- Full cross-correlation of all 512 antennas
- Strict attention to systematics

Goals of MWA

- Key science drivers:
 - Epoch of Reionization
 - Heliospheric science FR & IPS
 - Radio transients

MWA antenna distribution

Bowman (2007)

MWA antenna distribution

Bowman (2007)

1.5 G visibilities every 1/2 second; 19 GB/s

Instrumental calibration

 Gain from one antenna to rest of array, simultaneously for all antennas & 100 sources

32T prototype

Wayth

vs. VLA & Bonn image (327 & 408)

Wayth; Castelletti et al. (2006)

Primary EoR field

Williams

